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ABSTRACT 1 ARTICLE HISTORY
It has been widely known that the coastal upwelling along the Received 27 September 2019
souther st of Java is generated by southeasterly wind which ~ Accepted 24 April 2020

induces offshore Ekman Mass Transport (EMT) during southeast
monsoon. However, the variability of EMT has not been fully
described in previous studies. The present study investigated the
variability of Ekman dynamics which consist of EMT and Ekman
Pumping Velocity (EPV) along the southern coast of Java, based
on remotely sensed data. We demonstrated the incongruity
between the distribution of southeasterly wind speed and sea sur-
face temperature (SST) during southeast monsoon which is related
to the distribution of Ekman dynamics. Offshore EMT at the western
region of the southern coast of Java is stronger than offshore EMT
at the eastern region. However, stronger offshore EMT at the wes-
tern part is inhibited by downwelling EPV while weaker offshore
EMT at the eastern part is accelerated by upwelling EPV.
Consequently, SSTs at the eastern parts are lower than those at
the western parts. Thus, the changes of offshore EMT intensity from
eastern to western parts are balanced by their EPV distributions
which explain the incongruity mueen the distribution of wind
speed and SST during southeast monsoon. On an interannual time-
scale, the combination of La Nifia and negative Indian Ocean Dipole
(IOD) events tends to weaken offshore EMT and EPV which reduce
the intensity of Chl-a bloom and SST cooling during southeast
monsoon season. Furthermore, ENSO has a less significant impact
on the Ekman dynamics variability than 10D.

1. Introduction

aater mass lifting from the deeper water column to the sea surface is known as upwelling.
This lifted water mass brings cold water which cools sea surface, and nutrient-rich water
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which is favourable for phytoplankton growth. Thus, lower sea surface temperature (S5T)
and higher sea surface chlpepphyll-a (Chl-a) concentration are often used as indicators of
an upwelling nt. The increase of surface Chl-a concentration can escalate fisheries
31 ductivity (e.g. Sachoemar et al. 2010; Sachoemar, Yanagi, and Aliah 2012; Friedland
et al. 2012; Racault et al. 2017; Zainuddin et al. 2017; Welliken et al. 2018). Thus, under-
standing upwelling characteristics in an area is fundamental for fisheries management.
he southern coast of Java (Figure 1) is known as a productive fishing ground for tuna
(e.g. Syamsuddin et al. 2013, 2016; Lahlali et al. 2 . The production of bigeye tuna
fishing, which is the most abundant tuna species in the southern coast of Java peaks
during southeast monsoon season (Lahlali et al. 2018). This may be related to the
upwelling event which also occurs during southeast mons season (e.g. Susanto,
Gordon, and Zheng 2001; Susanto, Moore, and Marra 2006; Susanto and Marra 2005;
@ndar, Rao, and Tozuka 2009; Wirasatriya et al. 2018a). The southeasterly wind blowing
along the southern coast of Java during southeast monsoon generates Ekman transport
whicjppushes water mass away from the coast. The loss of water mass in the nearshore
area is then replaced by the water mass from the deep water.

Based on the region classification of monsoon system based on the climatic rainfall in
Indonesia by Aldrian and Susant 03), the southern coast of Java is located at region
A which covers south and central Indonesia from south Sumatra to Timor Island, parts of
Kalimantan, parts of Sulawesi, and parts of Papua. This region is characterized by strong
sonal variability of rainfall with strong influences of two monsoons, namely the wet
northwest monsoon from November to March (NDJFM) and the dry southeast monsoon
from May to September (MJJAS). The peak of northwest (southeast) monsoon occurs in
December to February (June to must]. Thus, March to May and September to November
represent monsoon transitions. Along the southem coast of Java, the peak of southeast
monsoon shifts to July, August, September, since the maximum speed of southeasterly
wind occurs during this period (e.g. Susanto, Gordon, and Zheng 2001).
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Figure 1. Study area of southern coast of Java. Inset map is Indonesia. Background colour is Ekman
Pumping Velocity (EPV) climatology in August. Positive (negative) EPV denotes downward (upward)
water motion. Black boxes are distribution of 20 sample areas in 0.5° % 0.5° bins. A, B, C, D, and E in the
inset map are Sumatra Island, Kalimantan Island, Sulawesi Island, Papua Island and Timor Island,
respectively.
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Some researchers proposed several factors that influence the upwelling generation
gong the southern coast o a. For example, Kuswardani and Qiao (2014) stated that the
blocking ITF could reduce coastal upwelling intensity along the southern coast of Java
during the southeast monsoon season. ITF induces baroclinic instability that accelerates
upwelling. By using Argo Float data, Horii, Ueki, and Ando (2018) found evidence of the
upward movement of thermocline during southeast monsoon season due to upwelling
which is concurrent with the anomalously s easterly wind. Sea level drops are also
identified in the tidal station data located along the western coast of Sumatr d
southern coast of Java due to the upwelling occurs during southeast monsoon aﬁﬁrii
et al. 2016). Furthermore, Chen et al. (2016) explained thmhe shoaling thermocline
signals which propagate into the southern coast of Java via equatorial Kelvin waves
amplify the seasonal upwelling and cold SST anomalies during the summer-fall season

ay to October). The influence of Kelvin wave is strong f@pinterannual and intraseasonal
variation of upwelling along the southern coast of Java Heln et al. 2015, 2016; Delman
et al. 2016, 2018; Horii, Ueki, and Ando 2018).

Among the factors mentio above, wind speed is the most important factor that
forms the seasonal pattern of coas welling along the southern coast of Java Island
(Susanto, Gordon, and Zheng 2001; Susanto and Mama 2005; Iskandar, Rao, and Tozuka
2009; Wirasatriya et al. 2018a). Nevertheless, the Ekman dynamics under the southeasterly
wind that drive the upwelling generation were less described in the previous studies. It
has been widely known that the generating mechanism of upwelling by the surface wind
is through Ekman dynamics which consist of Ekman Mass Transport (EMT) and Ekman

mping Velocity (EPV). Although Varella et al. (2016) showed the role of EMT on the
variability of ugegelling along the southern coast of Java, they neglected EPV in their
analysis which may play important role in the upwelling processes. For example, in the
Vietnamese coast, the different Ekman Dynamics trigger Chl-a blooming in a different
season. During the southeast monsoon season, strong southerly wind constantly blowing
in the eas coast of Vietnam generating strong offshore EMT that causes coastal
upwelling (Tang et al. 2004; Dippner et al. 2007). In contrast, chaotic wind occurs during
intermonsoon season creating positive curl that generates upwelling EPY (i.e. negative
EPV), then increases Chl-a concentration (Corrigan, Ramanathan, and Schauer 2006; Wang
and Tang 2014). In the east coast of Peninsular Malaysia, EPV plays a more dominant role
than EMT in generating upwelling during summer (Kok et al. 2017). In the California
Current System, EPV is as important as EMT in generating upwelling (Pickett and Paduan
2003). In the present study, we demonstrate the contradict impagegof EMT and EPV
generated by southeasterly wind in driving the elling variabilities along the southern
coast of Java. Furthermore, we also firstly show ﬁeasonal and interannual variations of
EMT and EPV along the southem coast of Java.

Because of the wide-ranging spatial coverage, and continues monitoring, remotely
sensed data from satellite have often been used to investigate the ocean sg#fce condi-
tions within the Indonesian Seas (e.g. Susanto, Gordon, and Zheng 2001; Susanto and
Marra 2005; Iskandar, Rao, and Tozuka 2009; Khaldun et al. 2018; Wirasatriya, Setiawan,
and Subardjo 2017; Wirasatriya et al. 2018a, 2018b; 2019; Maisyarah et al. 2019; Bahiyah
et al. 2019; Khasanah, Suprijanto, and Wirasatriya 2019; Suprijanto et al. 2019; Setiawan
et al. 2019, 2020). Focusing the analysis on remote sensing data, the present study
calculated Ekman dynamics from satellite-derived surface wind data for 12 years
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Satellite-basedgiata of SST and Chl-a are also used to investigate their impact on upwel-

observations {igom 2007 to 2018) to investigate their spatial and temporal variability.
ling variability along the southern coast of Java.

1
2. Data and method
2.1. Data

For surface wind data, we used semi-daily Advanced Scatterometer (ASCAT) (Figa-Saldana
et al. 2002) from 2007 to 2018. Spatial (longitude and latitude) resolutions of these datasets
are 0.125° x 0.125°. This wind product is generated from a microwave scatterometer sensor
which can estimate the speed and direction of the wind at about 10 m above the sea level.
Moreover, this product has been tested and validated both for open seas and coastal areas
and shows good acc y for both areas (Verhoef and Stoffelen 2013).

SST and Chl-a data were obtained from daily Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua Lv3 with the spatial resolution 0.04° x 0.04° (Esaias
et al. 1998) from 2007 to 2018. Specifically, we chose MODIS S5T obtained from11 pm
since this product covers both day and night observation. MODIS Chl-a is only available in
daytime observation since this product is built by using a visible band. Detailed explana-
tion related to the algorithm for generating MODIS SST and Chl-a is described by Brown
and Minnet (2009) and O'Reilly et al. (1998), respectively. Moreover, these datasets have
been d and tested by many researchers (e.g.Moore, Campbell, and Dowell 2009;
Zhang et al. 2006; Ghanea et al. 2015; Lee et al. 2010; Qin et al. 2014).

We also used vertical profile data of temperature and salinity from GLOBAL-
REANALYSIS-PHY-001-030 (Fernandez and Lellouche 2018), the ocean physics reanalysis
distributed through the Copernicus Marine Environment Monitoring Service (CMEMS).
This reanalysis data is generated by the NEMO platform with a grid interval of 0.083° x
0.083" In addition, we also analysed the vertical profile data of temperature and salinity
from Argo floats (Argo, 2000). We only chose the Argo floats which is located near the
coastal line along the southern coast of Java.

2.2. Method

For calculating EMT and EPV, first, we converted surface wind data into wind stress (1) by
using the following equation:

T=p,Call0 (M

where p, is the density of air (1.25 kg m™>), and U, is the wind speed 10 m above sea level.
The value of drag coefficient (Cy) follows WAMDI (1988) i.e.

1000C, = 1.29 forav s '<Up< 75ms " (2a)
1000Cs = 0.8 + 0.0065U19 for 7.5 ms ' <Uig< 50 ms ' (2b)

Next, EMT and EPVY were obtained using the following equations (i.e. Wang and Tang 2014).
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curl
EPV = —— (3)
Puf
EMT = — - © (4)
puf
;) T,
curl = ﬂ — i (5)
ox  dy

where p,, is the density of seawater (1,025 kg m~>) and £ is the Coriolis parameter (Stewart
2008). The units of EMT and arem?s'andms™’, respectively.

The previous studies (e.g. Pickett and Paduan 2003; Castelao and Barth 2006; Kok et al.
2017) converted the unit of EPV into vertical transport in order to compare the water mass
transport brought by EMT and EPV in the s units (i.e. m* s™'). They estimated vertical
transport by integrating vertical velocity out to the distance where the positive wind stress
curl remains. Since the present study is not only considering the positive wind curl stress
but also negative wind cur stress, we did not convert into vertical transport. Helpern (2002)
simply compared EPV and EMT which is represented by alongshore wind stress to examine
the variability of Ekman dynamics off Peru during 1997-1998 El Nifio. In the present study,
we performed linear Pearson correlation analysis of the monthly data from 2007 to 2018 to
determine the dominant role of the Ekman dynamics that influence upwelling along the
southern coast of Java. Furthermore, we computed a multiple correlation coefficient of SST
as a dependent variable and EPV and meridional EMT as independent variables to see how
if both Ekman dynamics combine to influence SST variability along the southern coast of
Java. We also calculated seawater density at the normal atmospheric pressure from the
profiles of temperature and salinity by using the UNESCO's (1981) formula. All geophysical
parameters were composited into monthly and monthly climatology. Monthly climatology
is wthly means of all years (from 2007 to 2018).

To investigate the jperannual variability of Ekman Dynamics along the southern coast
of Java which may bemuence El Nifio Southern Oscillation (ENSO) and Indian Ocean
Dipole (I0OD), we used Oceanic Nino Index {Oand Dipole Mode Index (DMI), respec-
tively. ONI index was obtainggl from https://www.cpc.ncep.noaa.gov/data/indices/oni.
ascii.txt. The ONI index is the 55T anomalies in the Nifo 3.4 region (5°N-5°S, 170°W-120°
W) withetle basis period of 1971-2000. Meanwhile, the weekly DMI index is provided by
https://stateoftheocean.osmc.noaa /sur/ind/dmi.php. DMI is determined by the
anomaly value of the SST gradient between the western tropical Indian Ocean (10°5-10°
N and 50°E-70°E) an southeastern tropical Indian Ocean (10°5-0°N and 90°E-110°E)
(Saji et al. 1999). The anomaly is calculated relative to a monthly climatological seasonal
cycle based on the years 1982-2005. The monthly climatology is linearly interpolated to
determine weekly anomalies. In the present study, weekly DMI was composited into
monthly DMI and smoothed it with 3-month running mean filter to reduce its hig
frequency signal. We used +£0.5°C (£0.25°C) as a threshold to determine the period of
Nifio and La Nifa (positive and negative I0D).
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3
3. Result and discussion
26
3.1. Spatial distribution of surface wind and SST during southeast monsoon along

the southern coast of Java

Qu et al. (2005) have already provided monthly climatology map of surface wind and 55T
within Indonesian Seas which indicates good comrespondence between SST and surface
wind distribution. Moreover, Iskandar, Rao, and Tozuka (2009) also demonstrated good
correspor¢nce between the distribution of monthly climatology maps of surface wind
and Chl-g along the southern coast of Java. In this section, we provide the finer scale maps
of surface V\q and 55T during the peak of upwelling s n, i.e. in August to expose the
more detail relationship between surface wind and SST along the southern coast of Java
(Figure 2a) which is missed by the previous studies. Cold 55T (less than 26.5°C) spreads
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?éure 2. a) Distribution of monthly climatology data of SST and surface wind in August (2007-2018).
Background colour is SST. Length of arrow and its colour denote wind speed. b) Monthly climatology
of 55T and wind speed. Thin and thick lines represent the mean values of 55T and wind speed inside
the thin and thick boxes in Fig. a.
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unevenly%ng the southern coast of Java; cooler is the eastern region and warmer in the
western region. Meanwhile, surface winds blow southeasterly along the soifern coast of
Java with speed by more than 6.5 m™". In contrast to the SST distribution, wind speed in
the western regioppis higher than wind speed at the eastern region. Thus, there is an
incongruity of the %tion between surface wind speed and SST in the southern coast of
Java where many studies in the different areas within the Indonesian Seas showed that
the higher wind speed induced the cooler S5T (Setiawan and Habibi 2011a; Setiawan and
Kawamura 2011b; Setiawan et al. 2019, 2020; Wirasatriya, Setiawan, and Subardjo 2017;
Wirasatriya et al. 2018b).

Furthermore, we extracted the mean values at two boxes in Figure 2(a) for S5T and
surface wind to test the relation between surface wind ggged and SST at the western and
eastern part of the southern coast of Java (Figure 2b). From January to March and from
September to December, the variability of 5ST at the western and eastemn boxes show
a similar trend and value. Seasonal variation is robustly seen in both boxes. High S5Ts
occur twice a year in March and December which are maximum in March. Low SS5Ts also
occur twice a year which are minimum in August for eastern box and September for the
western box. This trend follows the variability of wind speed which also shows the
seasonal variation. The wind speeds are minimum in March for both boxes and maximum
in August and July for western box and eastern box, respeciigely. Focusing on the
southeast monsoon/upwelling season (i.e. July to September), it can be seen that the
wind speed at the western box is 1 m s™' higher than the wind speed at the eastern box
but in contrast, averaged 55Ts in western box are higher by more than 0.5°C than
averaged SSTs in eastern box. Thus, the inconsistency of the relation between wind
speed and SST occurs during the upwelling season/southeast monsoon. To investigate
this incongruity, we analysed Ekman dynamics as described in the next subsection.

3.2. Seasonal variation of Ekman dynamics

The seasonal variation of Ekman dynamics along the southern coast of Java is represented
by EMT and EPV as shown in Figures 3 and 4, respectively. For EMT, onshore EMT is only
observed in 4 months from December to March and attains a maximum in January
denoted by the distribution of onshore EMT by about 4 m? s™'. Onshore EMT occurs
under the condition of northwesterly wind as has been shown by previous studies (e.g.
Iskandar, Rao, and Tozuka 2009). On the other hand, offshore EMT dominates for all other
seasons from April to November. Starting from April with the intensity of about 1 m*s™",
offgibre EMT attains a maximum in August denoted by the intensity by more than 2 m’
s~ ! along the southern coast of Java. Even more, in the western part, the offshore EMT is
very strong (i.e. 8 m” s™'). This condition follows the distribution of wind speed in August
as shown in Figure 2(a). The weakest offshore EMT is observed in November before it
changes into omglhore EMT in December.

The seasonal variation of EPV along the southern coast of Java is also observed as shown
in Figure 4. Positive and negative EPVs denote downward and upward velocities, which
represent downwelling and upwelling processes, respectively. The weakest EPV occurs
during the first transitig§jseason (March and April) denoted by nearly zero EPV ranges
only from 0.5 x 107> m 5! to 05 x 10~ m s~ '. During the southeast monsoon (July,
August, September) the amplitude of EPV is intensified ranges from =1.5 x 107° m s~ to
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Figure 3. Monthly climatology of Ekman Mass Transport (EMT) from 2007 to 2018.

1.5 x 107 m s~ ' along the southern coast of Java and peaks in August. Furthermore, we also
can see the difference between EPV at the westem part and eastern part of the southern
coast of Java. At the westem part, strong positive EPV indicates a strong downwellj
process. In contrast, a strong upwelling process is identified at the eastern part of the

uthern coast of Java. The turning position between downwelling EPV and upwelling EPV
gong the southern coast of Java is located at 108.5°E.
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Figure 4. Monthly climatology of Ekman Pumping Velocity (EPV) from 2007 to 2018. Positive
(negative) EPY denotes downward (upward) water motion.

To examine the relationship among EMT, EPV, and the distribution of 55T, we averaged
the meridional component of EMT and EPV in two boxes as shown in Figure 5{@\5
described in the previous section, SST variations in both boxes are almost equal from
January to March and from September to December. From April to August, S5Ts in the
eastern box is lower than the 55Ts in the western box. From January to April, the
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Figure 5. A) Monthly climatology of SST, meridional components of Ekman Mass Transport (EMT) and
Ekman Pumping Velocity (EPV). Thin and thick lines represent the mean value inside the thin and thick
boxes in Figure 2a. Positive (negative) EMT means onshore (offshore) EMT, respectively while positive
(negative) EPY denotes downward (upward) water motion. b) and c) are monthly climatology of the
vertical profile of sea water density at the normal atmospheric pressure inside the thin and thick boxes
in Figure 2a, respectively. The black contours in b) and c) are isopycnals of 22.4 kg m™.
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meridional component of EMTs in both boxes are also equal. After May, offshore EMT
which is denoted by the negative meridional component of EMT in the western box
becomes stronger than the eastern box. The difference of offshore EMT between two
boxes attains a maximum in August. The difference of EPV between two boxes is also
attained in August since during southeast monsoon season, EPV at the western boxes
becomes positive, while at the eastern box, EPV is negative throughout the year. Thus, it
can be concluded that during southeast monsoon, the eastern (western) box of the
southern coast of Java is characterized by weak (strong) offshore EMT and negative
(positive) EPV. This indicates that although coastal upwelling generated by offshore
EMT at the eastern box is weak, negative EPV accelerates EMT generated upwelling. In
contrast, the strong EMT generated upwelling at the western box is counteracted by the
downwelling caused by positive EPV.

During northwest monsoon, onshore EMTs occur in both boxes. Furthermore, weak
upwelling EPV occurs in the eastern box while downwelling EPV dominates in the western
box. Thus, the decreased S5Ts observed in January are not caused by Ekman dynamics. As
reported by Chen et al. (2016), the S5T anomaly during northwest monsoon is driven by
surface heat flux. The high wind speeds may induce latent heat release which may cool
SSTs in January for both boxes. As shown in Wirasatriya et al. (2019b), the variability of
latent heat flux is induced by the wind speed that controls the variability of SSTs in the
Java Sea.

The upwelling/downwelling processes in both boxes are represented by the variation
of vertical density profiles obtained from reanalysis data as shown in Figure 5(b,c). The
lifting of denser water ses which indicate upwelling occur during southeast monsoon
season for both boxes.ﬁs observation is in accordance with a study of Chen et al. (2016)
that revealed the shoaling of thermocline depth (depth of 23°C isotherm) off south Java
during this season due to winds are upwelling favourable. However, it is clearly seen that
the upwelling in the eastern box is stronger than in the western box as denoted by the
higher surface density in the eastern box (i.e. more than 22.4 kg m™) from August to
September. This result indicates that during the southeast monsoon season, weak off-
shore EMT and negative EPV in the eastern box generate stronger upwelling than strong
offshore EMT and positive EPV in the western box. As a result, SSTs in the eastern box are
lower than those in the western box.

In accordance with the result from reanalysis data, the observation from Argo floats
data also show the same tendency (Figure 6). The mixed layers depths during northwest
monsoon season at the western and eastern area along the southem coast of Java are
deeper than those during southeast monsoon season. Furthermore, it can be seen that
during southeast monsoon season, the mixed layer depths at the eastern part are
shallower than those at the western part. This indicates that the upwelling in the eastern
part of the southern coast of Java is stronger than the western part.

Furthermore, we conducted a statistical analysis to obtain the relationship among 55T,
EMT, and EPV for both boxes as shown in Table 1. In the western box, the correlation
between S5T and meridional EMT is higher than the correlation between SST and EPV.
This indicates that the influence of meridional EMT to SST variation is stronger than EPV.
Conversely, the influence of EPV to SST variation is stronger than meridional EMT in the
eastern box. However, the multiple correlation analysis between the meridional compo-
nent of EMT and EPV as the independent variable and SST as the dependent variable is
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Figure 6. Vertical profile of density derived from Argo float data. Figure (a) and (b) denote northwest
monsoon season while (c) and (d) denote southeast monsoon season.

Table 1. Highly significant correlation analysis (p < 0.01) among monthly 55T, meridional EMT and EPV
with range of time from 2007 to 2018 inside the thin (Western) and thick (Eastern) boxes as shown in
Fig. 2a.

Variable EPY Meridional EMT EPV & Meridional EMT
SST Thin Box (western) 0.34 0,53 063
Thick Box (eastern) 0.55 0.49 064

stronger than the single correlation analysis for both boxes. The correlation coefficient in
the western box is almost equal with the correlation coefficient in the eastern box. These
correlation values imply that the effects of both wind speed (repreggmted by EMT) and
wind curl (represented by EPV) combine to influence SST variationE;ng the southern
coast of Java.

To investigate the zonal propagation of Ekman dynamics along the southern coast of
Java, we took 20 sample areas in 0.5° x 0.5° bins as shown in Figure 1. The bin size is
determined by considering the range area of coastal upwelling which occurs only within
the narrow band (about 70 km) along the coastal line {e.g. Horii, Ueki, and Ando 2018).
We took monthly climatology averages for each bin and then plotted it in Hovmaller
diagram (Figure 7). Westward propagation of offshore EMT is observed during southeast
monsoon (from June to August). Westward propagation of downwelling EPV is also
observed during southeast monsoon even though it slightly turns into negative in bin
numbers 7 to 16. The westward propagation of Ekman dynamics also corresponds to
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Figure 7. Hovmdller diagram of monthly climatology of meridional components of EMT, EPV and 55T
in the bins shown in Figure 1. Dashed red box denotes the peak of southeast monsoon in the months
of August and September. Green arrows denote zonal propagation of meridional component of EMT,
EPY and SST. Positive (negative) EPV indicates downward (upward) water motion, while positive
(negative) EMT denotes onshore (offshore) EMT.

the westward propagation of low SST. The westward propagation of SST also has been
presented in Susanto, Moore, and Marra (2006). A similar pattern of the zonal propaga-
tion of EMT also has been presented by Varella et al. (2016) in Figure 2 of their article.
The westward propagation of offshore EMT corresponds to the westward propagation
of low SST. Furthermore, they found that during the southeast monsoon season, the
maximum offshore EMT occurs at 111°E. In our analysis, the position of 111°E is
represented by box no. 12 which also shows the higher offshore EMT compared to its
adjacent boxes during southeast monsoon season. Unfortunately, the westernmost
analysis of Varella et al. (2016) was only until 109°E. Thus, the difference of offshore
EMT between the western and eastern part as shown in the present study was missed in
their analysis.

During the peak of the southeast monsoon season (dashed red box), offshore EMT is
stronger at the western part than offshore EMT at the eastern part. At the western part (i.e.
bin 1 to 6), offshore EMT reaches more than 5 m? s '. However, the western part of the
southern coast of Java is dominated by strong downwelling EPV while upwelling EPV and
low offshore EMT dominate at the eastern part. At western part (i.e. bin 1 to 6),
downwelling EPV reaches more than 0.5 x 107> m s~ '. As a result, the distribution of SSTs
along the southern coast of Java is lower in the eastern part than the western part. This
indicat@gthat the inconsistency between wind speed and SST during southeast monsoon

songong the southern coast of Java is related to the influence of wind curl which also
ﬁys an important role in generating upwelling/downwelling in the study area. At the
areas where the southeasterly wind is strong, the wind curl tends to generate down-
welling EPV that inhibits coastal upwelling induced by offshore EMT. In contrast, at the
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areas with weak southeasterly winds, the wind curl raises strong upwelling EPV to
accelerate the weak coastal upwelling that is generated by weak offshore EMT. As
a result, upwelling in the western part is weaker than in the eastern part. Consequently,
SST in the western part is higher than that in the eastem part.

Next, we plotted 12 years of monthly data of the meridional component of EMT and
EPV in Hovmoller diagram (Figure 8a,b). Seasonal variation for the meridional component
of EMT denoted by offshore and onshore EMT by turns during southeast and northwest
monsoon season, respectively. Although the seasonal variation of EPV is not as robust as
EMT, we still can see that during southeast monsoon season, the appearance of strong
downwelling EPV at bin 1 to 6 may hamper the strong offshore EMT as mentioned in the
previous subsection. At bin 7 to 20, enhanced upwelling EPV appears during the south-
east monsoon seggan which can accelerate coastal upwelling caused by offshore EMT.
Consequently, a %h Chl-a ban d low SST band are observed during southeast
monsoon (Figure 9). In contrast, low Chl-a band and high SST band appear during
northwest monsoon as a result of downwelling induced by onshore EMT and weak
upwelling EPV.

3.3. Interannual variation of Ekman dynamics

To investigate the interannual variation of Ekman dynamics associated with ENSO and
10D, we compared the Hovmadller diagram of meridional component of EMT and EPV with
the ONI and DMI indices (Figure 8c). Focusing on the southeast monsoon season, the
most robust signals of interannual variation of Ekman dynamics are observed in 2010 and
2016, when offshore EMT and EPV are weakened. These cause the disappearance of the
high Chl-a bandp:l low SST band in 2010 and 2016 (Figure 9). These phenomena
coincidence with La Nifia and negative 10D events. A similar trend has also been found
irpther areas within the Indonesian Seas. For example, in the Lesser Sunda Islands whip
ﬁcated at the eastern side of the study area, weakened offshoreg@lT occurs when La
Nifia and Negative 10D events anggin phase (Setiawan et al. 2019). Negative I0D and La
Nifia events also tend to increase and decrease Chl-a concentration in the Halmahera
Sea due to the weakening southerly wind (Setiawan et al. 2020).

The interannual signals of EMT and EPV for the other years are not as robust as 2010
and 2016. However, we still can identify that during southeast monscon season in 2007,
2008, 2011, 2012, 2015, 2017, and 2018, Chl-a (55T) is higher (lower) than the other years.
During these events, strong offshore EMTs by lower than =5 m? s™' are observed at the
western parts (i.e. bin 1 to 6). In the eastern parts, enhanced upwelling EPV by lower than
-1 % 107 m s~ occur to strengthen upwelling. The periods of 2007 and 2011 are
categorized as the in-phase of positive |0D and La Nifa; 2008, 2012, @917, and 2018 are
positive 10D and normal ENSO; while 2015 is positive IOD ancq Nifo. This means that the
effect of positive |IOD is consistent to strengthen upwelling along the southern coast of
Java regardless of the ENSO coqition. In contrast, ENSO may have a less significant role to
influence upwelimg intensity along the southem coast of Java. This indication is sup-
ported by the statistical analysis which shows that the multiple correlation analysis
between ONI (DMI) index and the combination of the meridional component of EMT
and EPV during southeast monsoon (i.e. July, August, September) is 0.29 (0.51).




INTERMATIONAL JOURNAL OF REMOTE SENSING @ 5489

(a) (b) (c) -
-15-1 -05005 1 1.5
: LTI T LR LU A !
July E + == S Z —3tN
2018 - January Feest—
July E = e —
January [ umm— . ‘
ol S ] _P -L
. - =
Julyf E? Y .
2016 - JanuaryF T <l
JanuaryE p—
Julv-';ﬂz .—ql 3
2014 JanuaryF e e b R o
July f 2t S5 %
January Fre e — E = i @
20121 January [e— §
July | — | "
January |- i L
; ;'.?!.-
| I =
2010 Januaryfp <524
; -
oy | — =
L C N - - -
January [ ————— - . - -
= e
2008 FJanuary [ seem—— S e - e
Januaryt - o e | D :
PGB0 246 B0 ENI-2 101 23
Bin Number Bin Number £l
I ]
2 1 o0 1 2

6 4 -2 0 2 4 &
Meridional EMT {m-2s1)

EPV (x 10°m s1)

Figure 8. Hovmaller diagram of monthly data of meridional components of (a) meridional EMT, and

(b) EPV in the bins showed in Figure 1. Gray

contour in Fig. (a) denotes meridional EMT of -5 m*s™".

Black contour in (Fig. b) denotes meridional of EPY + 1 x 107 m s~ . Positive (negative) EPV indicates
downward (upward) water motion, while positive (negative) EMT denotes onshore (offshore) EMT. (c)
Time series of ONI (black) and DMI (red) indices. Dashed-green boxes indicate southeast monsoon

season. The annotations on the right sid
positive and negative |0D, respectively;
normal 10D or ENSO

ig. cindicate 10D and ENSO conditionsi.e. "+ and ' is for

and ‘L’ is for El Nino and La Nina, respectively; and ‘N' is for
ue dashed line indicates the threshold for positive 10D and El Nino, while

yellow-dashed line is for negative 10D and La Nina.

This finding is consistent with Chen et al. (2016) which stated that 10D is more
important than ENSO for amplifying upwelling off the southern coast of Java.
Specifically, they suggest that the south Java upwelling events that occurred in 2003,
2006, 2007, 2008, and 2011 are more correlated to the DMI than the Nifio-3 index. For the
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@iﬁo events that took place in 2002 and 2009, there were no strong upwelling events
observed in the south of Java. The equatorial Indian Ocean upwelling during southeast
monsoon season associated vm positive 10D is comparably influenced by local and
remote forcings. Local forcing is related to the local wind stress, whereas in the ent
study is explained by EMT and EPY. Remote forcing is related to the propagation of Kelvin
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waves along the equator and subsequently the western ¢ of Sumatra and the south-
ern coast of Java driven by equatorial Indian Ocean winds &n et al. 2015, 2016; Delman
et al. 2016, 2018; Horii, Ueki, and Ando 2018; Sprintall et al. 2000). Horii, Ueki, and Ando
(2018) found the evidence for coastal Kelvin wave activity in July 2008, as Argo float data
showed the upward movement of isotherms that was not supported by local wind
anomalies. Furthermore, Delman et al. (2016) demonstrate the influence of Kelvin wave
during strong positive 10D case in 2006. Alongshore wind anomalies near the coast of
Java were neutral to slightly downwelling-favourable through muc the May-October
upwelling season (e.g. Figure 8¢, Delman et al. 2016). But there were upwelling-favourable
winds along the equator and Sumatra coast in June 2006 as a prec of Kelvin wave
propagation, preceding the development of negative SST anomalieszfﬁ‘ug the southern
coast of Java.

Upwelling coastal Kelvin waves may affect surface chlorophyll as well. Like upwelling-
favourable EMT and EPV from local wind forcing, Kelvin waves can bring deeper nutrient-
rich waters close to the surface where they are entrained into the mixed layer (Chen et al.
2015). Some of this Kelvin wave variability (in particular equatorially generated Kelvin
waves) are related to the I0D. Hence, strong positive Chl-a and negative 55T anomalies
can occur during the upwelling season when the DMI is positive, even when local EMT
and EPV are not significantly different from their seasonal averages. Therefore, the high
Chl-a and low SST during southeast monsoon season in 2007, 2008, 2011, 2012, 2015,
2017, and 2018 cannot be separated from the influence of the Kelvin wave-induced
upwelling.

4, Conclusion

The variability of Ekman dynamics along ge southern coast of Java and their relation to
surface wind, SST and Chl-a have been investigated by using remote sensing data. The
conclusions are as follows:

(1) There is an inmgruity of the relation between the distribution of surface wind
speed and 55T in the southern coast of Java during southeast monsoon season. The
higher the wind speed in the western areas is not followed by lower SST. This
pmongruity is related to the Ekman dynamics that influence the SST distribution

ﬁg the southern coast of Java during tjgg southeast monsoon.

(2) The seasonal variation of EMT along the southern coast of Java is dominated by
offshore EMT which is favourable for generating coastal upwelling. Under the
condition of southeasterly wind, offshore EMT occurs for 8 months from April to
November and peaks in August. During southeast monsoon, offshore EMT at the
western region of the southern coast of Java is stronger than offshore EMT at the
eastemn reg

(3) EPV during southeast monsoon season is stronger than EPV during the northwest
monsoon season. During southeast monsoon season, positive (downward motion)
EPV occurs at the western part of the southern coast of Java while negative
(upward motion) EPV dominates at the eastern part.

(4) The increase in offshore EMT intensity from eastern to the westem parts of the
southern coast of Java during southeast monsoon are balanced by the changes of




2
8492 (&) A WIRASATRIYA ET AL

EPV distribution which is negative in the eastern part and positive in the western
part. As a result, upwelling in the eastern parts of the southern coast of Java is
stronger than the western parts which result in lower S5Ts in the eastem parts than
the western parts.

(5) Forinterannual variation, the combination of La Nifia and negative |OD events tend
to weaken offshore EMT which reduces the intensity of Chl-a bloom and 55T
cooling during the southeast monsoon season. However, 10D plays a more sig-
nificant role than ENSO to influence the variability of offshore EMT and EPV during
southeast monsoon season since positive (negative) 10D consistently increases
(reduces) the intensity of offshore EMT and EPV.
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