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pivotal as it provides a course for the Indonesian
Throughflow (ITF) through the Lifamatola passage.
However, sea surface dynamics off the central MI is
8 100 105 10 115 120 128 130 1% & i ] unknown until recently due to inadeguate measurements.
" ; iPacfc Ocean* |, > The current fact motivates the present study to decipher
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0 12 1% W ! /\ show that the prevailing southeasterly winds over the
[ ’ / \ central Ml induce 55T cooling and phytoplankton bloom.
\_ Correlation analysis revealed that the ENS0 and 10D play
\—/ i significant roles in defining spatial distribution of the
' : coastal wind, S5T, and phytoplankton bloom in the
research area. In addition, the anomaly analysis exhibits
distinct oceanographic features during the climate
extreme events of 2015 and 2019. Collectively, results of
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o wind variability and extreme events in shaping the ocean
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Figure. (Upper-left panef) Maps of the Maluku lslands (blue fing), and (lower-left panel) of topography and production.
bathymetry (m) of the central Maluku lslands (red box). MS, HS, and S5 denate the Malubu, Halmahera, and
Seram Seas. (Right pane) tme series of wind stress, S5, chloraphyl-2, and Ekman transport over regions of Keywords: ENSO, 10D, Maluku Islands, sea surface
124%-125,50F, 305455 (Bow A) and 126%-127.59€, 1¢5:2.505 (Box 8). temperature, winds

1. Introduction

Abstract Sea surface winds play a pivotal role in regulating ocean

The Maluku Islands {henceforth MI) are situated in the  surface dynamics in the Indonesian Seas. Typically, the
northeastern Indonesia. Ocean region off the central Ml is ~ northwesterly (southeasterly) winds exert downwelling
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(upwelling) in many coastal areas in the Indonesian Seas,
as indicated high (low) sea surface temperature (S5T)
(Kurniawati et al, 2021; Muskananfola et al., 2021;
Setiawan et al., 2019;2020; Siswanto et al, 2020;
asatriya et al., 2020a; 2021). Wind wvariability in the
region is principally affected by the Australian Indonesian
Monsoon (AlM) system, which generates the prevailing of
northwesterly winds from December to February (Austral
summer) and the southeasterly winds from June to
September (Austral winter) (Gordon, 2005). The
northwesterly winds carry moist air and cause heavy
rainfall over the Indonesian Maritime Continent, while the
southeasterly winds transport dry air and induce dry
season over the region (Gordon, 2005). Sea surface

dition of the Indonesian Seas is also modulated by the
miﬁo—SDUthern Oscillation (ENSO) and the Indian Ocean
Dipole (#P®), i.e. the sea surface experiences fierce wind
forcing during the El Nifio/positive 10D year and weak
wind for during the La Nifa/negative 10D year
(Iskandar et al., 2017; Kurniawam al., 2021; Setiawan et
al., 2019; Siswanto et al., 2020; Susanto and Marra, 2005;
Susanto et al., 2006; Wirasatriya et al.,, 2020b). These two
climate modes may have exerted an essential role in
controlling health of the marine environment and fish
resource distribution in the Indonesian Seas. Hence,
examining the variability of the AIM winds and their effect
on the sea surface is essential for marine and coastal
resource management of the Indonesian fisheries
management areas.

The MI is situated in the northeastern Indonesia and
comprises many small islands. Of particular interest here
is the ocean region off the central M| provides a fishing
hotspot for commercial fishes (Hutubessy et al., 2014) as
well as a pathway for the ITF via the Lifamatola passage
(black arrow in Figure 1 right panel) (e.g., Sprintall et al.,
2014). The central M| waters are characterized by
complex bathymetry and connected to the Maluku and
Halmahera Seas in the north and the Banda Sea in the
south. Furthermore, the region of interest is located in the
Coral Triangle, one of the most diverse places due to its
high species richness of coral, demersal fish, and sea turtle
(DeVantier et al., 2004; Veron et al., 2006). This biodiverse
region has delivered services through seafood resources
and tourism for the people and the nation. Unfortunately,
physical forcing like monsoon wind that controls sea
surface conditions off the central Ml is unknown due to
lack of long-term in situ measurements. Variation of this
wind may have played a substantial role in sustaining life
of the marine realm in the ocean region off the central MI.

In addition to seasonal forcing, the Ml also experiences
interannual modulation by the Indo-Pacific climate
modes, ely ENSO and 10D. The ENSO is an interanEgp|
climate anomaly in the tropical Pacific Ocean (eg.,
McPhaden et a 006). The El Nifio event of 2015 has
been suggested as one of the robust El Nifio events in the
record (Hu and Fedorov, 2017; Palmeiro et al., 2017). It
was characterized by considerable positive 55T anomal
that dominated the tropical Pacific Ocean (L'Heureux et
al., 2017). Levine and McPhaden (2016) suggested the
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multiple westerly wind rsts were liable for the
advection of water mass from the Western Pacific Warm
Pool into the@@entral Pacific, which in turn enhanced the
development of a strong El Nifio like in 2015.

Meanwhile, the 10D is a cli mode associated with
zonal SST gradient (east-west) in the tropical Indian Ocean
(Saji et al., 1999). Positive 10D event that occurred du
boreal fall 2019 was categorized as an extreme event (Dol
et al., 2020; Ratna et al, 2021). The 2019 positive 10D
event's primary forcing was thought to be the existence of
anced sea level pressure over Australia and declined
sea level pressure over the South China Sea since May
2019 (Lu and Ren, 2020). This inter-hemispheric gradient
of sea level pressure invoked the northward cross-equator
eyer the Indonesian Seas and accelerated wind speed
over the southeastern tropical Indian Ocean, leading to
the evolution of positive 10D events via Kelvin waves
forcing (Delman et al., 2016; Lu and Ren, 2020). We
hypothesize the two extreme climate events of 2015 and
2019 have profound effects on the Indonesian Seas’
oceanic condition. Given the importance of the ocean
region off the central MI, disentangling coastal wind
variability and the det effect of both extreme events
on the sea surface will contribute to the successful
prediction of future climate extreme events in the region.

The development of robust remote sensing technology
has enabled us to investigate long-term surface ocean
amics. Earlier investigations have shown the capability
of the Moderate Resolution Imaging Spectroradiometer
(MODIS) data in revealing long-term vdZiibility of
chlorophyll-a and SST regionally and globally (e.g., Mao et
al., 2017; Muhammad et al., 2016; Setiawan et al., 2019).
In the present work, we analyse 12 years (2007-2019) of
satellite-derived sea surfac ind, SST, and surface
chlorophyll-a to decipher seasonal and interannual
variations of the sea surface condglpn off the central M.
Moreover, we elucidate the effect of the 2015 El Nifio and
the 2019 positive 10D events on the ocean parameters.
Results of this research can be used to manage better
marine and fisheries resources in the central MI region.

2. Materials and methods
2.1. Materials

We employed KNMI Global Wind Level-3 data of spatial
resolution of 0.125°x0.125° of the Advanced
Scatterometer (ASCAT) to unveil surface wind variation off
the central MI. The analysis period of this study goes from
January 2007 to December 2019. The ASCAT onboard the
Meteorological Operational (MetOp) satellite can acquire
wind data (speed and direction) in the coastal area and
open ocean with an accuracy of ~2 m s (Verhoef 37
Stoffelen, 2013). The ASCAT wind data is available at the
ernicus Marine Environment Monitoring Service
(https://resources.marine.copernicus.eu/product-detail/
WIND GLO WIND L3 REP_OBSERVATIONS 012 005/SER

ES).
#order to decipher the effect of wind on the ocean
surface off the central M, Level-3 data of 11-pum SST
and chlorophyll-a retrieved from the Moderate Resolution
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Imaging Spectroradiometer (MODIS) onboard the Aqua
satellite were examined. The spatial resolution of the
MODIS SST and chlorophyll-a data is 0.04°x0.04° (Esaias et
al, 1998), and both data have been documented to
accurately record SS5T and chlorophym concentration
(e.g., Ghanea et al, 2016). The MODIS SST and
chlorophyll-a data were downloaded from the Physical
Oceanography ibuted Active Archive Center of NASA
(https://podaac-tools.jpl.nasa.gov/drive/files/allData/mod
is/L3/aqua) and were analysed for the period of January
200@0 December 2019.

The Oceaniggifio Index (ONI) and the Dipole Mode Index
(DMI) were used to determine ENSO events (El Nifio and
La Nifia) and 10D events, respectively. Specifically, we
used the .4 S5T anomaly index. The ONI data is
generated by the MNational Ocean and Atmospheric
aministration Climate Prediction Center and is accessible
at https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.
txt. The DMI data is generated by the Japanese Agency for
Marine-Eagh Science Technology (JAMSTEC) and is
attainable at https://statecftheocean.osmc.noaa.gov/sur/
ind/dmi.php.

2.2. Methods

The wind stress (z) on the ocean surface and the Ekman
Mass Transport (EMT) were calculated by employing the
equation of Hsieh and Boer (1992),

r=p,CUL (1)
(o7, +J‘ry}
EMT =———— 2
TRF ) 2a)
enar, =00 (2b)
PAL +07)

where p. is the density of air (1.25 kg m3), pw is the
density of seafiffifer (1.025x10° kg m?3), Cp is the drag
coefficient, U is the wind speed of 10 m above se el,
§ is frictional dumping parameter (4807 days), and f is the
Coriolis parameter. EMT; and EMT, express zonal and
meridional direction of the EMT, respectively.

All satellite data were averaged into monthly means. The
data were then computed into monthly climatological
mean by following the equation of Wirasatriya et al
(2017),

Xt == 3wl (3)

where X(x,y)is monthly avnage or monthly climatology
value at Iocnon (%), xi(x,y,t) is the i-th value of the data
at (xy) and time t, n is the number of data in a one-month
period and the number of monthly data in one period of
climatology (2007-2019). Note that hollow pixels were
excluded in the calculation.

The monthly climatology time series for all oceanographic
parameters were constructed by averaging all
oceanographic parameters over the region of 1242E-
125.59EF, 395-49S (Box A), and 1269E-127.52E, 195-2.59S
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(Box B) to understand better the variations of ocean wind,
SST, and surface chlorophyll-a in the region off the central
M. This time series is displayed in Figure 1b.
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Figure 1. Maps of the Maluku Islands (blue line), and of
topography and bathymetry (m) of the central Maluku Islands
(red box). MS, HS, and S5 denote the Maluku, Halmahera, and

Seram 5Seas.

To examine the effects of the 2015 El Nifio and the 2019
positive 10D, we performed monthly anomaly analysis to
all oceanographic parameters. Furthermore, correlation
analysis between oceanographic parameters and the ONI
and DMI was computed to highlight the effect of extreme
climate events on the ocean region off the central MI.
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Figure 2. Time series of (a) wind stress, (b) SST, (c) chlorophyll-a,
and (d) Ekman transport over regions of 1242E-125 .52E, 325-425
(Box A) and 126°E-127.52E, 125-2.525 (Box B).

3. Results

Analyses of monthly climatology of sea surface wind stress
over the central Ml from December to February, and from
June to September are demonstrated in Figure 2a, 3a, and
4a. It is seen that the northeasterly winds prevail over the
investigated area from December to February with a
magnitude of less than 0.4x10' N m2 Meanwhile, the
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southeasterly wind stresses prevail from June to
September with a magnitude of more than 0.4x10 N m?.
Our results show the strongest wind occurred in July and
August (Figure 2a).

(@) Dec Jan Feb
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Figure 3. Monthly climatology maps of (a) surface wind stress,
(b} 55T, (c) surface chlorophyll-a, and (d) EMT during the Austral
summer.
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Figure 4. Monthly climatology maps of (a) surface wind stress,
(b) SST, (c) surface chloraphyll-a, and (d) EMT during the Austral
winter.

SST off the central M1 shows relatively higher SST (> 292C)
from December to February compared to that during the
period of June-September (Figure 2b, 3b, and 4b). Indeed,
the evolution of SST cooling is prominent during the latter
time, with the coldest SST (< 282C) takes place in August
(Figure 2b).

Figure 2c, 3¢, and 4c exhibit monthly climatology of
surface chlorophyll-a concentration off the central Mi
during the Austral summer and Austral winter. There is a
phytoplankton bloom occurrence off the central MI that
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evolved during the Austral winter. We found a
chlorophyll-a maximum of 0.38 mg m? in August, in
contrast, a low phytoplankton biomass occupies the
studied area ing the Austral summer as indicated by
chlorophyll-a concentration less than 0.2 mg m? (Figure
2c).

In line with the wind stress, strong EMT (> 5 m? s7)
observed in the ocean region off the central M| from June
to September (Figure 2d, 3d, and 4d). On the other hand,
a relatively weak EMT (< 4 m? s?) persisted from
December to February. The predominant direction of EMT
during June-September (December to February) period is
southwestward (northeastward).

4. Discussion

The present research demonstrates that the coastal wind
variability off the central Ml is dynamically affected by the
AIM winds. Climatological maps of surface wind from June
to September show intense southeasterly wind stresses (>
0.6x101 N m?) persisted in the area of interest.
Simultaneously, there is an elevation in surface
chlorophyll-a concentration, while the SST significantly
decreases. We postulate coastal upwelling occurred in the
region results in a phytoplan bloom event (Figure 2c,
4b, and 4c). An upwelled of nutrient-rich water from the
deeper depth to the surface may invoke phytoplankton
bloom events off the central Ml from June to September.
Our inference is corroborated by the EMT wvalues that
denote higher values (> 5.5 m? s during the period
compared to December-February (Figure 2d, 3d, and 4d).
Moreover, our results reveal the interaction between
surface winds and central MI topography is apparent
here, i.e. the existence of coastal mountains and small
straits (indicated by black arrows in Figure 4a) shaped
wind regime in the research site. The location and
direction of enhanced wind stress and EMT are well fit
with the position of significant SST cooling and
phytoplankton bloom (Figure 4). Indeed, coastal
mountains in the region cause celerity of the
southeasterly wind stress via orography mechanism. This
observation may imply that the surface ocean productivity
and fish resource distribution in the region are likely
determined by the variability of the coastal wind jet. We
notice that orographic alteration of surface wind is
commonplace in seas off the central Ml and possibly in
other regional seas within the Indonesian archipelago.

The northeasterly wind stresses seem unable to force
coastal upwelling off the central MI from December to
February. Hence, a phytoplankton bloom event in the
investigated area is absent. It is evident here that the
phytoplankton bloom diminished when the coastal wind
stresses weakened (< 0.4 x10 N m™?) (Figure 2c and 4a-c).
The deceleration of wind forcing in this area also causes
SST to increase (> 282C). Besides the faint wind, we
propose solar insolation maxima may promote high SST in
the site. Furthermore, there is a high chlorophyll-a spot
observed in the southeastern Halmahera Sea. According
to Setiawan et al. (2020), the chlorophyll-a maxima there
are induced by continental runoff, not coastal upwelling.
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The present research also examines the ENSO and 10D's
effect on the coastal wind variation off the central MI. We
focus on the period of June-September due to the
robustness of coastal wind stresses during this time. We
found a remarkable positive correlation between the
ENSO and coastal wind stresses from June to September
(Figure 5a). The correlation between the ENSO and EMT
yields a similar result (Figure 5d), demonstrating the ENSO
strongly modulates the occurrence of phytoplankton
bloom off the central MI through Ekman upwelling. This
premise is corroborated by a pronounced negative
correlation between the ENSO and SST from June to
September (Figure 5b-c). Good correlations among
oceanographic parameters here suggest the dominant
influence of ENSO in governing surface ocean productivity
off the central M1 during the Austral winter.

(a)

k)
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(d)
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Figure 5. Correlation between ONI and monthly (a) surface wind
stress, (b) SST, (c) surface chlorophyll-a, (d) EMT during the
Austral winter.
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Figure 6. Correlation between DMI and monthly (a) surface wind
stress, (b) SST, (c) surface chlorophyll-a, (d) EMT during the
Austral winter.

The correlation between 10D and oceanographic
parameters from June to September is depicted in Figure

41

6. Note that the 10D event indicates seasonal phase-lock:
develops in boreal late spring/early summer, peaks in late
summer/fall, and terminates in early winter. For this
reason we performed the correlation analysis during the
period of July — September when the 10D reached its
peak. Likewise, the effect of 10D on the coastal wind, 55T,
phytoplankton biomass off the central MI is vigorous.
Positive correlations between the 10D and surface wind
stresses, phytoplankton bloom, and EMT (Figure 6) are
noticeable during the Austral winter. Seemingly, coastal
wind  stresses are favourable for generating
phytoplankton bloom and S5T cooling when the 10D
operates.

o) Jun Aug
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Figure 7. Anomaly maps of (a) surface wind stress, (b) SST, (c)
surface chlorophyll-a, and (d) EMT during the Austral winter of
2015.
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Figure 8. Anomaly maps of (a) surface wind stress, (b) SST, (c)
surface chlorophyll-a, and (d) EMT during the Austral winter of
2018.

Moreover, the present research has evaluated the
consequence of extreme climate events, particularly the
2015 El Nifio and the 2019 positive 10D, on the coastal
wind intensity from June to September. When an extreme
El Nifio event took place in 2015, positive anomalies are
conspicuous in the surface wind stresses (Figure 7a),
surface chlorophyll-a concentration (Figure 7¢), and EMT
(Figure 7d). This finding suggests that wind stresses'
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strength and direction may have determined the spatial
distribution of sea surface productivity off the central Mi
during this time frame, implying such anomaly may evoke
a consequence on the regional seafood stock via a decline
or increase in fisheries production.

During the 2019 positive 10D event (June-September), sea
surface off the central MI showed significant positive
anomalies in surface wind stress, surface chlorophyll-a
concentration, EMT, and a negative anomaly in SST
(Figure 8). The centre of positive chloropl—a anomaly is
located congruently with the positions of wind stress, SST,
and EMT anomalies (Figure 8). Indeed, the orography
effect is visible during this event, ie. the positive
chlorophyll-a anomaly was generated by energetic wind
stresses via mixed layer disturbances, leading to
phytoplankton bloom and cold S55T. Collectively, we
conclude that the effects of the 2015 and 2019 extreme
events on the sea surface off the central Ml are robust.
Furthermore, our results emphasized the significance of
large-scale climate events in governing surface dynamics
of the regional sea.

5. Conclusion

Our research has demonstrated that satellite-derived sea
surface wind stress, SST, and surface chlorophyll-a
concentration are applicable in revealing sea surface
dynamics off the central MI. We discovered that
southeasterly winds play a critical role in modifying sea
surface condition of the study area, i.e. by lowering 55T
and generating phytoplankton bloom. The 55T cooling and
phytoplankton bloom occur in response to enhanced
surface wind stress and EMT. On the other hand, the S5T
cooling and phytoplankton bloom deteriorated when wind
stress and EMT weakened. The correlation analysis
revealed that the ENSO and 10D affect all oceanographic
parameters as denoted by positive correlations in wind
stress, EMT, chlorophyll-a, and negative correlation in SST.
In accordance the correlation analysis, anomaly
analysis sugg@Ms positive anomalies in wind stress, EMT,
chlorophyll-a concentration, and negative anomaly in SST
during the extreme events of 2015 and 2019. Overall,
results of this research highlight the importance of coastal
wind and extreme climate events in shaping ocean
conditions and perhaps regional fisheries production.
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