PAPER • OPEN ACCESS

Preface

To cite this article: 2020 IOP Conf. Ser.: Earth Environ. Sci. 530 011001

View the article online for updates and enhancements.

PREFACE

On behalf of the Organizing Committee, I would like to extend our warmest regards to all participants of the International Conference on Tropical and Coastal Region Eco-Development (ICTCRED) 2019. This annual conference is the fifth event at Semarang, Central Java, Indonesia that is organized by the Faculty of Fisheries, Universitas Diponegoro. This year we brought an essential global topic the *Integrated Coastal Zone Management for Sustainable Development*. The conference aims to provide a forum to exchange ideas and their current achievements for researchers, academicians, professionals, and industries to expose and exchange innovative ideas, methods, and experiences in the areas related to tropical life sciences and coastal development.

We have accepted 156 abstracts for oral and poster presentations coming from different universities and research centers from many countries, which were consisted of 13 big interests. Besides, we have cordially invited five highly respected researchers as keynote speakers with different fields to share their knowledge and expertise. I am grateful for each one of them for setting aside their valuable time to participate in this conference.

The committee extent very kind thank all participants for the success of the conference. They were Rector of Universitas Diponegoro, Dean of Faculty of Fisheries and Marine Science, the keynote speakers. I also would like to acknowledge the Institute of Physics (IOP) for the collaboration in publishing the conference proceedings, our sponsors the Bionesia, Faculty of Law, Universitas Diponegoro, COREM Undip, and Deltares.

Finally, we proudly present some selected papers in IOP Conference Series: Earth and Environmental Science. I do hope that the 5th ICTCRED 2019 event brings a fruitful knowledge and be a memorable event not only from the scientific perspective but also in the joy of meeting with other scientists for mutual collaboration.

Guest Editor

Agus Trianto Chair of Scientific Committee

Scientific Committee/Editor

Agus Trianto (Universitas Diponegoro, Indonesia) Erik de Ruijter van Steveninck (IHE Delft Institute for Water Education – Netherland) Budy P. Resosudarmo (Autralian National University – Australia) Hiroki Saeki (Hokkaido University – Japan) Eddy Pratomo (Universitas Diponegoro, Indonesia) Tonny Hadibarata (Curtin University – Malaysia) The 5th International Conference on Tropical and Coastal Region Eco DevelopmentIOP PublishingIOP Conf. Series: Earth and Environmental Science 530 (2020) 011001doi:10.1088/1755-1315/530/1/011001

Ekowati Chasanah (BBRP2BKP-KKP, Indonesia) Dewi Zeswita Zilda (BBRP2BKP-KKP, Indonesia) Amir Husni (Gajah Mada University-Indonesia) Hadiyanto (Universitas Diponegoro, Indonesia) Desrina (Universitas Diponegoro, Indonesia) Agus Hartoko (Universitas Diponegoro, Indonesia) Tri Winarni Agustini (Universitas Diponegoro, Indonesia) Aristi Dian Purnama Fitri (Universitas Diponegoro, Indonesia) Anindya Wirasatria (Universitas Diponegoro, Indonesia) Muhammad Azhar (Universitas Diponegoro, Indonesia) Diah Permata Wijayanti (Universitas Diponegoro, Indonesia) Eko Nurcahya Dewi (Universitas Diponegoro, Indonesia) Dian Wijayanto (Universitas Diponegoro, Indonesia) Aris Ismanto (Universitas Diponegoro, Indonesia) Alfabetian Harjuno Condro Haditomo (Universitas Diponegoro, Indonesia) Aninditia Sabdaningsih (Universitas Diponegoro, Indonesia) Diah Ayuningrum (Universitas Diponegoro, Indonesia)

ORGANIZING COMMITTEE

Dr. Pi. Aris Ismanto, S.Si., M.Si Chair Person Dr. Dian Wijayanto, S.Pi., M.M., M.S.E Co-Chair Person I Dr. Ir. Max Rudolf Muskananfola, M.Sc Co-Chair Person II Dr. Ir. Suryanti, M.Pi Secretary I Wiwiet Teguh Taufani, S.Pi., M.Si Secretary II This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 530

2020

◆ Previous issue
 Next issue ▶

The 5th International Conference on Tropical and Coastal Region Eco Development 17-18 September 2019, Semarang, Indonesia

Accepted papers received: 26 June 2020 Published online: 15 September 2020

Open all abstracts

Preface			
OPEN ACCESS Preface			011001
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS			011002
Peer review state	ment		
+ Open abstract	View article	PDF	
Papers			
OPEN ACCESS			012001
Utilization of liquest material	uid smoke nanoenca	psulation in fresh fish fillets as a preservation	
F Swastawati and R	Romadhon		
	Tiew article	PDF	
OPEN ACCESS			012002
Effect of calcium stage zoea <i>Portun</i>	and enzyme involv nus pelagicus	rement to survival rate and development of the early	
S Permadi, I S Prata	ama, I T Suryaningtyas	s and Jasmadi	
+ Open abstract	View article	🔁 PDF	

 \odot

OPEN ACCESS	012003
Legal scenario towards the policy of marine natural resources on the continental shelf: Ambalat case study	
Pulung Widhi Hananto, Anggita Doramia Lumbanraja, Rahandy Rizki Prananda and Aisyah Ayu Musy	yafah
+ Open abstract 🗐 View article 🄁 PDF	
OPEN ACCESS	012004
Population dynamic of indian scad (<i>Decapterus russelli</i>) based on data in tasikagung fishing Port of Rembang	
Aprilia Nur Khasanah, Suradi Wijaya Saputra and Wiwiet Teguh Taufani	
+ Open abstract 🗐 View article 🄁 PDF	
OPEN ACCESS Serious gaming for port development as a learning tool: a case study of port constructor	012005
A D Ningrum and M Van Schuylenburg	
+ Open abstract 🗐 View article 🄁 PDF	
OPEN ACCESS Mitigation of floodwaters inundation due to land subsidence in the coastal area of Semarang City	012006
Sugeng Widada, Muhammad Zainuri, Gatot Yulianto, Alfi Satriadi, Yusuf Jati Wijaya and Muhammad	Helmi
+ Open abstract 🔄 View article 🏴 PDF	
OPEN ACCESS Effect of ENSO and IOD on the Variability of Sea Surface Temperature (SST) in Java Sea	012007
Yunvita Wisetya Dewi, Anindya Wirasatriya, Denny Nugroho Sugianto, Muhammad Helmi, Jarot Mar	woto and
+ Open abstract 🔄 View article 🎘 PDF	
OPEN ACCESS The effect of different temperature on the stability of phycocyanin on microcapsule <i>Spirulina platensis</i> FNW Purnama, TW Agustini and RA Kurniasih	012008
+ Open abstract I View article PDF	
OPEN ACCESS	012009
Analysis of capture fish demand in Indonesia	
Firmansyah, Shanty Oktavilia, Ryan Prayogi and Dita Wahyu Puspita	
+ Open abstract ☐ View article ▷ PDF	
OPEN ACCESS	012010

IOP Conference Series: Earth and Environmental Science, Volume 530, 2020 - IOPscience

Quality deterioration kinetics and s	shelf-life estimation of fish koya
--------------------------------------	------------------------------------

RBK Anandito, Kawiji, L Purnamayati and AMS Putri

OPEN ACCESS Antioxidant activ plantarum and L	vity in seaweed (Sar actobacillus acidop	gassum sp.) extract fermented with Lactobacillus hilus	012011
L Rianingsih and S	umardianto		
+ Open abstract	View article	PDF	
OPEN ACCESS			012012
Thermal degrada	ition kinetic study o	f Pangasius fish oil	
L Purnamayati and	R A Kurniasıh		
	Uiew article	🔁 PDF	
OPEN ACCESS The characteristic swimming crab <i>I</i>	cs of nanocalcium f Portunus pelagicus	lavor powder made from waste stewed water of L.	012013
I Wijayanti and E N	N Dewi		
	View article	PDF	
OPEN ACCESS Non-destructive M Bachrun Alim, A	freshness assessmer A Suhaeli Fahmi, Luki	nt of <i>Cyprinus carpio</i> based on image analysis ta Purnamayati and Tri W Agustini	012014
+ Open abstract	View article	PDF	
OPEN ACCESS Fisheries industr Miar, Firmansyah,	y strategy in Indone Shanty Oktavilia, Dita	sia W Puspita and Ryan Prayogi	012015
+ Open abstract	View article	PDF	
OPEN ACCESS Drying process c tunnel of sun dry	haracteristics of dri	ed anchovy (Stolephorus sp.) by using cabinet and	012016
R B D Sormin and	I K E Savitri		
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS Competitiveness	identification of fis	heries export in Indonesia	012017
Rian Destiningsih,	Rr. Retno Sugiharti, L	orentino Togar Laut, Sudati Nur Safiah and Andhatu Achsa	
	Tiew article	🔁 PDF	

		,, _,	
OPEN ACCESS Chemical, physica bean flour (<i>Vigna</i>	al, and sensory cha <i>radiata</i> L.) simula	racteristics of milkfish (<i>Chanos chanos</i>) and mung tions chips	012018
Sigit Prabawa, Fadli	lah Arrosyid and Bara	a Yudhistira	
+ Open abstract	Tiew article	🔁 PDF	
OPEN ACCESS The effect of high <i>carpio</i>) meat	voltage electric sh	lock on the quality attribute of carp fish (Cyprinus	012019
Apri Dwi Anggo and	l Slamet Suharto		
+ Open abstract	Tiew article	PDF	
OPEN ACCESS The classification and upwelling ind	of upwelling indic ex, the case study	ators base on sea surface temperature, chlorophyll-a in Southern Java to Timor Waters	012020
Kunarso, Safwan Ha	di, Nining Sari Nings	sih, Mulyono. S. Baskoro, Anindya Wirasatriya and	
Anastasia R. T. D. K	uswardani		
+ Open abstract	Tiew article	PDF	
OPEN ACCESS The morphologica Corbiculidae) in th	ll variance <i>Polyme</i> . he Laguna Segara J	soda erosa and Polymesoda expansa (Mollusc; Anakan, Cilacap, Indonesia	012021
Widianingsih Widian	ningsih, Retno Hartati	i, Ria Azizah Tri Nuraeni, Ita Riniatsih Hadi Endrawati and Sri	Redjeki
	View article	PDF	
OPEN ACCESS The potential stoc Seribu, Indonesia	ks and carbon upta	ke by seagrass meadows at Pari Island, Kepulauan	012022
Febi Amanda Citra,	Suryanti Suryanti and	l Max Rudolf Muskananfola	
+ Open abstract	Tiew article	PDF	
OPEN ACCESS Analysis of mange Indonesia	rove forest changes	s as a natural beach protection in Surabaya, East Java	012023
	View article	PDF	
OPEN ACCESS			012024
Mapping Coastal	Ecotourism Potent	ial in Panggul District, Trenggalek, East Java	
Eska Nia Sarinastiti	and M. Sidiq Wicaks	ono	
	View article	🔁 PDF	

2020	IOP Conference	Series: Earth and Environmental Science, Volume 530, 2020 - IOPscience	
OPEN ACCESS			012025
Non-performing l	oan in fishery sect	or, Indonesia	
Shanty Oktavilia, Fi	rmansyah, FX. Sugiy	anto, Ryan Prayogi and Hendy Aprilian Hidayat	
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS			012026
Social and econor Province	nic influences on (CO2 emission from capture fisheries in West Java	012020
Sitti Hamdiyah, Jatn	a Supriatna, Yosef Pr	ihanto, Novi Susetyo Adi and Widodo Setiyo Pranowo	
	View article	🔁 PDF	
OPEN ACCESS			012027
The contamination Mytilidae) by org	n of filter feeder m anophosphate pest	ussel <i>Perna viridis</i> Linnaeus, 1758 (Bivalvia: icide at Brebes marine waters Central Java, Indonesia	
C A Suryono, Irwan	i, A Sabdono, Subagi	yo, P Abi, E Yudiati, A Indardjo and R T Mahendrajaya	
+ Open abstract	View article	PDF	
OPEN ACCESS			012028
In vitro antibacter <i>crassifolium</i> extra	ial study and spect	ral analysis of brown seaweed <i>Sargassum</i> wa Islands, Jepara	
Wilis Ari Setyati, Ri	ni Pramesti, A.B. Sus	santo, A.S. Chrisna and Muhammad Zainuddin	
	View article	🔁 PDF	
OPEN ACCESS			012029
Multidrug-resistan seaweed from Kan	nt antibacterial acti rimunjawa, Jepara	ivity and active compound analysis several types of	
A.B. Susanto, Wilis	Ari Setyati, Rini Prai	nesti, Delianis Pringgenies and Muhammad Zainuddin	
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS			012030
Estimating carbor	n emission and base	eline for blue carbon ecosystems in indonesia	
Novi Susetyo Adi, N	/Iohammad Sumiran I	Paputungan, Agustin Rustam, Alfabetian Harjuno Condro Hadit	tomo and
Medrilzam			
	View article	🔁 PDF	
OPEN ACCESS			012031
Exploration of bac	cteria associated w	ith Nudibranchs to control Vibrio spp.	
Sarjito, S B Prayitno	o, M Y Farisa, R T C	Nast, R Kristiana, A Sabdaningsih and A Sabdono	
+ Open abstract	View article	🔁 PDF	
OPEN ACCESS			012032
The strategies of l	Pekalongan fishing	g port development, Indonesia	

28/1	2/2020

Putti, Alayya Eka, H. Boesono and D. wijayanu	Putri, Alayya	ı Eka, H.	Boesono	and D.	Wijayanto
---	---------------	-----------	---------	--------	-----------

	Tiew article	PDF	
OPEN ACCESS Submerged break Jepara	water effectiveness	based on wave spectrum changes in Panjang Island,	012033
T W L Putra, D N S	Sugianto and H Siagian	1	
	Tiew article	PDF	
OPEN ACCESS Engineering cultu quality of Snakeh	ure using natural filmead (Channa striat	ter differences based on microsatelite to improve the <i>a</i>)	012034
Istiyanto Samidjan	and Diana Rachmawa	ti	
	Tiew article	🔁 PDF	
OPEN ACCESS Heavy Metal (As Pati and Remban	and Hg) contamina g, Central Java, Ind	ation of shallow groundwater in the coastal areas of onesia	012035
Baskoro Rochaddi,	Agus Sabdono and M	uhammad Zainuri	
	Tiew article	PDF	
OPEN ACCESS The effect of met BG-11 medium Risfidian Mohadi, H	al ion Cd(II) concer Iermansyah, Helpi Ma	ntration on the growth of <i>Spirulina</i> sp. cultured on avala and Hilda Zulkifli	012036
← Open abstract	View article	PDF	
OPEN ACCESS The effects of exe Sangkuriang catf	ogeneous papain en ish (<i>Clarias</i> sp.) cu	zyme in the feed on growth and blood profiles of ltivated in the pond	012037
Diana Rachmawati,	Istiyanto Samidjan ar	nd Johannes Hutabarat	
+ Open abstract	Tiew article	🔁 PDF	
OPEN ACCESS Persistence of hig	gh sea surface temp	erature (> 30°C) in Tomini Bay	012038
Aprilia Da Cruz Tit	a, Anindya Wirasatriy	a, Denny N Sugianto, Lilik Maslukah, Gentur Handoyo, Hariya	ıdi,
Muhammad Helmi	and Praditya Avianto		
	Tiew article	🔁 PDF	
OPEN ACCESS Characteristics of chlorophyll-a, an	f Halmahera Eddy a d thermocline layer	and its relation to sea surface temperature,	012039

Muhammad Firdaus Ramadhan, Denny Nugroho Sugianto, Anindya Wirasatriya, Heryoso Setiyono, Kunarso and

Lilik Maslukah			
	View article	🔁 PDF	
OPEN ACCESS Biodiversity of p culture waters, Pe	hytoplankton from j ekalongan region	polyculture milkfish and white shrimp vanname pond	012040
Istiyanto Samidjan,	Safar Dody and Diana	a Rachmawati	
+ Open abstract	Tiew article	🔁 PDF	
OPEN ACCESS The effect of peri (Puntius javanicu	odical estradiol-17 (s) gonadal develop	3 injections with different doses on Java barb ment	012041
Tristiana Yuniarti, H	Fajar Basuki, Sri Hastu	ti, Ristiawan Agung Nugroho and Shelfiya Fany	
	Tiew article	🔁 PDF	
OPEN ACCESS Diversity of brittl and Watu Kodok	le star and sea urchi beach, Gunung Kid	n (Echinoderm: Ophiuroidea, Echinoidea) of Krakal lul, Yogyakarta	012042
R S Tarigan, R Hart	ati and I Widowati		
	View article	🔁 PDF	
OPEN ACCESS Co-existence betv Anakan, Cilacap,	ween Scylla serrata Indonesia	and Scylla transquebarica in the lagoon of Segara	012043
Sri Redjeki, Retno I	Hartati, Ria Azizah Tri	Nuraeni, Ita Riniatsih, Hadi Endrawati and Widianingsih Widi	aningsih
	Tiew article	PDF	
JOURNAL LINK	S		
Journal home			
Information for org	anizers		
Information for aut	nors		
Search for publishe	d proceedings		
Contact us			
Reprint services fro	m Curran Associates		

PAPER • OPEN ACCESS

In vitro antibacterial study and spectral analysis of brown seaweed *Sargassum crassifolium* extract from Karimunjawa Islands, Jepara

To cite this article: Wilis Ari Setyati et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 530 012028

View the article online for updates and enhancements.

In vitro antibacterial study and spectral analysis of brown seaweed *Sargassum crassifolium* extract from Karimunjawa Islands, Jepara

Wilis Ari Setyati^{1*}, Rini Pramesti¹, A.B. Susanto¹, Chrisna A.S.¹ and Muhammad Zainuddin²

¹Department of Marine Science, Diponegoro University, Semarang, Indonesia

² Department of Aquaculture, University of Islam Nahdlatul Ulama, Jepara, Indonesia

*Corresponding author: wilisarisetyati@yahoo.co.id

Abstract. Staphylococcus aureus and Pseudomonas aeruginosa are opportunistic pathogenic bacteria that are the main causes of nosocomial infections. These bacteria can infect almost every tissue of the body and there were 15% cases of infection in hospitals. Urinary tract infections, even sepsis, where the death rate reaches 50%. Inappropriate use of antibiotics raises resistance. About 10% of bacterial isolates are generally expressed as S. aureus and P. aeruginosa Multidrug Resistant (MDR). Sargassum brown seaweed has many potential antimicrobial compounds. This research aims to screen the antibacterial active compounds of Sargassum crassifolium seaweed against S. aureus and P. aeruginosa MDR bacteria. S. crassifolium collected from waters of Karimunjawa Islands, Jepara. The research was conducted by laboratory experimental methods. Sample was extracted with diethyl ether, methanol, ethanol and chloroform. The MIC value is done by measuring the diameter of the inhibitory zone in the antibacterial activity test of the agar diffusion method. Furthermore, extracts at MIC concentrations were tested for the antibacterial activity of the diluted method by measuring bacterial OD by spectrophotometric methods. The extract with the best antibacterial activity was performed spectral analysis by GC-MS method. The results showed that the different extracts had different MIC values (p <0.05). Extracts with high antibacterial activity are extracts from diethyl ether solvent. The extract has a MICP value of P. aeruginosa 12.7 mg/ml and S. aureus 8.4 mg/ml. P. aeruginosa has exponential growth at 12 hours and death at 44 hours. While exponential S. aureus was at 16 hours and death at 36 hours. Spectral analysis of S. crassifolium extract of diethyl ether solvent showed the composition of the presence of eicosane compounds (16.22%), dotriacontane (11.27%), nanocosane (11.09%), dicosane (9.85%), 10.13-octadeadienoic acid (9.52%). 2-butyloctanol (6.33%), pentatriacontane (5.4%), tritriacontane (5.07%), tricosane (1.6%)

1. Introduction

Antibiotics are a group of drugs used to treat and prevent bacterial infections. Infectious diseases can be treated by the use of antibiotics that are rational, appropriate, and safe. But lately, the high rate of infection is caused by bacteria that have been resistant to antibiotics. Antibiotic resistant bacterial infections will endanger the lives of patients because the infection becomes difficult to treat. Bacteria that are often found resistant at the hospital level include *S. aureus* and *P. aeruginosa* Multidrug Resistant (MDR) [1].

S. aureus and *P. aeruginosa* MDR infections are difficult to eradicate because these bacteria have high intrinsic resistance and are resistant to several different antibiotics. The prevalence of *S. aureus* and *P. aeruginosa* resistance to various types of antibiotics continues to increase. The results showed that *S. aureus* isolates were

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1 resistant to tetracycline antibiotics (64.8%), erythromycin (53.7%), and cloxacillin (40.7%). *P. aeruginosa* is reported to have resistance to several types of antibiotics, such as imipenem (20.8%), cephalosporins such as cefotaxime (90%) and ceftriaxone (85%), aminoglycosides such as tobramisin (70.07%) and gentamicin (71.89%), fluoroquinolones such as ciprofloxacin (35%) and levofloxacin (32%) [2][3].

Resistance to various antibiotic agents has a significant negative impact of an increase in therapy cost to the risk of complications. Resistant bacterial infection has been classified as a very high cause of death in hospitals [4]. This research aims to look for compounds that have antibacterial activity. One source of natural active compounds is from *S. crassifolium* brown seaweed [5][6]. Karimunjawa Islands, Jepara coast have a high abundance of *S. crassifolium* and have the potential to be explored in the field of marine pharmacy. This research is expected to get extracts with MDR antibacterial active compounds.

2. Methodology

2.1. Seaweed sampling.

Sampling was conducted in Karimunjawa Islands, Jepara coast together with local fishermen using a boat and collected by snorkeling. Samples were taken and put in a cool box. Then the seaweed is brought to the laboratory for identification and extraction.

2.2. Seaweed extraction.

Sample preparation was done by washed the seaweed with the fresh-water flow, cut, dried and blended [6). 500 grams of *S. crassifolium* crude powder soaked in 1.5 liters of solvent for 24 hours in darkroom conditions [7]. Seaweed maceration used 4 different solvents: diethyl ether, methanol, ethanol, and chloroform. The filtration was done by using the Whatman paper filter. The filtrate of each solvent was evaporated using a vacuum rotary evaporator at a temperature of 40°C and a pressure of 500 mbHg. The extract then dried with Freeze Drying and stored in a freezer at $-4^{\circ}C$ [8].

2.3. Antibacterial Activity Test.

Zobell media 2216e agar is used for purification of *P. aeruginosa* and *S. aureus*. Test of bacterial culture that the OD (Optical Density) has been measured between 0.6-0.8 [9] at a wavelength of 600 nm, 0.1 ml was pipetted and inoculated to the surface of the petri media by spread technique. Afterward, it was incubated for 30 minutes to get diffused. Antibacterial activity test used the extract solutions with concentrations of 100, 75, 50 and 25 ppm. Each extract solution was dropped onto a paper disk of 20 μ l [8]. Hereafter, it is stored in an incubator at 37°C for 24-48 hours.

2.4. MIC and MBC measurement.

Measurement of MIC and MBC were done by the same methods as antibacterial activity tests. The difference is in the extract concentration being tested. There are 3 stages of concentration, stage 1 at concentrations 24, 23, 22, 21, 20, 19, 18, 17 and 16 ppm. Stage 2 at concentrations of 15, 14, 13, 12, 11, 10, 9, 8, 7 and 6 ppm. Stage 3 at concentrations of 5, 4, 3, 2 and 1 ppm. Furthermore, each extract solution was dropped onto a paper disk of 20 µl [8]. Furthermore, it is stored in an incubator at 37°C for 24-48 hours.

2.5. Analysis of growth kinetics.

Growth measurement aims to determine the growth character of pathogenic bacterial isolated in conditions without exposure and exposed to *S. crassifolium* extract of the solvent diethyl ether at ½ MIC, 1 MIC and 2 times MIC. The culture was using a 2-liter scale fermenter with volume of 1 liter. The conditions of the fermenter are Zobell 2216

E broth media, 1% inoculum concentration with OD 0.01 at A600, pH 8, temperature 35°C, and agitation speed of 150 rpm. Observations were made on the bacterial optical density (OD) values at incubation times of 0, 2, 4, 6, 12, 18, 24, 30, 36, 42, and 48 hours [10].

2.6. GC-MS analysis.

S. *crassifolium* extract of the diethyl ether solvent with the best antibacterial activity then performed by the GC-MS analysis. GC-MS consists of two main component blocks: gas chromatography and mass spectrometer. The GC-MS process is carried out with an active fraction of KCV results, using the GC-MS tool Shimadzu QP2010S type with the method of [11]. This analysis will obtain information about the fraction constituent compounds that are volatile [12].

2.7. Data analysis.

Data on inhibition zone diameter and bacteriocidal zone are presented using histogram graphs, meanwhile the antibacterial activity data, MIC, MBC, OD bacterial cell growth and GC-MS analysis are presented using data tabulation. Data on antibacterial activity, MIC, MBC, and OD bacterial cell growth were further tested for homogeneity, normality and additivity with a sig value of 0.050. If the data is homogeneous, normal and additive, then the data will performed one way ANOVA test with a sig value of 0.050 using the SPSS program version 16.0. If there is an influence between the treatment of the response then the Tukey test is then performed with a sig value of 0.050. OD data on bacterial cell growth was carried out polynomial analysis to determine growth trendsbacteria on the conditions of *Sargassum crassifolium* extract at levels of $\frac{1}{2}$ MIC, 1 MIC and 2 times MIC.

3. Results

3.1. Antibacterial activity test.

Sargassum crassifolium seaweed obtained from Karimunjawa Jepara was extracted with the solvents of diethyl ether, methanol, ethanol and chloroform. Each extract was tested for antibacterial activity against pathogenic bacteria *P. aeruginosa* and *S. aureus*. The antibacterial activity test using a concentration difference treatment (100, 75, 50 and 25 μ g/disk). The results of the antibacterial activity test are presented in Table 1.

Solvents	Concent- ration (µg/disk)	P. aeruginosa	S. aureus
Diethyl ether	100	18.32 ± 0.40^{b}	$21.70 \pm 1.77^{\textbf{b}}$
	75	18.86 ± 1.15^{ab}	21.91 ± 1.75^{ab}
	50	17.55 ± 1.21^{ab}	20.54 ± 1.15^{ab}
	25	15.61 ± 1.25^{b}	$19.75 \pm 1.03^{\text{b}}$
Methanol	100	$16.79\pm0.83^{\hbox{b}}$	20.28 ± 0.49^{b}
	75	15.46 ± 1.01^{ab}	19.46 ± 0.77^{ab}
	50	15.33 ± 0.34^{ab}	17.32 ± 0.29^{a}
	25	14.38 ± 0.64^{a}	17.61 ± 0.55^{a}
Ethanol	100	8.41 ± 0.09^{b}	$20.79 \pm 0.82^{\small b}$
	75	8.72 ± 0.15^{ab}	18.03 ± 1.02^{ab}
	50	7.14 ± 0.16^{a}	15.45 ± 0.35^{a}
	25	7.41 ± 0.08^{ab}	12.71 ± 0.45^a

Table 1. Antibacterial activity of the extract against MDR pathogenic bacteria.

The 5th International Conference on Tropical and Coastal Region Eco DevelopmentIOP PublishingIOP Conf. Series: Earth and Environmental Science 530 (2020) 012028doi:10.1088/1755-1315/530/1/012028

Chloro-form	100	9.62 ± 0.18^{b}	16.62 ± 0.52^{b}
	75	9.74 ± 0.25^{ab}	13.35 ± 0.22^{ab}
	50	8.11 ± 0.06^{a}	12.03 ± 0.04^{ab}
	25	7.39 ± 0.09^{a}	10.44 ± 0.23^{a}

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

Based on the results of the research, Table 1 shows that the different treatment of extract solvents and extract concentrations gave significantly different inhibitory zone sizes (p < 0.05). Besides the pathogenic bacteria *P*. *aeruginosa* and *S. aureus* showed different responses to the extract. In general, Table 1 shows that higher concentration has higher diameter of the inhibition zone.

3.2. MIC and MBC values.

Based on the results of the antibacterial activity test of the different solvent extracts in Table 1, the research carried out further tests to determine the MIC and MBC values. Further tests were carried out at a lower concentration level. As for the results of the MIC and MBC determination test on pathogenic *P. aeruginosa* bacteria are presented in Table 2.

Inhibition zone diameters presented in Table 2 are zones with bacteriostatic activity. Meanwhile the bacteriocidal zone is a clear zone du to the mortality of bacteria. Table 2 show that the treatment of different extracts gave significantly different values of inhibition zone and bacteriocidal zones to *P. aeruginosa* bacteria.

Figure 1. Diameter of inhibitory zone of extract against P. aeruginosa bacteria.

The research shows that (Figure 1) *S. crassifolium* extract of the diethyl ether has the largest inhibitory zone diameter against the *P. aeruginosa* bacteria, compared to extract with methanol, ethanol and chloroform. Ethanol and shloroform extracts have inhibitory zone diameters that are not significantly different (p > 0.05), but both extracts have different inhibition zones to the methanol and diethyl ether (p < 0.05). *S. crassifolium* extract of diethyl ether has the best bacteriostatic activity against *P. aeruginosa* bacteria compared to the other extracts because at small concentrations it is able to inhibit the *P. aeruginosa* bacteria.

Table 2. WIIC all	u MDC extract valu	cs 101 1 . ueri	aginosa baciena.		
Solvent	IZ (mm)	MIC (ppm)	BZ (mm)	MBC (ppm)	MIC / MBC
Diethyl ether	$13.63 \pm 1.03^{\circ}$	4	13.61 ± 0.98^{b}	7	0.57
Methanol	$11.53\pm0.60^{\text{b}}$	8	$10.63 \pm 0,71^{ab}$	12	0.67
Ethanol	7.32 ± 0.20^{a}	19	$10.04 \pm 0,78^{ab}$	23	0.83
Chloroform	7.27 ± 0.92^{a}	20	$8.94 \pm 1,18^{a}$	24	0.83

Table 2. MIC and MBC extract values for P. aeruginosa bacteria.

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

Figure 2. Diameter of bacteriocidal zone of extract against P aeruginosa bacteria.

Table 3 showed that the treatment of different extracts had significantly different inhibitory zone values for the pathogenic *S. aureus* bacteria (p < 0.05). In addition, the difference in extracts has a significantly different bacteriocidal zone value for the pathogenic *S. aureus* (p < 0.05). Different extracts have different MIC and MBC values, high to low MIC and MBC values are chloroform, ethanol, methanol and diethyl ether extracts.

Solvent	IZ (mm)	MIC (ppm)	BZ (mm)	MBC (ppm)	MIC / MBC
Diethyl ether	$16.62 \pm 0.26^{\circ}$	5	$17.39\pm0.85^{\text{b}}$	9	0.56
Methanol	$14.34\pm0.65^{\text{b}}$	8	17.07 ± 1.72^{b}	15	0.53
Ethanol	9.55 ± 0.21^{a}	15	12.74 ± 0.40^{a}	17	0.88
Chloroform	10.12 ± 0.70^{a}	18	13.03 ± 0.73^{a}	22	0.82

Table 3. MIC and MBC extract values for S.aureus bacteria.

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

Extract differences had significantly different bacteriocidal zone values (p <0.05). S. crassifolium extract with chloroform had the lowest bacteriocidal zone but did not differ significantly (p> 0.05) against methanol and ethanol extracts, but the bacteriocidal zone of the chloroform extract was significantly different (p <0.05) from the diethyl ether. S. crassifolium extract of diethyl ether has the largest diameter of the bacteriocidal zone (figure 2). The extract has high antibacterial activity because at the lowest concentration, it is able to kill the *P. aeruginosa*

bacteria compared to the other extracts. MIC and MBC determination test was also carried out on *S. aureus* pathogenic bacteria. As for the results of MIC and MBC values in the pathogenic bacteria *S. aureus* are presented in Table 3.

Figure 3 shows that it has inhibitory zone values for different *S. aureus* bacteria (p < 0.05). The extract with the lowest inhibition zone was chloroform extract and did not differ significantly (p > 0.05) against ethanol. however, the two extracts were significantly different (p < 0.05) against the extracts of diethyl ether and methanol.

The results of the study in figure 4 show that the treatment of different extracts gave a significantly different diameter of the bacteriocidal zone of the *S. aureus* bacteria (p < 0.05). The diameter of the bacteriocidal zone of ethanol and chloroform extracts did not differ significantly (p > 0.05) as well as diethyl ether and methanol extracts had no bactericidal zone that was not significantly different (p > 0.05). However, the two groups differed markedly (p < 0.05). Based on the bacteriocidal zone values indicate that diethyl ether was the best solvent to extract *S. crassifolium*.

Figure 3. Diameter of inhibitory zone of the extract against S aureus bacteria.

Figure 4. Diameter of bacteriocidal zone of extracts against S aureus bacteria.

3.3. MIC and MBC values.

The results of OD measurements of *P. aeruginosa* bacteria are presented in table 4. Table 4 shows that the treatment of different extract concentration exposures significantly influences the OD value of Pseudomonas aeruginosa bacterial growth (p < 0.05). OD values at each observation time between treatments showed significantly different

(p <0.05). Results of the OD spectrophotometer were then carried out by trend analysis on the growth kinetics of the *P. aeruginosa* bacteria shown in Figure 5.

Based on Figure 6 shows that the difference in extract exposure concentration affects the growth kinetics of *S. aureus*. The kinetics of bacterial growth without exposure to extracts (negative control) have normal growth. The control bacterial growth pattern consisted of the lag phase, exponential phase, stationary phase and mortality as well as in plants exposed to half MIC concentration extracts. Whereas in treatment with exposure to extract according to MIC and twice the MIC occurred growth pressured. The growth phase does not look well, due to both treatments inhibit growth and even kill bacteria.

Table 4. Growth density of P. aeruginosa bacteria exposed to S. crassifolium extract of solvent diethyl ether.

Observation	Pseudomonas aeruginosa						
(Day th)	K	1/2*MIC	MIC	2*MIC			
0	0.118 ± 0.0150^{a}	0.112 ± 0.0150^{a}	0.116 ± 0.0150^{a}	0.112 ± 0.0150^{a}			
2	0.155 ± 0.0073^{b}	0.148 ± 0.0060^{b}	0.146 ± 0.0060^{b}	0.113 ± 0.0058^{a}			
4	0.218 ± 0.0035^{d}	$0.181 \pm 0.0169^{\circ}$	0.147 ± 0.0065^{b}	0.117 ± 0.0015^a			
6	0.323 ± 0.0221^{d}	$0.193 \pm 0.0124^{\rm c}$	0.161 ± 0.0085^{b}	0.123 ± 0.0087^a			
12	0.495 ± 0.0315^{d}	$0.230 \pm 0.0072^{\rm c}$	$0.182 \pm 0.0106^{\text{b}}$	0.120 ± 0.0028^{a}			
18	0.663 ± 0.0352^{d}	0.386 ± 0.0236^{c}	0.294 ± 0.0185^{b}	0.122 ± 0.0028^{a}			
24	1.162 ± 0.0361^{d}	$0.667 \pm 0.0213^{\rm c}$	0.380 ± 0.0150^{b}	0.123 ± 0.0015^{a}			
30	1.488 ± 0.0586^{d}	$1.029 \pm 0.0177^{\rm c}$	0.369 ± 0.0133^{b}	0.123 ± 0.0015^{a}			
36	1.843 ± 0.0422^{d}	$1.007 \pm 0.0267^{\rm c}$	0.345 ± 0.0075^{b}	0.122 ± 0.0015^{a}			
42	1.742 ± 0.0391^{d}	0.966 ± 0.0309^{c}	$0.323 \pm 0.0041^{\text{b}}$	0.116 ± 0.0005^{a}			
48	$1.589 \pm 0.0682^{\rm d}$	$0.859 \pm 0.0273^{\circ}$	0.280 ± 0.0110^{b}	0.109 ± 0.0005^{a}			

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

Figure 5. Growth kinetics of *P. aeruginosa* bacteria exposed to *S. crassifolium* extract of solvent diethyl ether.

Figure 6. Growth kinetics of S. aureus bacteria exposed to S. crassifolium extract of solvent diethyl ether.

Observation	Staphylococcus aureus							
(Day th)	K	1/2*MIC	MIC	2*MIC				
0	0.114 ± 0.010^{a}	0.134 ± 0.040^{a}	0.124 ± 0.020^{a}	0.118 ± 0.010^{a}				
2	$0.226 \pm 0.010^{\circ}$	0.249 ± 0.011^{d}	0.200 ± 0.011^{b}	0.113 ± 0.005^a				
4	$0.327 \pm 0.010^{\circ}$	0.359 ± 0.024^{d}	0.163 ± 0.011^{b}	0.124 ± 0.003^{a}				
6	0.564 ± 0.029^{d}	$0.485 \pm 0.027^{\circ}$	0.250 ± 0.013^{b}	0.133 ± 0.008^a				
12	0.908 ± 0.103^{d}	$0.811 \pm 0.010^{\circ}$	0.315 ± 0.003^{b}	0.196 ± 0.012^{a}				
18	1.154 ± 0.047^{d}	$0.914 \pm 0.011^{\circ}$	0.328 ± 0.007^{b}	0.170 ± 0.010^{a}				
24	$1.542\pm0.041^{\hbox{d}}$	$1.275 \pm 0.045^{\circ}$	0.335 ± 0.005^{b}	0.145 ± 0.003^a				
30	1.994 ± 0.124^{d}	$1.265 \pm 0.040^{\circ}$	0.214 ± 0.001^{b}	0.141 ± 0.003^{a}				
36	$1.988 \pm 0.086^{ m d}$	$1.131 \pm 0.019^{\circ}$	0.179 ± 0.007^{b}	0.103 ± 0.002^{a}				
42	1.901 ± 0.118^{d}	$0.885 \pm 0.035^{\circ}$	0.172 ± 0.006^{b}	0.084 ± 0.003^a				
48	$1.742\pm0.068^{\hbox{d}}$	$0.536 \pm 0.009^{\circ}$	0.126 ± 0.001^{b}	0.074 ± 0.002^{a}				

Table 5. Growth density of S. aureus bacteria exposed to S. crassifolium extract of solvent diethyl ether.

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

Observation	Staphylococcus aureus							
(Day th)	K	1/2*MIC	MIC	2*MIC				
0	0.114 ± 0.010^{a}	0.134 ± 0.040^{a}	0.124 ± 0.020^{a}	0.118 ± 0.010^{a}				
2	$0.226 \pm 0.010^{\text{C}}$	0.249 ± 0.011^{d}	0.200 ± 0.011^{b}	0.113 ± 0.005^{a}				
4	$0.327 \pm 0.010^{\text{C}}$	0.359 ± 0.024^{d}	0.163 ± 0.011^{b}	0.124 ± 0.003^{a}				
6	0.564 ± 0.029^{d}	$0.485 \pm 0.027^{\text{C}}$	0.250 ± 0.013^{b}	0.133 ± 0.008^a				
12	0.908 ± 0.103^{d}	$0.811 \pm 0.010^{\circ}$	0.315 ± 0.003^{b}	0.196 ± 0.012^{a}				
18	1.154 ± 0.047^{d}	$0.914 \pm 0.011^{\circ}$	$0.328 \pm 0.007^{\text{b}}$	0.170 ± 0.010^{a}				
24	1.542 ± 0.041^{d}	$1.275 \pm 0.045^{\circ}$	0.335 ± 0.005^{b}	0.145 ± 0.003^{a}				
30	1.994 ± 0.124^{d}	$1.265 \pm 0.040^{\circ}$	0.214 ± 0.001^{b}	0.141 ± 0.003^{a}				
36	$1.988 \pm 0.086^{ ext{d}}$	$1.131 \pm 0.019^{\circ}$	0.179 ± 0.007^{b}	0.103 ± 0.002^{a}				
42	1.901 ± 0.118^{d}	$0.885\pm0.035^{\text{C}}$	$0.172\pm0.006^{\text{b}}$	0.084 ± 0.003^{a}				
48	1.742 ± 0.068^{d}	$0.536 \pm 0.009^{\text{C}}$	0.126 ± 0.001^{b}	0.074 ± 0.002^{a}				

Table 5. Growth density of *S. aureus* bacteria exposed to *S. crassifolium* extract of solvent diethyl ether.

Note: the value is the average \pm standard deviation, the super script letters behind different numbers in one column show significantly different from each other (p <0.050), the super script letters from a to z indicate having a greater average value.

3.4. GC-MC analysis of S. crassifolium extract.

T. crassifolium extract of the solvent diethyl ether has the best antibacterial activity then performed with GC-MS analysis. GC-MS consists of two main component blocks: gas chromatography and mass spectromater. The GC-MS process is carried out with an active fraction of KCV results, using the GC-MS tool Shimadzu QP2010S type with the method of Khotimah *et al.* (2013). This analysis will obtain information about the fraction constituent compounds which are non-folatil. The results of the GC-MS analysis of *S. crassifolium* extract of the solvent diethyl ether are presented in Table 6.

GC-MS analysis shows that the extract has a complex composition of compounds. The composition of the extract consists of the compound Cyclopentylacetic acid; Tonalid; 10,13-Octadecadienoic acid; Tritriacontane; 2-Butyl-1-octanol; Pentacosane; Eicosane; Tetratetracontane; Dotriacontane; Octacosane; Nonacosane; Heneicosane; Eicosane; Docosane; Pentatriacontane; Tetracosane and Eicosane, 2-methyl. Molecular weight of compounds possessed ranged from 186 - 619 g/mol. Extract components have different contents. The lowest percentage of extract component is tonalid, while the highest component is eicosane.

4. Discussion

Extracts used were different types of solvents based on their polarity level. Based on the type of solvent used the extract had a significantly different activity (p < 0.05). The results of antimicrobial activity tests on extracts provide information that the overall extract data that has the lowest antimicrobial activity is extracts with ethanol. According to [13][14], the extent or level of extract activity on disc paper depends on the diffusion rate of the extract on agar media and the potential extract. The extract with high potential bioactivity may have physical properties that are difficult to diffuse on the media which is the diameter of inhibition of microbes that formed is small or absent.

The results of this study are in line with research conducted [15][16] that Sargassum seaweed extracted using diethyl ether has the largest inhibitory zone when compared to hexane and methanol solvents. Factors affecting the size of the inhibitory area were culture medium, agar diffusion rate, organismic sensitivity and incubation conditions. The factors that influence the speed of agar diffusion are media composition, microorganism concentration, incubation time and temperature [17][18].

Table 6.	GC-MC	analysis	of S.	crassifolium	extract	of solvent	diethvl ether.
1 4010 0.	00 110	anaryono	01 0.	crassijonum	entract	or sorrent	areary rearier.

Structure	Compounds		Molecular formula	BM (g/mol)	Persentage (%)
•	Cyclopentylacetic acid	20,751	C7H12O2	128.17	5.11
Xxx.	Tonalid	27,551	C18H26O	258,4	2.09
н⁰щ	10,13-Octadecadienoic acid	31,815	C18H32O2	280.4	7.51
	Tritriacontane	32,374	C33H68	464.9	4.20
P-	2-Butyl-1-octanol	33,454	C12H26O	186.33	5.75
*	Pentacosane	34,487	C25H52	352.7	3.61
	Eicosane	36,258	C20H42	282.5	12.00
	Tetratetracontane	36,371	C44H90	619.2	3.99
~~~~~	Dotriacontane	37,223	C32H66	450.88	8.26
	Octacosane	38,198	C28H58	394.8	2.82
	Nonacosane	38,552	C29H60	408.8	9.66
/	Heneicosane	39,489	C21H44	296.6	7.65
	Eicosane	39,797	C20H42	282.5	7.88
	Docosane	41,753	C22H46	310.6	7.80
///////////////////////////////////////	Pentatriacontane	45 725	C35H72	492.9	4 22
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	rentatriacontane	45,725	0351172	472.7	7.22
~~~~~~	Tetracosane	46,018	C24H50	338.7	4.77
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Eicosane, 2-methyl	48,534	C21H44	296.57	2.68

The amount of inhibition zone formed by seaweed extract which is extracted using diethyl ether is suspected due to the diethyl ether which has lipophilic and hydrophilic properties [19][20]. This condition causes the antibacterial compound extracted with ethyl acetate to have optimum polarity, which is antimicrobial activity occurs both hydrophilic and lipophilic balance therefore the interaction of antibacterial compounds and tested bacteria is maximized [21].

Generally antibacterial activity test results showed that higher concentration of extract treatment affected in the effect of no zones into bacteriostatic zones then bacteriocidal zones, besides that higher

concentrations obtain greater zones. According to [22][23], bacteriostatic agents work by inhibiting protein synthesis by temporarily binding the ribosome of an organism. The bonds are not very strong as of concentration and stability decrease, antimicrobial agents release ribosomes which bacteria can grow back. This is different from the mechanism of bacteriocidal agents that work by tightly binding to target cells, not released again and microorganism cells will be killed.

5. Conclusions

The results showed that differences in extracts had different MIC values (p < 0.05). Extracts with high antibacterial activity are extracts from diethyl ether solvent. The extract has a value of 12.7 mg/ml *P. aeruginosa* mic and 8.4 mg/ml *S. aureus*. *P. aeruginosa* has exponential growth in the 12th and 44th hours. Whereas *S. aureus* is exponential at the 16th hour and 36th mortality. Spectral analysis of *S. crassifolium* diethyl ether extract solvent showed the composition of eikosana (16.22%), dotriacontane (11.27%), nanocosane (11.09%), dicosane (9.85%), 10.13 octadiadienoic acid (9.52%), 2-butyloctanol (6.33%), pentatriacontane (5.4%), tritriacontane (5.07%), tricosane (1.6%).

Acknowledgements

The authors duly acknowledge the Department of Fisheries and Marine Science, Diponegoro University for their financial to carry out the study.

References

- [1] Loomba, P.S., Taneja, J. and Mishra, B. 2010 J Glob Infect Dis.2 275
- [2] Raja, N. and Nishi, S. 2007 Journal of Microbiology, Immunology and Infection40 45
- [3] Asadullah, Isbandiyah and Ardila, S. 2015 Saintika Medika11 64
- [4] Yende, S.R., Harle, U.N. and Chaugule, B.B. 2014 Pharmacognosy Rev.15 125514
- [5] Baleta, F.N., Bolaños, J.M., Ruma, O.C., Baleta, A.N. and Cairel, J.D. 2017 Journal of Medicinal Plants Studies5 382
- [6] Sanjeewa, K.K.A., Jayawardena, T.U., Kim, H.S., Kim, S.Y., Ahn, G., Kim, H.J., Fu, X., Jee, Y. and Jeon, Y.J. 2019 *Fisheries and Aquatic Sciences*22 6
- [7] Ye, H., Zhou, C., Sun. Y., Zhang, X., Liu, J., Hu, Q. and Zeng, X. 2009 European Food Research and Technology230 101
- [8] Kanjana, K., Radtanatip, T., Asuvapongpatana, S., Withyachumnarnkul, B. and Wongprasert, K. 2011 Fish Shellfish Immunology30 389
- [9] Lalitha 2004 India: Indian Association of Medical Microbiologist
- [10] Annamalai, N., Thavasi, R., Vijayalakshmi, S. and Balasubramanian, T. 2011 Indian J Microbiol51 424
- [11] Khotimah, K., Darius and Sasmito, B.B. 2013 THPi Student Journal1 10
- [12] Diningrat, D.S., Restuati, M., Kusdianti, S.A.N. and Marwani, E. 2018 Journal of Islamic Science and Technology4 3075
- [13] Sari, E.M., Maruf, W.F. and Sumardianto 2014 Jurnal Pengolahan dan Bioteknologi Hasil Perikanan3 16
- [14] Eloff, J.N. 2019 BMC Complementary and Alternative Medicine19 106
- [15] El-Shafay, S.M., Ali, S.S. and El-Sheekh, M.M. 2015 Egyptian Journal of Aquatic Research42 65
- [16] Dileepkumar, V., Rao, M.S., Misra, S. and Kumari, S.S. 2018 Journal of Entomology and Zoology Studies 6 1125
- [17] Schlegel, H.G. and Smidt, K. 1994 Gadjah Mada University Press

- [18] Smith, P. and Kronvall, G. 2014 Journal of Fish Disease38 629
- [19] Harborne, J.B. 1987 Bandung: Institut Teknologi Bandung 243
- [20] Ibrahim, A. and Rusli 2010 J. Trop. Pharm. Chem.1 17
- [21] Naufalin, R. and Herastuti, S.R. 2017 IOP Conf. Ser.: Earth Environ. Sci. 102 012035
- [22] Madigan, M.T., Martinko, J.M., and Stahl, D.A. 2011 Pearson 1043
- [23] Ullah, H. and Ali, S. 2017 IntechOpenScience 68695
- [24] Izzati, M. 2007 BIOMA9 62

Certificate

This to certify that

WILIS ARI SETYATI

Has contributed as **PRESENTER**

in The 5th International Conference on Tropical and Coastal Region Eco-Development

Faculty of Fisheries and Marine Science, Universitas Diponegoro

Semarang, 18th September 2019

