Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns

by Dwi Hudiyanti

Submission date: 05-Nov-2019 06:36AM (UTC+0700) Submission ID: 1207095914 File name: 15277-36779-1-PB_atiatul_17.pdf (679.23K) Word count: 4051 Character count: 22576

Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH₂) Simulated on 20 ns

Atiatul Manna *, Marlyn Dian Laksitorini *, Dwi Hudiyanti *, Parsaoran Siahaan

a Physical Chemistry Laboratory, Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jalan Prof. Soedarto, Tembalang Temarang 30273

b Faculty of Pharmacy, Gadjah Mada University, Yogyakarta

* Corresponding author: parsaorin_solundip.ac.id

Article Info	Abstract	
Keywords: ADTC3, E-cadherin domain EC1, Gromacs, docking	The treatment of diseases that attack the brain is very difficult, because the delivery of drug molecules to the brain is often hindered by the molecules of blood-brain barrier (BBB). Thus, it was developed the new method using synthetic peptide which derived from the amino acids sequence of cadherin and ADTC3 predicted able to modulate the intercellular junction peptide. The intermolecular interaction between ADTC3 and E-cadherin is hypothesized as the driving force of modulation. In this research have been	
	calculated the interaction energy between ADTC3 and E-cadherin. The method used in this research is molecular dynamics (MD) and molecular docking. The results show that cyclic peptide ADTC3 (Ac-CADTPC-NH2) simulated for 20 ts (20,000 ps) has considerable interaction with EC1 domain of E-cadherin which have the binding energies -31.55 kJ.mol ⁻¹ and inhibition constant Ki 2.96 µM at the 44.87 conformation. This highly interaction energy was predicted os the driving force in modulating intercellular junctions. The binding site of E-cadherin reside on amino acid residues Aspt, Trp2, Val3, Ile4, Lys25, Met92 in the adhesion arm-acceptor pocket region.	

Abstrak

Kata kunci: ADTC3, E-cadherin domain EC1, Gromacs, docking

Pengobatan penyakit yang menyerang otak sangat sulit dilakukan karena penghantaran molekul obat menuju otak terhalang oleh molekul-molekul bioad-brain barrier (BBB). Untuk mengatasinya telah dikembangkan metode baru dengan menodulasi junction antar sel menggunakan peptida. Salah satu peptida yang diperkirakan mampu memodulasi adalah ADTC3, yang diturunkan dari susunan asam amino kadherin. Modulasi terjadi diduga karena interaksi antara ADTC3 dengan E-kadherin. Pada penelitian ini telah dihitung energi interaksi antara ADTC3 dengan E-kadherin. Metode yang digunakan adalah dinamika molekul (DM) dan molecular doching. Hasil penelitian menunjukkan hahwa peptida siklik ADTC3 (Ac-CADTPC-NH₃) hasil simulasi 20 ns (20.000 ns) berinteraksi kuat dengan domain EC1 E-kadherin dengan energy binding sebesar -31,55 kJ.mol⁻⁵ dan tetapan inhibisi KI sebesar 2,96 µM pada konformasi ke-4,487. Interaksi yang kuat ini diperkirakan sebagai daya penggerak memodulasi junction antar sel. Interaksi antara ADTC3 dengan E-kadherin terjadi pada situs residu Ekadherin Aspi, Trp2, Val3, Ile4, Lys25, Met92 yang berada pada daerah officien armacceptor pecket.

1. Pendahuluan

Pengobatan penyakit yang menyerang otak merupakan penyakit yang sulit dilakakan karena penghantaran molekul obat menuju ke otak sangat sulit [1]. Hal ini disebabkan karena adanya penghalang biologis yaitu Mood-brain barrier (BBB) [2]. Transpor obat melewati BBB dapat dicapai melalui jalur transelular dan paraselular [3]. Jalur transpor yang mungkin dilewati oleh senyawa makromolekul adalah jalur paraselular. Namun, pada jalur ini terdapat persimpangan ketat (tight junction) yang merupakan komponen paling apikal dan umumnya dianggap sebagai penghalang untuk permeabilitas paraselular [4]. Molekul yang dapat melewati jalur ini memiliki ukuran diameter kurang dari 11 Å atau dengan berat molekul lurang dari 500 Dalton [5]. Dengan demikian, kehadiran BBB menjadi tantangan tersendiri dalam proses penghantaran obat menuju sel target. Salah satu cara untuk meningkatkan sistem penghantaran obat adalah dengan meningkatkan porositas right junction dengan menghambat interaksi kadherin-kadherin pada adherens junction [6].

Kødherin merupakan protein transmembran yang terdiri dari 5 domain ekstraselular (EC1-EC5) dengan ion Ca1+ berinteraksi sebagai penghubung antar bagian dari E-Kadherin [7]. Kadherin banyak ditemukan pada zonula adherens [8]. Zonule adherens adalah salah satu bagian junction antar sel yang berada dalam zonule occluden (junction ketat) dan Demosom. Delam pembentukan junction antar sei, molekul kadherin pada satu sel akan berinteraksi dengan molekul kadherin pada sel lain yang berada di dekatnya membentuk zonula odheren [9]. Porositas pada jalur paraselular dapat ditingkatkan dengan peptida yang sekuennya diturunkan dari molekul kadherin itu sendiri, seperti turunan peptida HAV dan ADT. Turunan peptida ADT seperti ADTC3 yang diturunkan dari kadherin dapat menempati situs ikatan (binding site) pada molekul kadherin dan menghalangi interaksi antar molekul adherent junction (kadherin) pada sel bersebelahan, sehingga keketatan tight junction antar sel dapat diatur atau dimodulasi. Modulasi dapat juga dilakukan dengan kitosan yang sekaligus dapat berfungsi sebagai pembawa obat atau enkapsulator pada sistem drug delivery dan drug targetting [10, 11].

Laksitorini [12] telah mensintesis dan menggunakan turunan peptida kadherin AD76 seperti ADTC1, ADTC5, dan ADTC6 untuk meningkatkan penghantaran molekul obat dari otak ke sistem saraf pusat. Hasil penelitiannya menunjukkan bahwa peptida kadherin ADT6 memiliki kemampuan menginhibisi interaksi junction antar sel di dalam sel MDCK (Modin-Durby Canine Kidney) dan pembentukan peptida siklik dapat meningkatkan kemampuan peptida kadherin untuk memodulasi junction antar sel [12]. Alaofi dkk. [1] menginteraksikan peptida cHAVc3 dengan E-kadherin domain ECI dan hasilnya menunjukkan bahwa peptida cHAVc3 mampu meningkatkan porositas juntion antar sel [1]. Selain turunan peptida kadherin seperti peptida ADTC1, ADTC5, dan ADTC6, terdapat turunan ADT6 yang

belum dilakukan penelitian secara eksperimen maupun komputasi yaitu peptida ADTC3. Sehingga pada penelitian ini akan dilakukan studi interaksi antara peptida siklik ADTC3 dengan E-kadetin domain EC1-EC2 dengan molecular dioking. Malecular dioking merupakan pemodelan komputasi yang dilakukan untuk memprediksi interaksi dan situs ikatan. Pemodelan komputasi juga dapat menjelaskan daya penggerak yang menyebabkan terjadinya proses interaksi antara peptida ADTC3 dengan E-kadherin domain EC1-EC2.

2. Metode Penelitian

Preparasi Protein dan peptida siklik ADTC3

Pada penelitian ini model molekul yang digunakan yaitu struktur kristal E-kadherin domain EC1-EC2 (kode 2072) sebagai host dan peptida siklik ADTC3 sebagai guest yang diperlihatkan pada Gambar 1. Peptida linier ADTC3 dibuat dengan menggunakan software program PyMol [13]. Kemudian dilakukan pembentukan siklik peptida ADTC3 (siklik(1,6)Ac-CADTPC-NH2) dengan membentuk ikatan disulfida pada gugus thiol residu sistein dengan menggunakan software program avogadro.

Simulasi Dinamika Molekular (DM)

Simulasi dinamika molekular dilakukan menggunakan softwore program GROMACS v.4.6.5 [14]. Simulasi DM dilakukan untuk mengetahui dinamika dan optimasi peptida siklik ADTC3 sehingga didapatkan konformasi dan energi terendah pada pelarut air dan setelah ditambahkan ion. Pada persiapan sistem dilakukan pemberian medan gaya (force field) charma27 serta ditambahkan pelarut air tip3p pada ruang babus berukuran 1 nm [15]. Setelah itu, pada sistem ditambahkan ion 4Na' dan 4Cl sehingga diperoleh

-34

konsentrasi fisiologis sebesar 0,15 M. Minimasi energi pada sistem dilakukan untuk merelaksasi gaya berlebih pada sistem. Simulasi DM dilakukan selama 20 ns untuk memperoleh 20.000 konformasi dengan peptida pada posisi tidak dan tertahan/restraint. Kemudian kesetimbangan sistem antara konformasi peptida dengan perrut/ion menjadi representasi yang diharapkan pada temperatur 300 K dan tekanan 1 atm dengan dilakukan simulasi DM selama 100 ps. Setelah sistem setimbang, dilakukan proses menghasilkan trayektori dengan parameter berubah dengan melakukan simulasi DM selama 20 ns (20.000 ps) pada temperatur konstan 300 K dan volume konstan Trayektort kemudian dianalisis dengan metode RMSD (root-mean-square-deviation) Ca terhadap struktur awal. Analisis energi total hasil simulasi DM memilih 20 struktur konformasi yang memiliki energi terendah.

Moleculat docking

Molecular dacking dilakukan dengan menggunakan software program AutoDock 4.2 pada bagian EC1 dari domain EC1-EC2 [16]. Pada malecular docking dilakukan Autogrid dan Autodock. Tahapan Autogrid meliputi praevaluasi energy binding secara cepat antara tipe atom pada ligan ADTC3 siklik (C, HD, N, OA, SA), elektrostatik, dan desolvasi dengan protein E-kadherin. Tahapan Autogrid berikutnya adalah evaluasi menggunakan gridboz dengan grid spacing 0,375 Å pada situs ikatan protein. Selanjutnya proses Autodock yaitu proses docking dimulai dari E-kadherin sebagai molekul rigid dan memilih peptida siklik ADTC3 sebagai ligan. konformasi menggunakan algoritma Pencarian Lamarckian-Genetic dengan penentuan everyy binding menggunakan pendekatan medan gaya energi bebas semi-empirik [17]. Jumlah algoritma yang dijalankan dan jamlah proses evaluasi masing-masing di-set sebesar 150 dan 10.000.000.

3. Hasil dan Pembahasan

Simulasi Dinamika Molekular (DM)

Hasil simulasi DM peptida siklik ADTC3 menggunakan GROMACS dapat diperlihatkan pada Gambar 2. Pada simulasi DM peptida siklik ADTC3 dilakukan analisis RMSD yang bertujuan untuk mengetahui pergerakan peptida yang terlarut di dalam air dan ion dengan membandingkan rantai peptida pada struktur native pada Ca yang mempunyai jumlah residu (N) sama dengan struktur ulternutive selarna 20 ns. Berdasarkan analisis RMSD pada simulasi DM 20 m diperoleh jarak fluktuasi sebesar 1,13-2,47 Å. Pergerakan molekul peptida dikatakan stabil jika RMSD tidak melebihi 3 Å. Jumlah struktur konformasi yang lebih hanyak dapat diperoleh dengan mempebesar waktu simulasi menjadi 120 ns seperti yang dilakukan pada penelitian sebelumnya [18].

Gambar 2. (a) Grafik RMSD Cs dan (b) Grafik energi total

Hasil analisa RMSD, Gambar 2a, menunjukkan bahwa pergerakan molekul peptida sildik AD/TC3 cenderung stabil dan konvergen. Selain itu, dapat dibuktikan dengan perubahan jarak antara Sik...Sis (Gambar 3) pada stort dan end terminus asam amino sistein yang cenderung stabil ditunjukkan pada Tabel 1. Selanjutnya, dilakukan analisis energi total bertujuan untuk mencari struktur peptida yang paling stabil sesuai dengan kondisi mendekati yang sebenarnya. Perubahan konformasi peptida siklik ADTC3 mengalami folding/unfolding. Peptida yang mengalami folding strukturnya lebih stabil karena memiliki energi lebih rendah [19]. Pada analisis ini dilakukan pemilihan 20 konformasi pada energi terendah untuk dilakukan molecular docking dapat dilihat pada Tabel z. Karena tidak semua molekul yang memiliki energi terendah dapat beriteraksi baik dengan reseptornya.

Tabel 1. Pergerakan peptida siklik ADTC3 selama DM 20 ns

Waktu (ns)	Energi Total (k]/mol)	$Rs_{n_1\dots n_{15}}(\bar{\mathbb{A}})$
0	-55025,59	2,02864
1	-55440,05	2,02864
5	-56268,04	2,02870
30	-55924.36	2,02894
15	-55202,27	2,02889
20	-56917,95	2,02876

32

Gambar 3. Perubahan jarak jarak antara S₁₀....S₂₀ pada struktur ADTC3

Tabel 2. Energi 20 struktur konformasi energi terendah hasil sinualasi DM 20.000 struktur konformasi

Kođ e	Energi Total (k]/mol)	Waktu Simulasi (ps)	RMSD (Å)
Λı	-56636,85	11139	2,26
A2	-56596,10	13426	2,15
A3	-56572,05	10534	2,12
A4	-56571,27	12027	2,16
A5	-56569,43	4730	2,11
A6	-56542,19	14388	1,95
A7	-56478,18	2334	1,53
Aß	-56474,81	4487	2,04
A9	-56452,94	3732	2,11
A10	-56444,52	17571	2,09
A11	-56436,55	6577	2,31
A12	-56429,74	13382	2,13
A13	-56424,76	1939	2,04
A14	-56418,74	12879	2,16
A15	-56414,23	18139	2,22
A36	-56413,98	9943	2,25
A17	-56407,62	14443	2,15
AaB	-56401,52	15364	2,15
A19	-56399,59	4401	2,13
A20	-56390,93	2358	1,90

Molecular docking

Molecular docking merupakan salah satu metode yang paling sering digunakan untuk mendesain molekul obat atau sering disebut structure-based drug design (SBDD) karena kemampuannya memprediksi dengan tingkat akurasi yang tinggi [20]. Pada penelitian ini, molecular docking dilakukan untuk mengetahui konformasi dan energy binding antara peptida siklik ADTC3 dengan E-kadherin domain EC1-EC2. Peptida siklik ADTC3 memiliki muatan gasteigen sebanyak 28 hidrogen non-polar, 9 rotable bonds, dan derajat bebas torsi sebanyak 7 dari 32. Docking dilakukan dalam 2 tahap yaitu Autogrid dan Autodock. Telsep Autogrid penentuan posisi gridbox dilakukan secara Niod docking

dengan ukuran gridbox 62x62x62. Metode ini dilakukan karena belum diketahui sisi aktif pada E-kadherin domain EC1-EC2 dengan peptida siklik ADTC3. Tahap AutoDock menggunakan parameter Genetic Algoritma atau GA sebesar 150 dan populasi sebanyak 150 serta number of eval sebesar 10.000.000. Hasil blind docking (docking secara acak) yang dilakukan pada 20 struktur konformasi peptida siklik ADTC3, energi paling stabil dan populasi tertinggi terdapat pada Tabel 3. Energy binding terendah pada konformasi A8, Gambar 4, dengan energi sebesar -28,16 kJ/mol. Hal ini diperkuat dengan adanya ikatan hidrogen antata E-kadherin dengan ADTC3 melalui residu Trp2...Asp3, Lys25...Thr4, Trp2...Ala2. Jenis ikatan hidrogen berturut-turut yaitu O...NH, O...HGi, O...NH dengan jarak masing-masing yaitu 2,047; 2,184; 2,027 Å. Situs ikatan antara Ekadherin dengan ADTC3 adalah pada residu Aspt, Trp2, Val3, Ile4, Lys25, Met92 dari E-kadherin dengan jumlah residu adalah 6 yang berada pada daerah adhesion annacceptor pocket. Dalam penelitian Parisini [21] menunjukkan bahwa residu yang berperan pada daerah adhesion arm yaitu D1, W2, E89, D90, M92 dan W2,V3, P5Q23, K25 [21].

Fabel 3.	Energy binding,	K _i , populasi,	dan	pore hastl	blind
		docking			

Kode	Pose	∆G (kJ/mol)	Ki	Populasi
A1	12	-15.77	1,73 mM	14
Az	78	-15,61	1,85 mM	19
Λ3	34	-15,44	35,19 µm	36
A4	111	-24,35	56,50 pM	27
Δ5	102	-23,22	85,87 µM	66
A6	66	-23,60	73,40 µM	32
17	132	-25,10	39,67 µM	51
AB	148	-28,16	11,58 µM	44
A9	17	-23,85	66,41 µM	54
A10	97	-21,05	207,18 µM	39
A11	41	-20,79	228,71 pM	41
A12	143	-21,05	204,90 µM	24
AI3	21	-2.4,31	55,08 pM	40
A14	129	-23,14	87,79 µM	27
A15	33	-10,96	214,38 µM	30
A16	83	-12,68	105,64 µM	36
A17	54	-12.97	94,22 µM	42
A18	27	-20,63	244,08 µM	36
A19	51	-24,89	43,84 pM	33
A20	87	-25,23	38,09 pM	72

33

Gambar 4. Struktur moleculur docking dari E-kadherin domain EC1-EC2 dengan peptida siklik AD7C3 menggunakan program ligplus.

Berdasarkan hasil analisa docking terdapat beberapa clustev untuk tiap struktur, pemilihannya dimulai dari struktur dengan energi ikatnya paling minimum. Jika dihasilkan dua struktur atau lebih dengan energi paling minimum, maka dipilih struktur dengan frekuensi terbanyak. Dan hasil tersebut yang akan dilakukan validasi docking.

Validasi docking dengan dilakukan Re-docking

Setelah dilakukan blind docking dapat diketahui binding site antara peptida siklik ADTC3 dengan Ekadherin domain EC1-EC2. Kemudian dilakukan redocking untuk memvalidasi hasil docking dan RMSD harus < 2 Å [22]. Re-docking dilakukan pada situs ikatan protein dengan parameter yang sama. Masing-masing konformasi memiliki situs ikatan protein yang berbeda, sehingga memiliki ukuran gridbox yang berbeda-beda tetapi grid spocing sama yaitu 0,375 Å. Berdasarkan hasil re-docking diperoleh energy binding terendah pada konformasi AB, Gambar 5, dengan energy binding sebesar -31,55 kJ/mol. Situs ikatan antara E-kadherin dengan ADTC3 adalah pada residu Asp1, Trp2, Val3, Ile4, Lys25, Met92, sama seperti pada blind docking. Data situs interaksi struktur komprmasi A1-A20 terhadap Ekadherin domain ECI depat dilihat pada Tabel 4 dan Tabel 5.

Gambar 5. Struktur moleculur docking dari E-kadherin domain EC1-EC2 dengan peptida siklik ADTC3 menggunkan (a) software program Ligplus (b) software program Autodock.

Tabel 4. Situs interaksi peptida konformasi A dengan E-Kadherin domain EC1-EC2

Trada	Ikat	an hidroger	1
Rote	Interaksi	r (Å)	Jenis
Aı	+	-	5
A2			
A3	Lys25Cys6	1,886	0NH
A4	Lys25Cys6	1,932	ONH
	Trp2Ala2	1,761	0NH
45	Lys25. Thr4	2,199	0HGI
A6	Lys25Cys6	2,014	0NH
A7			and the
	Lys35. Thr4	2,216	0HGI
AS	Trp2Ala2	1,967	0NH
	Trp2Asp3	2,165	0NH
A9	200 Criffingeren	1. 200	100 C 100 C 100
A10	Lys25Cys6	1,999	0NH
1994	Lys25Cys5	1,650	ONH
All	Lys25Oys6	2,075	QHT1
A12	Lys25Cys6	1,987	0NH
A13	Lys25Cys6	1,840	0NH
	Lys25Cys5	2,203	ONH
A14	Lys25Cys6	2,229	OHTt
A15	Lys25Cys6	1,742	0NH
A16	Lys25Cy86	1,801	ONH
As7	Lys25Asp3	2,717	NZ0D2
A18	Lys25Cys6	1,856	O. NH
A19		-	-
A20	Lys25Cys6	1,836	ONH

34

Kode	Pose	∆G (kj/mol)	K.	RMSD (Å)
A1	123	-24,80	43,77 BM	3,27
A2	33	-25,23	38,01 µM	3.28
A3	10	-28,07	12,02 µM	0,45
A4	96	27,07	17,98 µM	0.49
A5	150	-29,16	7,81 µM	3.57
Ab	132	-26,61	21,66 µM	0,83
A7	144	-30,00	5,55 µM	1,09
AB	105	- 31,55	2,96 µM	0,26
A9	127	-27,99	12,54 µM	0,49
A10	12	-25,86	29,65 pM	2,84
Att	100	-23,97	62,98 µM	0,42
A12	67	-25,69	31,77 µM	0,50
A13	77	-28,33	10,93 µM	0,41
A14	81	-27,99	12,48 µM	0,87
A15	63	-26,94	18,99 µM	1,14
A16	79	-27,03	18,35 µM	0,29
A17	136	-26,32	24,55 µM	0,29
A18	39	-28,07	12,05 µM	0,51
A19	9	-27,99	12,54 µM	3,10
A20	145	-28,07	12,08 µM	0,44

Pada Tabel 4 dan Tabel 5 dapat dilihat bahwa daya penggerak (driving force) yang menyebabkan terjadinya interaksi antara peptida siklik ADTC3 dan E-kadherin domain EC1 adalah energy binding dan ikatan hidrogen [19]. Pada struktur konformasi A8 ikatan hidrogen terjadi antara E-kadherin dengan ADTC3 melalui residu Lys25...Thr4, Trp2...Ala2, Trp2...Asp3. Jenis ikatan hidrogen berturut-turut yaitu O., HGI, O., NH, O., NH dengan jarak masing-masing yaitu 2,216; 1,967; 2,165 Å Interaksi yang paling baik terjadi pada konformasi yang memiliki energi paling minimum yaitu kode A8. Energy binding yang semakin negatif dipengaruhi oleh efek cooperativity. Efek cooperativity dipengaruhi interaksi non-kovalen [23]. Interaksi cooperativity terdiri dari tiga molekul atau lebih dan yang merupakan komponen penting dari interaksi antar molekul yaitu adanya ikatan hydrogen [24]. Semakin banyak interaksi yang terbentuk dalam pembentukan molecular recognition antara kompleks host dan guest maka molekulnya semakin stabil dan energinya semakin negatif atau disebut negative cooperativity. Pada hasil docking A8 memiliki jumlah ikatan hidrogen yang paling banyak dari pada konformasi yang lainnya, dengan adanya tiga ikatan hidrogen interaksinya semakin kompleks. Secara umum, jika ditinjau dari hubungan &G dan Ki semakin minimum energy bindingnya maka kemampuan ADTC3 dalam menginhibisi ECi semakin luat, sehingga porositas junction antar sel dapat diatur.

4. Kesimpulan

Hasil penelitian menunjukkan bahwa konformasi ADTC3 yang memiliki energi terendah tidak selalu berinterkasi lebih kuat dengan E-Kadherin domain EC1. Konformasi pada energi terendah adalah A1, sedangkan yang berinteraksi lebih kuat adalah konformasi A8 dengan energy binding sebesar -31,55 kI/mol dengan situs ikatan pada residu Aspt, Trp2, Val3, Ile4, Lys25, Met92.

5. Acknowledgements

Terimakasih kepada Prof. Teruna J. Siahaan, Ph.D. (Departemen Kimia Farmasi Univeritas Kansas, USA) yang telah memberikan masukan dan diskusi tentang penelitian dalam bidang *drug delivery* dan *drug tangetting* pada sel dan sistem penghantaran obat. Terimaksih juga kepada Prof. Krzysztof Kuczera, Ph.D. (Departemen Kimia Univeritas Kansas, USA) yang telah memberikan masukan dan diskusi tentang penelitian pemodelan komputasi molekul. Terimakasih kepada Kementerian Negara Riset dan Teknologi yang telah mendanai penelitian ini pada tahun 2013.

6. Referensi

 Ahmed Alaofi, Elinaz Farokhi, Vivitti D. Prasasty, Asokan Anbanandam, Krzysztof Kuczera, Teruna I. Siahaan, Probing the interaction between cHAVc3 peptide and the ECI domain of E-cadherin using NMR and molecular dynamics simulations, Journal of Biomolecular Structure and Dynamics, 35, 1, (2017). 92-104

http://dx.doi.org/10.1080/07391102.2015.1133321

- [2] Ernawati Sinaga, Sertharama D. S. Jois, Mike Avery, Irwan T. Makagiansar, Usman S. F. Tambunan, Kenneth L. Audus, Teruna J. Stataan, Increasing Paracellular Porosity by E-Cadherin Peptides: Discovery of Bulge and Groove Regions in the EC1-Domain of E-Cadherin, Pharmaceutical Research, 19, 8, (2002) 1170-1179 http://dx.doi.org/10.1023/a:1019850226631
- [3] Karen L. Lutz, Terana J. Siahaan, Molecular structure of the apical junction complex and its contribution to the paracellular barrier, Journal of Pharmaceutical Sciences, 86, 9, (1997) 977–984. http://dx.doi.org/10.1023/jis970134j
- [4] M. S. Balda, K. Matter, Tight junctions, Journal of Cell Science, 111, 5, (1998) 541-547
- [5] Reinhard Gabathuler, Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases, Neurobiology of Disease, 37, 1, 2010) 48-57 http://dx.doi.org/10.1016/j.nbd.2009.07.028
- [6] Marlyn D. Laksitorini, Paul K. Riptoo, Ngoc H. On, James A. Thiweris, Bonaid W. Miller, Teruna J. Siahaan, Modulation of Intercellular Junctions by Cyclic-AD7 Peptides as a Method to Revensibly Increase Biood–Brain Barrier Permeability, Journal of Pharmaceutical Sciences, 104, 3, (2015) 1065– 1075 http://dx.doi.org/10.1002/jps.24309
- [7] Shinji Hirano, Masatoshi Takeichi, Cadherins in Brain Morphogenesis and Waring, Physiological

Reviews, 92, 2, (2012) 597-634 http://dx.doi.org/10.1152/physrev.00014.2011

- [8] Natalie K. Lee, Ka Wai Fok, Amanda White, Nicole H. Wilson, Conor J. O'Leary, Hayley L. Cox, Magdalene Michael, Alpha S. Yap, Helen M. Cooper, Neogerin recruitment of the WAVE regulatory complex maintains adherens sunction stability and tension, Nature Communications, 7, (2016) 1082 http://dx.doi.org/10.3038/ncomment1082
- [9] Ernawati Sinaga, Seetharama D. S. Jois, Mike Avery, Irwan Makagiansar, Usman S. F. Tambunan, Teruna J. Siahaan, Modulasi Junction Antar Sel Menggunakan Peptida Kadherin Upaya Meningkatkan Penghantaran Ohat, Makara Journal of Science, B, 1, (2004) 25–34 http://dx.doi.org/10.7454/mss.v8i3.394
- [10] VK Mourya, Nazma N Inamdar, Ashutosh Tiwari, Carboxymethyl chitosan and its applications, Advanced Materials Letters, 1, 1, (2010) 11–33 http://dx.doi.org/10.5185/amlett.2010.3108
- [11] Jae Hyung Park, Gurusamy Saravanakumar, Kwangmeyung Kim, Ick Chan Kwou, Targeted delivery of low molecular drugs using chitosan and its desivatives, Advanced Drug Delivery Reviews, 62, 1, 13 (2010) 28-41 http://dx.doi.org/10.006/j.addr.2006.10.003
- [12] Marlyn Dian Laksitorini, Design of Cyclic-ADT Peptides to Improve Drug Delivery to the Brain via Inhibition of E-Cadherin Interactions at the Adherens Junction, in: Pharmaceutical Chemistry, University of Kansas, 2012.
- [13] Tumasz Makarewicz, Rajmund Każmietkiewicz, Molecular Dynamics Simulation by GROMACS Using GUI Phagin for PyMOL, Journal of Chemical Information and Modeling, 53, 5, (2013) 1229–1234. http://dx.doi.org/10.1021/ci400071x
- [14] Miaoer Yu, Computational Modeli 10 of Protein Dynamics with GROMACS and Java, in Computer Science, Sen José State University, Sen José, California, 2012.
- [15] Sandeep Patel, Alexander D. Mackerell, Charles L. Brooks, CHAEMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model, Journal of Computational Chemistry, 25, 12, (2004) 1504–1514 http://dx.dui.org/10.1092/jcc.20077
- [16] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sarmer, Richard K. Belew, David S. Goodsell, Arthur J. Olson, AutoDocké, and AutoDockTools4: Automated doclding with selective receptor flexibility, Journal of Computational Chemistry, 30, 16, (2009) 2785-2791 http://dx.dui.org/10.1002/jcc.21256
- [17] Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Rath Huey, William E. Hart, Richard K. Belew, Arthur J. Olson, Automated docking using a Lamarckian genetic elgorithm and an empirical binding free energy function, Journal of computational chemistry, 19, 14, (1998) 1639–1662. http://dx.doi.org/10.1062/(SICI)1096-987X(1998)115)19:14<1639::AID-JCC10>3.0.00;1-B
- [18] Parsaoran Siahaan, Vivitri Dewi Prasasty, Bungaran David Simanjuntak, Suci Hildayani, Khairul Anam, Structural Stability of ADTO5 Peptide:

Conformational Insights into Dynamics and Its Binding Mode, Journal of Tropical Life Science, 7, 2, (2017) 151-157

- [19] Ken A. Dill, Dominant forces in protein folding, Biochemistry, 29, 31, (1990) 7133-7155 http://dx.doi.org/10.1021/bi00483a001
- [20]Leonardo Ferreira, Ricardo dos Santos, Glaucius Oliva, Adriano Andricopulo, Molecular docking and Structure-Based Drug Design Strategies, Molecules, 20, 7, (2015) 13384
- [21] Emilio Parisini, Jonathan M. G. Higgius, Jin-huan Liu, Michael B. Brenner, Jia-huai Wang, The Crystal Structure of Human E-radherin Domains 1 and 2, and Comparison with other Caliberins in the Context of Adhesion Mechanism, Journal of Molecular Biology, 373, 2, (2007) 401-411 http://dx.doi.org/10.0016/j.joub.2007.08.011
- [22]P. Archana, N. Sathishkumar, N. Bharathi, In ullico docking analysis of curcumin – an inhibitoc for obesity, International Journal of Pharma and Bio Sciences, 1, 4, (2010) B-235
- [23]Xavier Lucas, Antonio Bauza, Antonio Frontera, David Quinomero, A thorough anion-[small pi] interaction study in biomolecules: on the importance of coopentivity effects, Chemical Science, 7, 2, (2016) 1038-1050 http://dx.doi.org/in.1030/C5SC01386K
- [24]Asit K. Chandra, Therese Zeegers-Huyskens, Theoretical Investigation of the Cooperativity in CH3CH0.2H20, CH2PCH0.2H20, and CH3CF0.2H20 Systems, Journal of Atomic, Molecular & Optical Physics, (2012) 1-8 http://dx.doi.org/10.1155/2012/754879

Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-NH2) Simulated on 20 ns

ORIGIN	ALITY REPORT			
5 SIMILA	% ARITY INDEX	4% INTERNET SOURCES	3% PUBLICATIONS	3% STUDENT PAPERS
	WWW.SCri Internet Source	bd.com		2%
2	WWW.SEC	.gov		1%
3	Submitte Student Paper	d to UIN Sunan I	Kalijaga Yogya	karta 1%
4	WWW.COU	rsehero.com		<1%
5	Submitte Student Paper	d to Universitas	Diponegoro	<1%
6	anzdoc.c	om		<1%
7	Submitte Student Paper	d to Unika Soegi	japranata	<1%
8	id.scribd. Internet Source	com		<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	On		