
DoS Detection System Based on Dynamic
Thresholding Algorithm using Netflow and

Elasticsearch

Adian Fatchur Rochim
Departement of Computer Engineering,

Faculty of Engineering
Diponegoro University

Semarang 50275, Indonesia
adian@ce.undip.ac.id

Muhammad Sayyidus Shaleh Yofa
Departement of Computer Engineering,

Faculty of Engineering
Diponegoro University

Semarang 50275, Indonesia
muhammadssy@student.ce.undip.ac.id

Adnan Fauzi
Departement of Computer Engineering,

Faculty of Engineering
Diponegoro University

Semarang 50275, Indonesia
adnan@ce.undip.ac.id

Abstract— Network infrastructure requires constant
monitoring over time, including identifying problems. Generally,
an experienced network administrator responsible for the entire
network is doing this task, which is inefficient because an
administrator does not have full 24-hour availability in providing
a fast and proper response at the time of the ongoing attack.
Network attack identification systems are built to help solve this
problem. This study focuses on identifying network attacks,
namely Denial of Service attacks, by implementing the Dynamic
Thresholding method. The data used for this research are the
DARPA 2000 dataset and the self-generated dataset in a
controlled laboratory environment, with the Netflow protocol and
the Elasticsearch search engine. The results of the
implementation show a lower False-Positive Rate in the DARPA
2000 dataset (33.33%) and the generated dataset (50%) in
comparison with the False-Positive Rate value on the original
paper (98%).

Keywords— Computer Network, Network Security, Denial of
Service.

I. INTRODUCTION
The use of Internet technology continues to increase in this

information age. Along with developing technology supporting
the network on the Internet, various kinds of risk of attacks on
network infrastructure also develop [4]. In the CIA triad
(Confidentiality, Integrity, Availability), many attack variants
target the 3rd aspect (Availability), such as Denial of Service
(DoS). DoS attacks are considered very dangerous because they
can inflict huge losses with only a short duration of attack [1].

Many studies have proposed solutions to overcome DoS
attacks, from the identification process [2] to mitigation after an
attack incident [3]. The DoS identification method is divided
based on the data source, and the algorithm used [4]. DoS
detection can retrieve data from observation logs from Host,
Network, or both (Hybrid) based on the data source. Based on
the algorithm used, the DoS identification method is divided
into two: Signature-based and Anomaly-based. Each approach
has advantages and disadvantages. Signature-based methods
have the advantages of a fast detection process and a low false-
positive rate, but they cannot detect new attack patterns. In
contrast, the Anomaly-based method can detect new attack
patterns but with a greater risk of false-positive rates and require
more computational resources.

Mukhlish et al., in 2019, proposed a log management
system using ELK stack (Elasticsearch, Logstash, Kibana) to

assist administrators in monitoring network problems [5]. The
Log Management System classifies network devices' log types
based on the importance level of the devices' logs. He classified
network device logs by standard of Syslog. Implementation of
the system was integrated by dashboard application. This study
focuses on the processing of network device log data.

In 2016, Kaur H. conducted a comparative study about a
DoS attack taxonomy. He explained tools for attacking a system
to help researchers select tools as experimental tools [6]. This
study classified DoS attacks based on network interfaces,
dynamic rate, operating system, attack model, network
protocols, attack categories, and targets. Since the DoS attack
category's possibilities are extensive, there is a need for
collaboration from the Internet community.

 In 2019, David J. developed a DoS identification method
that looks to anomalies of data packets flow passing through the
network based on the Dynamic Thresholding method [7]. This
algorithm compares the aggregation results of four features of
packets that enters the network (Number of packets, Unique
Source IP Count, Unique Destination IP Count, and Unique
Protocol Count) which will be used to calculate the moving
average and moving variance for each feature at a certain time
interval. This is then compared to a dynamically set threshold
to determine the normality of the traffic. The method's
advantage is the lower consumption of computational resources
than other variants of Anomaly-based methods, such as the
ARIMA model and chaos theory, or the Machine Learning
model [8] [9]. This method's disadvantage is that the parameters
must be explicitly set for different use cases.

 From the research conducted by David J., the author
considers the need to implement the Dynamic Thresholding
algorithm in a real system, whose results will be evaluated and
compared with the original algorithm's results to be analyzed
and explored for other possible implementations. The author
tries to implement the algorithm as close as possible to real use
cases using software and tools commonly used by computer
network administrators.

This research aims to create an implementation of
identification and classification of DoS attacks from log data of
network system from Cisco CSR1000v virtual router [10] based
on Dynamic Thresholding method.

The difference between this research and [7] is that this
research aims to test whether the Dynamic Thresholding
algorithm can be implemented to be used with current data
processing and network monitoring technologies (e.g.

Elasticsearch and Netflow) while the former research proposed
the algorithm and tested it in mathematical simulation software
(MATLAB).

The following order describes the research work: the first
section is the introduction and related works, the following
section explains research methodology, the third section will
explain the result and discussion, and the final section is the
conclusion.

II. RESEARCH METHODOLOGY
This section will explain detailed information about this

research process, from setting up the experiment environment
to the steps of experiments involved.

Design Science Research (DSR) is a research methodology
that focuses on developing and evaluating designed system
artifacts. Hevner et al. state that the purpose of DSR
methodology is understanding a problem domain by building
a system of designed artifacts [11]. This methodology is
commonly applied to Engineering and Computer Science field
[12].

DSR methodology is used to design the implementation of
the Dynamic Thresholding algorithm. The DSR methodology
flow consists of system definition, system specification,
system configuration, and experiments, evaluation, and results.

The first step is system definition. This stage describes the
system to be created, the system's benefits and objectives, the
requirements of the system, the topology, and how the system
works.

The second step is the system specification. The
requirements specification process will be explained in the
initial system design by determining the specifications of
requirements that conform to the system definition.

The third step is system configuration. In this step, the
specified requirements will be designed according to the
network design and applied as a system. According to the
original paper, a series of experiments will be conducted on the
system [7].

The fourth step is testing the system performance and
results. The results of the research can be concluded from the
system test output.

A. Requirements Identification
The Denial of Service identification system's functional

requirement is a system that can receive aggregated network
data from outside at each specific time interval and process that
input, which with the output can determine whether an attack is
occurring in that time interval (positive) or otherwise
(negative).

 This research's hardware requirement consists of one
personal computer unit and one Cisco CSR1000v virtual router
instance. DoS identification systems require supporting
software to work. The system uses Ubuntu Server 20.04 OS.
The Filebeat log collector is used to receive Netflow protocol
flows and pass parsed data to Elasticsearch for storage. Here
Elasticsearch act as a database and a search engine for querying.
The Dynamic Thresholding algorithm's implementation is
made using Python programming language.

B. Topology Design
System topology design is done locally using GNS3

software for computer network simulation. In the experimental
scenario that has been carried out, three PCs act as hosts that
will send normal traffic to the Web Server through the router.
Meanwhile, one PC acts as an attacker who will send flood
traffic to the Web Server through the router. All incoming
traffic from normal hosts and attackers will be recorded and sent
to Filebeat via the Netflow protocol. The topology design itself
is shown in Figure 1.

Host "AlpineLinux" 1-3 simulating a user visits a webpage
on the Web Server on host "Nginx" by way of HTTP requests
at random intervals from 1 to 5 seconds. In the event of an
attack, the "KaliLinux" host sends a TCP Flood with spoofed
source IP address to the "Nginx" host IP address for 10 seconds.
This DoS attack is carried out with the Hping3 tool.

Figure 1 Network Topology Design of DoS Attack Identification System

C. System Design and Workflow
The workflow for implementing the DoS identification system
with Dynamic Thresholding, as shown in Figure 2, is described
as follows:
1. Incoming traffic from other networks passes through the
CSR1000v router.
2. CSR1000v router performs constant traffic flow header
export with Netflow protocol.
3. Filebeat receives the Netflow export data, parses it, and then
sends the formatted data to Elasticsearch. Elasticsearch stores
Netflow parsing data.
4. Every T seconds, Detector will query data to Elasticsearch
to retrieve the traffic header aggregation as algorithm input.
5. Detector receives the traffic header aggregation metrics.
With this input, the algorithm analyzes whether it is positive
(attack) or negative (normal).

Figure 2 System Design and Workflow of the system

D. Experiment Settings and Metrics
Experiments in this study were carried out in 4 stages:

1. Implementation of the Dynamic Thresholding algorithm

The implementation step is carried out in the Python
programming language with the help of the Jupyter Notebook
library for the development environment, Pandas for
processing the dataset, Numpy for statistical data processing,
and Matplotlib for data visualization in graphical form plot.

The algorithm itself requires two parameters whose values
are assigned before the first run, namely Window Size (K) and
Sampling Interval (T). The first parameter (K) acts as the size
of the moving average and moving variance for each iteration
of the algorithm process. The second parameter (T) acts as
sampling interval for the network traffic header. TABLE I lists
algorithm parameter values at experiments conducted for
DARPA 2000 Dataset and Generated Dataset.

The author has difficulty at this stage because David J.'s
paper does not provide complete experimental parameters.
This stage has experienced many failures due to the missing
value of the Window Size (K).

However, there has been a success in approaching the
results of the data plot in David J.'s paper, namely with
Window Size (K) = 1.

2. Testing implementation on DARPA 2000 dataset

The DARPA 2000 dataset [13] was used for the first test
because David J.'s research used this dataset for testing. The
results of this test will be used as a comparison between the
original paper and the implementation. DARPA 2000 is a
dataset produced by Lincoln Laboratory of MIT with multiple
scenarios. The dataset scenario used in this research is LLDOS
1.0. This scenario is created in the year 2000 by Lincoln
Laboratory of MIT [14]. It includes a DoS attack run by a
novice attacker. This attack scenario is carried out over
multiple network and audit sessions. These sessions have been
grouped into the following attack phases: The attacker probes
the network, breaks into a host by exploiting a vulnerability
found inside the system, installs trojan software, and launches
a DoS attack at an off-site server from the compromised host.
The grouped attack phases are included as one timeline in the
original algorithm's implementation testing.

Figure 3 Number of packets over time

TABLE I. ALGORITHM PARAMETERS

Parameter Name Value
Window Size (K) 1
Sampling Interval (T) 3

3. Generating own dataset

Collection of generated dataset starts from creating a
virtual network scenario using GNS3 to simulate attack case.
Netflow traffic is recorded for 4 minutes 20 seconds to
Elasticsearch via the "Cloud1" node, with attacks launched
from the 4th minute for 10 seconds. Figure 1 shows the
topology of the system used in generating the dataset.

4. Testing implementation on the generated dataset
After the dataset is collected and stored in Elasticsearch,

testing is carried out with the input of the data aggregation
query from Elasticsearch for the dataset collection duration.

 The data stored in elasticsearch contain the flow of
traffic headers from Netflow, which does not have a form that

can be used as an input for the algorithm. Therefore, these data
rows must be aggregated with the Elasticsearch aggregation
query feature. The query syntax can be seen in Figure 7.

The aggregated data is the number of data packets per T
seconds (Figure 3), the number of unique source IP addresses
per T seconds (Figure 4), the number of unique destination IP
addresses per T seconds (Figure 5), and the number of unique
protocols per T seconds (Figure 6). The value of T can be seen
in TABLE I.

Figure 4 Unique Source IP Count over time

Figure 5 Unique Destination IP Count over time

III. RESULT AND DISCUSSION
The results of experiments in this research are gathered from

locally collected data. The Confusion Matrix method is used to
measure the performance of the algorithm implementation
made [15], namely the accuracy, precision, sensitivity. These
values are calculated from the count of True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN),
where TP refers to correct predictions of attacks, TN indicates
the normal data classified correctly as normal. FP refers to
incorrect predictions of attacks, and FN indicates the attack
classified incorrectly as normal data.

Sensitivity/False Positive Rate (TPR) measures the
percentage of correctly identified attacks over the actual attacks
in sampled traffic and is computed using Equation (1).

Figure 6 Unique Protocol Count over time

Figure 7 Elasticsearch Aggregation Query

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (1)

 Accuracy measures the percentage of accurate detection
over the sampled traffic and is computed using Equation (2).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2)

Specificity/True Negative Rate(TNR) relates to the system's
ability to detect sampled traffic without attack correctly. The
specificity is computed by Equation (3).

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (3)

TABLE II. DARPA 2000 DATASET CONFUSION MATRIX

Total: 3885 True Positive True Negative
Predicted Positive 1 (TP) 0 (FP)
Predicted Negative 2 (FN) 3882 (TN)

{
 {
 "size": "0",
 "query": {
 "range": {
 "@timestamp": {
 "gte": "now-3s",
 "lte": "now"
 }
 }
 },
 "aggs": {
 "packets": {
 "sum": {
 "field": "netflow.packet_delta_count"
 }
 },
 "USIP": {
 "cardinality": {
 "field": "netflow.destination_ipv4_address"
 }
 },
 "UPR": {
 "cardinality": {
 "field": "netflow.protocol_identifier"
 }
 }
 }
}

TABLE III. GENERATED DATASET CONFUSION MATRIX

Total: 83 True Positive True Negative
Predicted Positive 1 (TP) 8 (FP)
Predicted Negative 1 (FN) 73 (TN)

TABLE IV. IMPLEMENTED SYSTEM RESULT

Datasets TPR Accuracy TNR
DARPA 2000 33.33% 99.94% 100%
Generated Dataset 50% 89.15% 90.12%

 The results of the algorithm implementation test are displayed in
the form of a score table for False Positive Rate (FPR), Accuracy, and True

Negative Rate (TNR) and the visualization of 4 quadrants of detection
results. TABLE II and

TABLE III shows the Confusion Matrix of both results from
DARPA 2000 dataset and Generated Dataset. TABLE IV
shows measurements from this research's evaluation result. The
clustered bar chart shown in Figure 8 visualizes evaluation
result comparison based on values at TABLE IV and the
original paper's result [7]. Figure 9 chronologically shows
detection results, categorized in four quadrants of the confusion
matrix.

Figure 8 Evaluation Result Comparison

While the experiments are conducted locally, they can
be replicated in a real-world environment such as cloud-based
Virtual Private Clouds and virtual network devices that
supports NetFlow and can be connected to an Elasticsearch
instance.

Figure 9 Attack Detection over time

IV. CONCLUSION
The system evaluation results show a lower True Positive

Rate than the original paper. In the DARPA 2000 dataset, the
evaluation results show a sensitivity (TPR) of 33.33%, an
accuracy of 99.94%, and a specificity (TNR) of 100%, while
the results of the evaluation on the generated dataset show 50%
sensitivity (TPR), 89.15% accuracy, and specificity (TNR)
90.12%.

Performance scores are affected by data input to the system.
When experimenting with generated datasets, it was found that
the Netflow protocol was inconsistent in reporting traffic
protocol information, with accuracy only up to OSI Layer 4. In
contrast, in the DARPA 2000 dataset, the traffic protocol could
be differentiated up to OSI Layer 7.

Suggestions for further research are implementing the
Dynamic Thresholding algorithm using tools other than
Netflow, such as tcpdump, which can distinguish traffic
protocols more accurately, then compare the results obtained.
While this research focused on high-rate DoS attacks, another
emerging types of attacks such as slow-rate DDoS, reflection
attack, and amplification attack are to be considered important
as a research subject as well.

ACKNOWLEDGMENT
This research was financially supported by The Faculty of

Engineering, Diponegoro University, Semarang, Indonesia
through Strategic Research Grant 2021 number:
3178/S/komputer/2/UN7.5.3.2/PP/2021.

REFERENCES
[1] Ashu, R. Mahajan, and S. Zafar, “DDoS Attacks Impact on Data

Transfer in IOT-MANET-Based E-Healthcare for Tackling COVID-
19,” in Data Analytics and Management, A. Khanna, D. Gupta, Z.
Pólkowski, S. Bhattacharyya, and O. Castillo, Eds. Singapore:
Springer Singapore, 2021, pp. 301–309.

[2] J. David and C. Thomas, “Detection of distributed denial of service
attacks based on information theoretic approach in time series
models,” J. Inf. Secur. Appl., vol. 55, no. October, p. 102621, 2020,
doi: 10.1016/j.jisa.2020.102621.

[3] N. Z. Bawany, J. A. Shamsi, and K. Salah, “DDoS Attack Detection
and Mitigation Using SDN: Methods, Practices, and Solutions,”
Arab. J. Sci. Eng., vol. 42, no. 2, pp. 425–441, 2017, doi:
10.1007/s13369-017-2414-5.

[4] M. Alenezi and M. J. Reed, “Methodologies for detecting DoS /
DDoS attacks against network servers,” in The Seventh International
Conference on Systems and Networks Communications (ICSNC),
2012, no. c, pp. 92–98.

[5] A. F. Rochim, M. A. Aziz, and A. Fauzi, “Design Log Management
System of Computer Network Devices Infrastructures Based on
ELK Stack,” in ICECOS 2019 - 3rd International Conference on
Electrical Engineering and Computer Science, Proceeding, 2019,
pp. 338–342, doi: 10.1109/ICECOS47637.2019.8984494.

[6] H. Kaur, S. Behal, and K. Kumar, “Characterization and comparison
of Distributed Denial of Service attack tools,” in 2015 International
Conference on Green Computing and Internet of Things (ICGCIoT),
Oct. 2015, pp. 1139–1145, doi: 10.1109/ICGCIoT.2015.7380634.

[7] J. David and C. Thomas, “Efficient DDoS flood attack detection
using dynamic thresholding on flow-based network traffic,”
Comput. Secur., vol. 82, pp. 284–295, 2019, doi:
10.1016/j.cose.2019.01.002.

[8] S. M. Tabatabaie Nezhad, M. Nazari, and E. A. Gharavol, “A Novel
DoS and DDoS Attacks Detection Algorithm Using ARIMA Time
Series Model and Chaotic System in Computer Networks,” IEEE
Commun. Lett., vol. 20, no. 4, pp. 700–703, Apr. 2016, doi:
10.1109/LCOMM.2016.2517622.

[9] R. Rajendran, S. V. N. Santhosh Kumar, Y. Palanichamy, and K.
Arputharaj, “Detection of DoS attacks in cloud networks using
intelligent rule based classification system,” Cluster Comput., vol.
22, no. S1, pp. 423–434, Jan. 2019, doi: 10.1007/s10586-018-2181-
4.

[10] R. Hofstede et al., “Flow monitoring explained: From packet capture
to data analysis with NetFlow and IPFIX,” IEEE Commun. Surv.
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014, doi:
10.1109/COMST.2014.2321898.

[11] S. Laumer and A. Eckhardt, Integrated Series in Information
Systems, vol. 28. 2012.

[12] A. Shahin, T. van Gurp, S. A. Peters, R. G. Visser, J. M. van Tuyl,
and P. Arens, “SNP markers retrieval for a non-model species: a
practical approach,” BMC Res. Notes, vol. 5, no. 1, p. 79, Dec. 2012,
doi: 10.1186/1756-0500-5-79.

[13] C. Thomas, V. Sharma, and N. Balakrishnan, “Usefulness of
DARPA dataset for intrusion detection system evaluation,” Data
Mining, Intrusion Detect. Inf. Assur. Data Networks Secur. 2008,
vol. 6973, p. 69730G, 2008, doi: 10.1117/12.777341.

[14] M. L. Laboratory, “Lincoln Laboratory Scenario (DDoS) 1.0,” 2000.
https://archive.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html.

[15] M. E. Elhamahmy, H. N. Elmahdy, and I. A. Saroit, “A New
Approach for Evaluating Intrusion Detection System,” CiiT Int., vol.
2, no. 11, pp. 290–298, 2010.

