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Abstract— Network infrastructure requires constant 
monitoring over time, including identifying problems. Generally, 
an experienced network administrator responsible for the entire 
network is doing this task, which is inefficient because an 
administrator does not have full 24-hour availability in providing 
a fast and proper response at the time of the ongoing attack. 
Network attack identification systems are built to help solve this 
problem. This study focuses on identifying network attacks, 
namely Denial of Service attacks, by implementing the Dynamic 
Thresholding method. The data used for this research are the 
DARPA 2000 dataset and the self-generated dataset in a 
controlled laboratory environment, with the Netflow protocol and 
the Elasticsearch search engine. The results of the 
implementation show a lower False-Positive Rate in the DARPA 
2000 dataset (33.33%) and the generated dataset (50%) in 
comparison with the False-Positive Rate value on the original 
paper (98%). 

Keywords— Computer Network, Network Security, Denial of 
Service. 

I. INTRODUCTION 
The use of Internet technology continues to increase in this 

information age. Along with developing technology supporting 
the network on the Internet, various kinds of risk of attacks on 
network infrastructure also develop [4]. In the CIA triad 
(Confidentiality, Integrity, Availability), many attack variants 
target the 3rd aspect (Availability), such as Denial of Service 
(DoS). DoS attacks are considered very dangerous because they 
can inflict huge losses with only a short duration of attack [1]. 

Many studies have proposed solutions to overcome DoS 
attacks, from the identification process [2] to mitigation after an 
attack incident [3]. The DoS identification method is divided 
based on the data source, and the algorithm used [4]. DoS 
detection can retrieve data from observation logs from Host, 
Network, or both (Hybrid) based on the data source. Based on 
the algorithm used, the DoS identification method is divided 
into two: Signature-based and Anomaly-based. Each approach 
has advantages and disadvantages. Signature-based methods 
have the advantages of a fast detection process and a low false-
positive rate, but they cannot detect new attack patterns. In 
contrast, the Anomaly-based method can detect new attack 
patterns but with a greater risk of false-positive rates and require 
more computational resources. 

Mukhlish et al., in 2019,  proposed a log management 
system using ELK stack (Elasticsearch, Logstash, Kibana) to 

assist administrators in monitoring network problems [5]. The 
Log Management System classifies network devices' log types 
based on the importance level of the devices' logs. He classified 
network device logs by standard of Syslog. Implementation of 
the system was integrated by dashboard application. This study 
focuses on the processing of network device log data. 

In 2016, Kaur H. conducted a comparative study about a 
DoS attack taxonomy. He explained tools for attacking a system 
to help researchers select tools as experimental tools [6]. This 
study classified DoS attacks based on network interfaces, 
dynamic rate, operating system, attack model, network 
protocols, attack categories, and targets.  Since the DoS attack 
category's possibilities are extensive, there is a need for 
collaboration from the Internet community.  

 In 2019, David J. developed a DoS identification method 
that looks to anomalies of data packets flow passing through the 
network based on the Dynamic Thresholding method [7]. This 
algorithm compares the aggregation results of four features of 
packets that enters the network (Number of packets, Unique 
Source IP Count, Unique Destination IP Count, and Unique 
Protocol Count) which will be used to calculate the moving 
average and moving variance for each feature at a certain time 
interval. This is then compared to a dynamically set threshold 
to determine the normality of the traffic. The method's 
advantage is the lower consumption of computational resources 
than other variants of Anomaly-based methods, such as the 
ARIMA model and chaos theory, or the Machine Learning 
model [8] [9]. This method's disadvantage is that the parameters 
must be explicitly set for different use cases. 

 From the research conducted by David J., the author 
considers the need to implement the Dynamic Thresholding 
algorithm in a real system, whose results will be evaluated and 
compared with the original algorithm's results to be analyzed 
and explored for other possible implementations. The author 
tries to implement the algorithm as close as possible to real use 
cases using software and tools commonly used by computer 
network administrators. 

This research aims to create an implementation of 
identification and classification of DoS attacks from log data of 
network system from Cisco CSR1000v virtual router [10] based 
on Dynamic Thresholding method. 

The difference between this research and [7] is that this 
research aims to test whether the Dynamic Thresholding 
algorithm can be implemented to be used with current data 
processing and network monitoring technologies (e.g. 



Elasticsearch and Netflow) while the former research proposed 
the algorithm and tested it in mathematical simulation software 
(MATLAB). 

The following order describes the research work: the first 
section is the introduction and related works, the following 
section explains research methodology, the third section will 
explain the result and discussion, and the final section is the 
conclusion. 

II. RESEARCH METHODOLOGY 
This section will explain detailed information about this 

research process, from setting up the experiment environment 
to the steps of experiments involved. 

Design Science Research (DSR) is a research methodology 
that focuses on developing and evaluating designed system 
artifacts. Hevner et al. state that the purpose of DSR 
methodology is understanding a problem domain by building 
a system of designed artifacts [11]. This methodology is 
commonly applied to Engineering and Computer Science field 
[12].  

DSR methodology is used to design the implementation of 
the Dynamic Thresholding algorithm. The DSR methodology 
flow consists of system definition, system specification, 
system configuration, and experiments, evaluation, and results. 

The first step is system definition. This stage describes the 
system to be created, the system's benefits and objectives, the 
requirements of the system, the topology, and how the system 
works. 

The second step is the system specification. The 
requirements specification process will be explained in the 
initial system design by determining the specifications of 
requirements that conform to the system definition. 

The third step is system configuration. In this step, the 
specified requirements will be designed according to the 
network design and applied as a system. According to the 
original paper, a series of experiments will be conducted on the 
system [7]. 

The fourth step is testing the system performance and 
results. The results of the research can be concluded from the 
system test output. 

A. Requirements Identification 
The Denial of Service identification system's functional 

requirement is a system that can receive aggregated network 
data from outside at each specific time interval and process that 
input, which with the output can determine whether an attack is 
occurring in that time interval (positive) or otherwise 
(negative).  

 This research's hardware requirement consists of one 
personal computer unit and one Cisco CSR1000v virtual router 
instance. DoS identification systems require supporting 
software to work. The system uses Ubuntu Server 20.04 OS. 
The Filebeat log collector is used to receive Netflow protocol 
flows and pass parsed data to Elasticsearch for storage. Here 
Elasticsearch act as a database and a search engine for querying. 
The Dynamic Thresholding algorithm's implementation is 
made using Python programming language. 

B. Topology Design 
System topology design is done locally using GNS3 

software for computer network simulation. In the experimental 
scenario that has been carried out, three PCs act as hosts that 
will send normal traffic to the Web Server through the router. 
Meanwhile, one PC acts as an attacker who will send flood 
traffic to the Web Server through the router. All incoming 
traffic from normal hosts and attackers will be recorded and sent 
to Filebeat via the Netflow protocol. The topology design itself 
is shown in Figure 1. 

Host "AlpineLinux" 1-3 simulating a user visits a webpage 
on the Web Server on host "Nginx" by way of HTTP requests 
at random intervals from 1 to 5 seconds. In the event of an 
attack, the "KaliLinux" host sends a TCP Flood with spoofed 
source IP address to the "Nginx" host IP address for 10 seconds. 
This DoS attack is carried out with the Hping3 tool. 

 
Figure 1 Network Topology Design of DoS Attack Identification System 

C. System Design and Workflow 
The workflow for implementing the DoS identification system 
with Dynamic Thresholding, as shown in Figure 2, is described 
as follows: 
1. Incoming traffic from other networks passes through the 
CSR1000v router. 
2. CSR1000v router performs constant traffic flow header 
export with Netflow protocol. 
3. Filebeat receives the Netflow export data, parses it, and then 
sends the formatted data to Elasticsearch. Elasticsearch stores 
Netflow parsing data. 
4. Every T seconds, Detector will query data to Elasticsearch 
to retrieve the traffic header aggregation as algorithm input. 
5. Detector receives the traffic header aggregation metrics. 
With this input, the algorithm analyzes whether it is positive 
(attack) or negative (normal). 



 
Figure 2 System Design and Workflow of the system 

 

D. Experiment Settings and Metrics 
Experiments in this study were carried out in 4 stages: 
 
1. Implementation of the Dynamic Thresholding algorithm 

The implementation step is carried out in the Python 
programming language with the help of the Jupyter Notebook 
library for the development environment, Pandas for 
processing the dataset, Numpy for statistical data processing, 
and Matplotlib for data visualization in graphical form plot.  

The algorithm itself requires two parameters whose values 
are assigned before the first run, namely Window Size (K) and 
Sampling Interval (T). The first parameter (K) acts as the size 
of the moving average and moving variance for each iteration 
of the algorithm process. The second parameter (T) acts as 
sampling interval for the network traffic header. TABLE I lists 
algorithm parameter values at experiments conducted for 
DARPA 2000 Dataset and Generated Dataset. 

The author has difficulty at this stage because David J.'s 
paper does not provide complete experimental parameters. 
This stage has experienced many failures due to the missing 
value of the Window Size (K). 

However, there has been a success in approaching the 
results of the data plot in David J.'s paper, namely with 
Window Size (K) = 1. 
 
2. Testing implementation on DARPA 2000 dataset 

The DARPA 2000 dataset [13] was used for the first test 
because David J.'s research used this dataset for testing. The 
results of this test will be used as a comparison between the 
original paper and the implementation. DARPA 2000 is a 
dataset produced by Lincoln Laboratory of MIT with multiple 
scenarios. The dataset scenario used in this research is LLDOS 
1.0. This scenario is created in the year 2000 by Lincoln 
Laboratory of MIT [14]. It includes a DoS attack run by a 
novice attacker. This attack scenario is carried out over 
multiple network and audit sessions. These sessions have been 
grouped into the following attack phases: The attacker probes 
the network, breaks into a host by exploiting a vulnerability 
found inside the system, installs trojan software, and launches 
a DoS attack at an off-site server from the compromised host. 
The grouped attack phases are included as one timeline in the 
original algorithm's implementation testing. 

  

 
Figure 3 Number of packets over time 

TABLE I.   ALGORITHM PARAMETERS 

Parameter Name Value 
Window Size (K) 1 
Sampling Interval (T) 3 

 
3. Generating own dataset 

Collection of generated dataset starts from creating a 
virtual network scenario using GNS3 to simulate attack case. 
Netflow traffic is recorded for 4 minutes 20 seconds to 
Elasticsearch via the "Cloud1" node, with attacks launched 
from the 4th minute for 10 seconds. Figure 1 shows the 
topology of the system used in generating the dataset. 

 
 
 

4. Testing implementation on the generated dataset 
After the dataset is collected and stored in Elasticsearch, 

testing is carried out with the input of the data aggregation 
query from Elasticsearch for the dataset collection duration.  

 The data stored in elasticsearch contain the flow of 
traffic headers from Netflow, which does not have a form that 



can be used as an input for the algorithm. Therefore, these data 
rows must be aggregated with the Elasticsearch aggregation 
query feature. The query syntax can be seen in Figure 7.  

The aggregated data is the number of data packets per T 
seconds (Figure 3), the number of unique source IP addresses 
per T seconds (Figure 4), the number of unique destination IP 
addresses per T seconds (Figure 5), and the number of unique 
protocols per T seconds (Figure 6). The value of T can be seen 
in TABLE I. 

 
Figure 4  Unique Source IP Count over time 

 
Figure 5 Unique Destination IP Count over time 

III. RESULT AND DISCUSSION 
The results of experiments in this research are gathered from 

locally collected data. The Confusion Matrix method is used to 
measure the performance of the algorithm implementation 
made [15], namely the accuracy, precision, sensitivity. These 
values are calculated from the count of True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN), 
where TP refers to correct predictions of attacks, TN indicates 
the normal data classified correctly as normal. FP refers to 
incorrect predictions of attacks, and FN indicates the attack 
classified incorrectly as normal data. 

Sensitivity/False Positive Rate (TPR) measures the 
percentage of correctly identified attacks over the actual attacks 
in sampled traffic and is computed using Equation (1). 

 

 
Figure 6 Unique Protocol Count over time 

Figure 7 Elasticsearch Aggregation Query 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (1) 

 Accuracy measures the percentage of accurate detection 
over the sampled traffic and is computed using Equation (2). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2) 

Specificity/True Negative Rate(TNR) relates to the system's 
ability to detect sampled traffic without attack correctly. The 
specificity is computed by Equation (3). 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (3) 

TABLE II.  DARPA 2000 DATASET CONFUSION MATRIX 

Total: 3885 True Positive True Negative 
Predicted Positive 1 (TP) 0 (FP) 
Predicted Negative 2 (FN) 3882 (TN) 

{ 
  { 
  "size": "0", 
  "query": { 
    "range": { 
      "@timestamp": { 
        "gte": "now-3s", 
        "lte": "now" 
      } 
    } 
  }, 
  "aggs": { 
    "packets": { 
      "sum": { 
        "field": "netflow.packet_delta_count" 
      } 
    }, 
    "USIP": { 
      "cardinality": { 
        "field": "netflow.destination_ipv4_address" 
      } 
    }, 
    "UPR": { 
      "cardinality": { 
        "field": "netflow.protocol_identifier" 
      } 
    } 
  } 
} 



 

TABLE III.  GENERATED DATASET CONFUSION MATRIX 

Total: 83 True Positive True Negative 
Predicted Positive 1 (TP) 8 (FP) 
Predicted Negative 1 (FN) 73 (TN) 

TABLE IV.  IMPLEMENTED SYSTEM RESULT 

Datasets TPR Accuracy TNR 
DARPA 2000 33.33% 99.94% 100% 
Generated Dataset 50% 89.15% 90.12% 

 

 The results of the algorithm implementation test are displayed in 
the form of a score table for False Positive Rate (FPR), Accuracy, and True 

Negative Rate (TNR) and the visualization of 4 quadrants of detection 
results. TABLE II and  

TABLE III shows the Confusion Matrix of both results from 
DARPA 2000 dataset and Generated Dataset. TABLE IV 
shows measurements from this research's evaluation result. The 
clustered bar chart shown in Figure 8 visualizes evaluation 
result comparison based on values at TABLE IV and the 
original paper's result [7]. Figure 9 chronologically shows 
detection results, categorized in four quadrants of the confusion 
matrix.   

 

 
Figure 8 Evaluation Result Comparison 

While the experiments are conducted locally, they can 
be replicated in a real-world environment such as cloud-based 
Virtual Private Clouds and virtual network devices that 
supports NetFlow and can be connected to an Elasticsearch 
instance. 
 

 
Figure 9 Attack Detection over time 

IV. CONCLUSION 
The system evaluation results show a lower True Positive 

Rate than the original paper. In the DARPA 2000 dataset, the 
evaluation results show a sensitivity (TPR) of 33.33%, an 
accuracy of 99.94%, and a specificity (TNR) of 100%, while 
the results of the evaluation on the generated dataset show 50% 
sensitivity (TPR), 89.15% accuracy, and specificity (TNR) 
90.12%.  

Performance scores are affected by data input to the system. 
When experimenting with generated datasets, it was found that 
the Netflow protocol was inconsistent in reporting traffic 
protocol information, with accuracy only up to OSI Layer 4. In 
contrast, in the DARPA 2000 dataset, the traffic protocol could 
be differentiated up to OSI Layer 7. 

Suggestions for further research are implementing the 
Dynamic Thresholding algorithm using tools other than 
Netflow, such as tcpdump, which can distinguish traffic 
protocols more accurately, then compare the results obtained. 
While this research focused on high-rate DoS attacks, another 
emerging types of attacks such as slow-rate DDoS, reflection 
attack, and amplification attack are to be considered important 
as a research subject as well. 
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