

Design and Implementation of Post-Detection of

Denial of Service (DoS) as a Mitigation System

(PDDMS) Based on Dynamic Access Control List

Algorithm

Adian Fatchur Rochim

Department of Computer Engineering,

Faculty of Engineering

Universitas Diponegoro

Semarang 50275, Indonesia

adian@ieee.org

Fahmi Maghrizal Mochtar

Department of Computer Engineering,

Faculty of Engineering

Universitas Diponegoro

Semarang 50275, Indonesia

fmmochtar@students.undip.ac.id

Adnan Fauzi

Department of Computer Engineering,

Faculty of Engineering

Universitas Diponegoro

Semarang 50275, Indonesia

adnan@live.undip.ac.id

Abstract— Computer networking maintenance and

monitoring have been essential things. A human administrator

could not monitor the whole resources for 24 hours and take

action directly in inactive hours when an incident occurs.

Automating the network appliance with the integration of an

attack detection system could help solve the problem. This study

mainly focuses on mitigating network attacks using the Dynamic

Thresholding algorithm as a detection and mitigation system

based on network automation using the Dynamic Access

Control List algorithm. The data used for this research is self-

generated in a virtual environment and a mitigation system

written in Python to automate the router configuration through

REST API. Prototype of the mitigation system, namely post-

detection of DoS as a Mitigation System (PDDMS). The system

testing phase results show that the mitigation system has an

average of 1.57 seconds response time to configure ACL for one

router. The implementation evaluated using Confusion Matrix

shows 0% results of True-Positive Rate in the generated dataset,

with 23.01% of accuracy and no positive results detected, which

resulted in no response taken by mitigation system.

Keywords— Computer Network, Network Automation, DoS

Mitigation, Mitigation System, RESTful API

I. INTRODUCTION

Computer networking maintenance and monitoring have
been crucial points in terms of resource management. Mainly,
an experienced network administrator who has a
responsibility for this would take action directly. A human
network administrator does not have a 24-hour endurance to
monitor and handle a single activity if an action needs to be
taken precisely and immediately when a critical event occurs.
A mitigation system is required to solve this problem.

Security aspects are also considered when it comes to
defending existing resources. The ever-existing attacks in
networking need to be mitigated. Cisco stated that cyber-
attacks such as Distributed Denial of Service would likely
increase to 15.4 million globally [1].

The evolving networking automation technologies lead to
network automation, improving management capabilities of
the network appliances in an infrastructure. Prior research
[2][3] has successfully implemented an automation system for
network appliances. However, those research only apply
essential network configuration functions, such as interface IP
address configuration, routing, backup, and restore
configuration features. Moreover, those research does not

implement either the security measures, or the security
management system to protect the network resources. An
automated system that could take a role in preventing or
mitigating attacks might address the issue [4].

 Aziz et al., in 2019, explained how ELK Stack that
consists of Elasticsearch, Logstash, and Kibana used in large-
scale infrastructure as a logging monitoring system, which
stores data consists of logs of network appliances in the
managed network [5].

 Rafi et al., in 2020, explained how multiple Cisco
CSR1000v routers could be configured and managed by
automating it through a RESTful API using an application
written in Python as a tool to configure those devices [2]. The
application can manage the device configuration through a
Django web-based interface, replacing the command line
interface-based configuration for quicker usability.

Ramprasath et al., in 2021, stated how ingress filtering
works for mitigating DDoS attacks in a Software-defined
network by dynamically configuring access control lists in
OpenFlow switches [6], which is called by the Dynamic
Access Control List algorithm. The system uses ACL policies
to mitigate the traffic by generating new rules if the detection
system detects any positive DDoS attacks.

Yadav et al., in 2018, explained that the Access Control
List configuration could be implemented on Cisco routers as
a solution to mitigate DDoS attacks by configuring Access
Control Lists in the router to filter connections based on IP
addresses so it could prevent attack connections from other
networks [7].

David et al., in 2019, explained how the Dynamic
Thresholding algorithm could be used to analyze and detect
DoS attacks [8]. This method compares the aggregation
results of four attributes in the header of each packet entering
the network by calculating the moving average and moving
variance for each specific time interval. The advantage of this
method is the lower consumption of computational resources
than other variants of Anomaly-based methods, such as the
ARIMA model and chaos theory [9] or the Machine Learning
model [10].

This study aims to expand prior research, mainly the
network automation system, by building a DoS attack
mitigation system by implementing existing methods.

2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)

29

In this paper, we built a prototype of the mitigation system,
namely Post-Detection of DoS as a Mitigation System
(PDDMS), to mitigate attacks related to Denial-of-Service,
which could potentially exhaust existing resources in a
particular network. Network automation as a mitigation
system was chosen since a router can block specific sources
from accessing targeted networks.

The rest of this paper is structured as follows: in the next
section, we describe the methodology used to build the
system. The third section gives the result and discussion of the
system implementation, and the fourth section concludes the
paper.

II. RESEARCH METHODOLOGY

The main goal of this research is to design and implement

a model for the mitigation of an attack that happened in

computer networks. This research expands the past research

conducted by A. Rafi in 2020, which already built a system

to configure router devices through RESTful API.

The research methodology comprises steps explained as

follows:

1. Rebuilding an automation system based on the past

research.

This phase started by implementing a system used in the

past research. In this phase, the main reference used is

the research conducted by A. Rafi in 2020 about

network automation using RESTful API.

2. The implementation of a DDoS attack detection system.

In this phase, the Dynamic Thresholding algorithm is

implemented to detect the attack. A team partner has

already conducted this work before.

3. The implementation of attack mitigation system based

on Dynamic Access Control List method.

In this phase, the system is designed according to the

system design and topology that has been made based

on previous research.

4. System Testing and results phase.

In this phase, the result of the research can be concluded

based on the system test output.

In this study, we are implementing the methodology as shown

in Figure 1.

Figure 1 Research methodology flowchart

Figure 2 shows the relation in general about the

networking with two systems, namely a DDoS detection

system and a mitigation system. This paper only discusses the

design and implementation of the mitigation system, which is

based on the Dynamic Access Control List method.

Figure 2 System Design of Mitigation System (PDDMS)

Figure 3 shows the topology used in this experiment, which

is also related to the system design in Figure 2.

Figure 3 Scenario and implementation of PDDMS testing

Table 1 shows the list of devices implemented in the scenario,

as shown in Figure 3.

TABLE I. LIST OF DEVICES IMPLEMENTED IN THE SCENARIO

Device Name IP Address Roles

Attacker 1 10.225.50.11
Sends malicious
traffic to servers

Attacker 2 10.225.50.12
Sends malicious

traffic to servers

30

TABLE I. (CONTD.)

Device Name IP Address Roles

Mitigation system 10.100.10.2

Automate

configuration to
block attackers

Detection system 10.100.10.151 Detecting attacks

Server 1 10.50.10.11
Targeted server

(Port 80 opened)

Server 2 10.50.10.12
Backup of Targeted

server

(Port 80 opened)

PC 1 10.225.10.11 Connection test

PC 2 10.225.10.12 Connection test

In this research, we implement an algorithm to mitigate

the attack in the network using the Dynamic Access Control

List, which is an algorithm used in research conducted by

Ramprasath et al. in 2020 to mitigate networking attacks. The

main idea of the algorithm is to generate rules to filter the

traffic based on the IP address of the attacker to the targeted

system when the occurring attack has been detected.

The Dynamic Access Control List method used in this

experiment is explained as follows:

1. The system will collect the information of the attack

based on the alert received from the detection

system.

2. The system will inspect the source IP address of the

attacker and the destination IP address, and the

destination port of the targeted system.

3. After the parameters have been collected, the system

will generate the Access Control List rule to block

the connection.

4. The generated rule will be sent to the router as an

instruction through REST API to block the

connection based on the newly generated

configuration.

Figure 4 shows the flowchart of the Dynamic Access

Control List method used in this research.

Figure 4 Flowchart of the Dynamic Access Control List algorithm

A. Rebuilding the system based on past research

This research reimplements the system designed by A.

Rafi as the basis for implementing this mitigation system,

which uses RESTful API-based network automation to

configure the router. All the tests and simulations were

performed on a single computer in a virtual environment in

this experiment.

The software used in this experiment are Cisco

CSR1000v, Ubuntu deployed as virtual machines, Python 3.8

with Django 3.2 for the application, GNS3 for topology and

networking simulation, and QEMU as a hypervisor for

virtualizing routers and servers.

The main functional application requirements are

automation of the Access Control Lists based on the Dynamic

Access Control List algorithm, one of the main functions

needed for mitigation integrated with the attack detection

system.

B. Implementation of DDoS attack detection system

 The DoS detection system uses the Dynamic Thresholding
Algorithm [8], a DoS attack detection algorithm written by J.
David in 2019. This algorithm compares the aggregation
results of each packet's four header attributes entering the
network, calculated based on the moving average and moving
variance for each specific time interval. An attack is
considered in progress if the calculation results of the four
attributes cross the limit or threshold simultaneously. The
algorithm consideration of the decision to classify the attack
is based on limitations of the four header attributes of the data
flow through the transmission medium at a certain period.

C. Implementing Attack Mitigation System based on

Dynamic Access Control List algorithm

The next stage is the implementation stage of the

mitigation system. The development of the mitigation system

uses the Python Requests library, which is used as automation

and to communicate with RESTful API. In this stage, the

implementation and testing stages were performed and

simulated in GNS3.

The mitigation system uses the Dynamic Access Control

List [6], an algorithm used to mitigate DoS attacks. This

algorithm will automatically generate rules to drop packets

based on the source IP address, destination IP address, and

the destination port if the result of the detection is classified

as a positive attack.

Since the system utilizes Cisco routers, the mitigation

system utilizes a feature called Access Control List policies

to filter the traffic based on source IP address. The DoS attack

mitigation algorithm will apply new ACL rules based on

connection details for denial of a packet entry toward the

targeted network [7]. REST API is used to automate the

router configuration and generate the Access Control List

rules for mitigation. The designed mitigation system will

directly communicate with the router for mitigation purposes,

as shown in Figure 2.

The workflow for implementing the DoS mitigation system,

as shown in Figure 2, is as described as follows:

1. Incoming traffic from other networks passes through the

CSR1000v router.

2. CSR1000v router performs constant traffic to the

detection system

31

3. The detection system receives the data and will analyze

incoming traffic based on the Dynamic Thresholding

algorithm.

4. If the detection system detects positive results, it will

trigger the mitigation system to block the attacker based

on the Dynamic Access Control List algorithm by

sending REST API to generate ACL rule to block the

attacker connection.

 Table 2 shows the REST API endpoint list used to
configure the device for attack mitigation in this experiment,
which shows the related configuration URL endpoint and the
HTTP method.

TABLE II. REST API REQUESTS

Configuration
HTTP

Method
Endpoint Response

Create an

Access Control
List

POST https://ip_address:55443/a

pi/v1/acl

201

Created

Modify Access

Control List
Rules

PUT https://ip_address:55443/a

pi/v1/acl/{acl-id}
200 OK

Get Access

Control Lists
Information

GET https://ip_address:55443/a

pi/v1/acl/{acl-id}
200 OK

The topology consists of one router, two attackers, two

virtual servers in DMZ, one server for detection system to

analyze incoming traffic passing through the routers, bridged,

and directly connected to both routers.

In this experiment, R1 is used for both traffic header

collection and mitigation purposes. Figure 3 is a topology for

the testing environment.

D. System Testing and Results

The steps taken in this experimental research are performed

as follows:

1. Mitigation testing with dummy data using REST API

This test is used to prove the functionality and measure

the average response time of the core mitigation system. The

Dynamic Access Control List algorithm is used in this

experiment.

This test involves sending the data to the router by

sending the data in the form of JSON REST API to configure

the addition of the ACL rule, which is used to mitigate

detected incoming positive attacks. The test was carried out

50 times by sending dummy data to routers. The obtained

results will be calculated as average.

2. Testing of the DoS Attack detection and mitigation system

The testing phase of the detection system is performed by

attacking the servers, as shown in the topology in Figure 3,

according to the attack scenario for testing purposes. In this

phase, the DoS attack was performed by Hping3, which

generates malicious packets to flood the target system. The

traffic generated from the attack resulted in self-generated

data that the detection system will analyze. If the system

detects a positive attack, the detection system will send the

alert data to the mitigation system, which response by

mitigating the attacker by automating the router.

 The detection system will repeatedly analyze the collected
traffic data every 45 to 55 seconds. Each scenario dataset
consists of 15 minutes of collected traffic data.
 There are six attack scenarios, with each connection or
attack scenario consists of 15 minutes of attack or connection.
All these scenarios were performed at different times. Table 3
shows the performed attack scenario in this experiment, along
with the targeted server and port or service.

TABLE III. ATTACK SCENARIO TABLE

No. Scenario Description
Sampling

Interval

1 Normal
2 clients to 1 server

(Attacker 1 to Server 1, ICMP Ping)
45 seconds

2 DoS
1 client to 1 server, TCP SYN

(Attacker 1 to Server 1, Port 80)
45 seconds

3 DoS

2 clients to 1 server

(Attacker 1 - ICMP Flood to Server 1, Attacker 2
- TCP SYN Port 80 to Server 1)

45 seconds

4 DoS
1 client to 1 server,

(Attacker 1 to Server 1, ICMP Flood)
45 seconds

5 DoS
2 clients to 1 server,
(Attacker 1 and 2 to Server 1 - TCP SYN Flood

Port 80)

45 seconds

6 DoS
1 client to 1 server,
(Attacker 1 with Random IP to Server 1 - TCP

SYN Port 80)

55 seconds

III. RESULT AND DISCUSSION

This chapter discusses in detail system evaluation such as
the response time of the mitigation system, action taken by the
system, and the discussion of the mitigation system.

The response time testing was used to measure the average
response time of the core mitigation system. It is calculated
from the time of each of the executed tests. Response time
testing was performed by sending POST requests to modify
Access Control Lists configuration to the routers 50 times.
The testing scenario was performed by sending the request to
a single router and sending the request to two routers. Table 4
shows the minimum, median, average, and maximum time
elapsed for mitigation.

TABLE IV. MITIGATION RESPONSE TIME

Based on the obtained result, the mitigation system took
an average time of 1,57 seconds of applying Access control
list configuration in a single router, consists of 3 API requests
for each incoming log, including security access token
request, configuration retrieval, and applying the new
configuration. Figure 5 shows the graph of average elapsed
time to mitigate the attacks by implementing the Dynamic
Access Control List method.

Criteria Time elapsed (1 router) Time elapsed (2 routers)

Minimum 0,87 seconds 2,19 seconds

Median 1,45 seconds 3,26 seconds

Average 1,57 seconds 3,52 seconds

Maximum 3,84 seconds 8,58 seconds

32

Figure 5 Average mitigation system elapsed time test chart diagram

The test result shows that the core of the mitigation system
could execute the desired action by applying a dummy Access
Control List configuration into the router.

The implementation of the detection system is tested based
on the scenario shown in Table 3, with the result of the
detection system testing implemented in the experiment for
each scenario performed is as shown in Table 5.

TABLE V. DETECTION SYSTEM RESULT IN EACH SCENARIO

No. Scenario TP FP TN FN

1
2 clients to 1 server

(Attacker 1 to Server 1, ICMP Ping)
0 0 26 0

2
1 client to 1 server, TCP SYN

(Attacker 1 to Server 1, Port 80)
0 0 0 20

3

2 clients to 1 server

(Attacker 1 - ICMP Flood to Server 1,
Attacker 2 - TCP SYN Port 80 to

Server 1)

0 0 0 21

4
1 client to 1 server,

(Attacker 1 to Server 1, ICMP Flood)
0 0 0 26

5

2 clients to 1 server,

(Attacker 1 and 2 to Server 1 - TCP

SYN Flood Port 80)

0 0 0 12

6

1 client to 1 server,

(Attacker 1 with Random IP to Server

1 - TCP SYN Port 80)

0 0 0 8

 The measurements of the algorithm implementation
performance were using the Confusion Matrix method [11],
which will be used to calculate the accuracy, precision,
sensitivity. Table 6 shows the result of the implemented
detection system for detecting Denial-of-service attacks in the
Confusion Matrix table.

TABLE VI. DETECTION SYSTEM RESULT IN CONFUSION

MATRIX

 The values of the accuracy, precision, sensitivity, are
calculated from the total count of True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN).
TP refers to correct predictions of attacks, TN indicates the
normal data classified correctly as regular traffic. FP refers to
incorrect predictions of attacks, and FN indicates the attack
classified incorrectly as normal data. The result is as shown in
the Table 6.

Sensitivity/True Positive Rate (TPR) measures the
percentage of correctly identified attacks over the actual
attacks in sampled traffic that are calculated using Equation
(1).

 Sensitivity = TP / (TP + FN) (1)

Accuracy measures the percentage of proper detection

over the sampled traffic calculated using Equation (2).

 Accuracy = (TP + TN) / (TP + TN + FP + FN) (2)

Specificity/True Negative Rate (TNR) measures the

system's ability to correctly detect sampled traffic without
attack, is calculated by Equation (3).

 Specificity = TN / (TN + FP) (3)

The results of the detection system tests are in the form of

a score table for Sensitivity, Accuracy, and Specificity, as
shown in Table 6.

TABLE VII. DETECTION SYSTEM ANALYSIS RESULT

Criteria Value in %

Sensitivity (TPR) 0%

Accuracy 23.01%

Specificity (TNR) 100%

The implemented detection system detects nothing but
negative results, either when the attack occurs or when regular
traffic occurs. We obtained 0% of Sensitivity (True Positive
Rate), 23.01% of Accuracy, and 100% of Specificity (True
Negative Rate), as shown in Table 7. It indicates that the
detector cannot detect Denial-of-Service attacks since there
are no positive results, resulting in no response from the
mitigation system.

IV. CONCLUSION

Based on the research and testing performed, we can

conclude that the mitigation system by automating REST API

configurations could send dummy ACL requests to the router,

with an average of 1,57 seconds response time for one router

and 3,52 seconds for two routers. The detection system based

on the Dynamic Thresholding algorithm is considered not

usable, causing the whole mitigation system unusable.

The system evaluation shows that the DoS detection

system used has a sensitivity (TPR) value of 0%, accuracy

value of 23.01%, and specificity (TNR) value of 100%,

without any positive attack results detected. As a result, the

detection system did not trigger any alert request to the

mitigation system that caused no mitigations taken. Further

research suggests implementing other DoS attack detection

algorithms and increasing the number of DoS attack

scenarios.

 Predicted Positive Predicted Negative

Actual
Positive

True Positive

0

True Negative

26

Actual
Negative

False Positive

0

False Negative

87

33

ACKNOWLEDGMENT

This research was financially supported by The Faculty of
Engineering, Universitas Diponegoro, through Strategic
Research Grant 2021 number: 3178/S/komputer
/2/UN7.5.3.2/PP/2021.

REFERENCES

[1] Cisco Systems, “Cisco Annual Internet Report (2018–2023),”
Computer Fraud & Security, 2020.

https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual-internet-report/white-paper-c11-741490.html
(accessed Feb. 13, 2021).

[2] A. F. Rochim, A. Rafi, A. Fauzi, and K. T. Martono, “As-RaD System

as a Design Model of the Network Automation Configuration System
Based on the REST-API and Django Framework,” Kinet. Game

Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol.

5, no. 4, pp. 291–298, Nov. 2020, doi: 10.22219/kinetik.v5i4.1093.

[3] R. Adhyatmaka Wiryawan and N. Rohman Rosyid, “Website-Based

Network Administration Automation Application Development

Using Python Programming Language, vol. 10, no. 2, pp. 741–752,
Nov. 2019, Accessed: Jan. 21, 2021. [Online]. Available:

https://jurnal.umk.ac.id/index.php/simet/article/view/3589.

[4] I. Karanta and M. Rautila, “An expert system for mitigation actions,”
in Conference of Open Innovation Association, FRUCT, Oct. 2017,

vol. 2017-April, pp. 125–130, doi: 10.23919/FRUCT.2017.8071302.

[5] A. F. Rochim, M. A. Aziz, and A. Fauzi, “Design Log Management
System of Computer Network Devices Infrastructures Based on ELK

Stack,” in ICECOS 2019 - 3rd International Conference on Electrical

Engineering and Computer Science, Proceeding, Oct. 2019, pp. 338–
342, doi: 10.1109/ICECOS47637.2019.8984494.

[6] J. Ramprasath and V. Seethalakshmi, “Secure access of resources in

software-defined networks using dynamic access control list,” Int. J.
Commun. Syst., vol. 34, no. 1, p. e4607, Jan. 2021, doi:

10.1002/dac.4607.

[7] S. K. Yadav, K. Sharma, and A. Arora, “Security Integration in DDoS
Attack Mitigation Using Access Control Lists,” Int. J. Inf. Syst.

Model. Des., vol. 9, no. 1, pp. 56–76, 2018.

[8] J. David and C. Thomas, “Efficient DDoS flood attack detection using
dynamic thresholding on flow-based network traffic,” Comput.

Secur., vol. 82, pp. 284–295, May 2019, doi:

10.1016/j.cose.2019.01.002.
[9] S. M. T. Nezhad, M. Nazari, and E. A. Gharavol, “A Novel DoS and

DDoS Attacks Detection Algorithm Using ARIMA Time Series

Model and Chaotic System in Computer Networks,” IEEE Commun.

Lett., vol. 20, no. 4, pp. 700–703, Apr. 2016, doi:

10.1109/LCOMM.2016.2517622.

[10] R. Rajendran, S. V. N. Santhosh Kumar, Y. Palanichamy, and K.
Arputharaj, “Detection of DoS attacks in cloud networks using

intelligent rule based classification system,” Cluster Comput., vol. 22,

no. 1, pp. 423–434, Jan. 2019, doi: 10.1007/s10586-018-2181-4.
[11] M. E. Elhamahmy, H. N. Elmahdy, and I. A. Saroit, “A New

Approach for Evaluating Intrusion Detection System,” CiiT Int., vol.
2, no. 11, pp. 290–298, 2010.

34

