Synthesis of Cu2 O from modified Fehling reaction for the preparation of Cu2 O thin film photocathode by using the spin coating method, characterization, and its photoelectrochemical properties Submission date: 14-Jul-2022 12:07PM/UDIAIR Setiyo Widodo Submission ID: 1870350595 File name: artikel C18 prosiding DSW.pdf (1.03M) Word count: 4960 Character count: 24564 #### **PAPER · OPEN ACCESS** Synthesis of Cu₂O from modified Fehling reaction for the preparation of Cu₂O thin film photocathode by using the spin coating method, characterization, and its photoelectrochemical properties To cite this article: Sulat et al 2021 J. Phys.: Conf. Ser. 1943 012179 View the article online for updates and enhancements. # You may also like - Surface localisation of laser photoelectron emission using Cu₂O and Ag film structures S.V. Andreev, P.A. Danilov, S.I. Kudryashov et al. - Synchrotron x-ray study of a low roughness and high efficiency K₂CsSb photocathode during film growth Junqi Xie, Marcel Demarteau, Robert Wagner et al. - Effect of morphology on the photoelectrochemical performance of nanostructured Cu_O photocathodes Lian C T Shoute, Kazi M Alam, Ehsan Vahidzadeh et al. **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 # Synthesis of Cu₂O from modified Fehling reaction for the preparation of Cu₂O thin film photocathode by using the spin coating method, characterization, and its photoelectrochemical properties #### Sulat, Gunawan, R A Lusiana, A Haris, D S Widodo Chemistry Department, Diponegoro University, Semarang, Indonesia Corresponding author: gunawan@live.undip.ac.id Abstract. Hydrogen energy has the potency as a renewable energy source replace the fossil energy. It can be obtained through the process of photoelectrochemical (PEC) water splitting with the help of a semiconductor as a photocathode to capture photon energy. One of the copper-based metal oxide semiconductors that can be used in the water splitting process is low production cost, and has a low band gap (2-2.45 eV). This study aims to determine the effect of Fehling's modification using citrate in Cu₂O synthesis as material to prepare Cu₂O thin film photocathode using spin-coating method. The prepared photocathode consists of three stages, namely variations of Cu₂O synthesis with mole ratios of copper:citrate of 1:1; 1:2; 1:4, thin film preparation and heating. Then the obtained thin film was characterized using SEM, EDX and XRD. J-V curves of the photocathodes gave current densities, onset potential and applied bias to photon efficiency (ABPE) for Cu₂O thin film photocathode prepared by copper:citrate mole ratios of 1:1; 1:2; 1:4 namely 0.09; 0.18; 0.12 mA/cm² at potential of 0.2 V (vs. RHE), 0.04; 0.08; 0.02 V (vs. RHE), and 0.062, 0.057, 0.058 %, respectively. SEM analysis result showed a spherical morphology of Cu2O. EDX analysis showed that the sample contained copper and oxygen with 78% Cu and 22% O. XRD analysis results showed the presence of Cu₂O with an average crystal grain size of 38.08 nm. #### 1. Introduction Journal of Physics: Conference Series Nowadays, the world community relies on fossil energy as the main energy source. However, the availability of fossil energy is very limited, so renewable energy is needed that can replace the fossil energy. Hydrogen energy has great potential to become one of the renewable energy sources. Hydrogen can be obtained through the process of photoelectrochemical water splitting by using solar energy. The process occurs in which sunlight is absorbed by semiconductor materials in an electrolyte solution, resulting in photovoltage which is used to generate water splitting reactions [1]. Semiconductors that can in the photoelectrochemical process of was replitting are semiconductors that have a band gap of 1.5-2.5 eV [2]. The position of the valence band and conduction band of a semiconductor material that can be used for photocathode and photoanode in photoelectrochemical water splitting coincide with the redox potential of H₂O [3]. Recently it is of great concern in semiconductor applications as photocathodes, namely metal oxides. This is because metal oxide semiconductors have a band gap of 1.5–3.2 eV [4], making it possible to absorb most of the solar spectrum. One of the copper-based metal oxide semiconductors is Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 copper(I) oxide (Cu₂O) because it has the advagage that it can be used as a semiconductor, non-toxic, easy synthesis process, low production sosts with a band gap value of around 2-2.45 eV [5]. Cu₂O semiconductor is *p*-type semiconductor that can be used in photoelectrochemical (PEC) water splitting because they have a band gap range that allows them to absorb most of the sun's spectrum [6]. Cu₂O film shows good activity against the hydrogen formation reaction so it has the potential to be used as a photocathode [5]. Generally, Cu₂O synthesis is carried out by oxidizing pure copper or obtained by reduce Cu²⁺. The most common method is by reducing Cu²⁺ to Cu⁺ using Fehling's solution and glucos Fehling's solution contains tartrate ions in addition as a complex for Cu²⁺ and sodium hydroxide. The tartrate ion acts as a complexing agent to keep the copper ions in the solution. Without the tartrate ion, the copper hydrox 18, Cu(OH)2, will precipitate directly from the basic Cu²⁺ solution. Heating Fehling's solution with a reducing agent such as glucose, causes the reduction of Cu²⁺ to Cu⁺. Tartrate ion cannot form complex copper Cu⁺ ions, so the reduction of Cu²⁺ to Cu⁺ with the help of glucose can form an orange solution into brick-red Cu2O deposits and carboxylic acid filtrate resulting from the oxidation of aldehyde groups in glucose [7]. On the other hand, citrate ion has similar properties as tartate, where citrate is softer and more stable in keeping copper ions in solution. Based on research conducted by [8] using disodium citrate dihydrate as a substitute for tartrate in the synthesis of Cu₂O from Cu-acetate base solution, Cu₂O monodisperse crystal solid ball with a diameter of 168 to 265 nm was obtained. When viewed from the structure, the citrate ion has a more complex structure, so that the citrate ion can be used as a capping ligand which is more stable to react with Cu²⁺. In addition, the presence of citrate ions can prevent Cu(OH)₂ precipitation, slow down nucleation, and to stabilize Cu²⁺ precursors in solution and is used to increase product size so that the resulting Cu2O is smaller [8]. It is hoped that the replacement of tartrate ion to citrate will result in a more stable Cu₂O crystal with a smaller size so that it will be more evenly applied to the film. This study aims to determine the effect of Fehling's modification using citrate in Cu₂O synthesis as a material for the preparation of Cu₂O photocathode using spin-coating method and used in the photoelectrochemical water splitting process. Furthermore, characterization was carried out using X-Ray diffraction to determine the crystallinity of Cu₂O, SEM-EDX to determine the surface morphology of Cu2O and its composition, and UV-Vis Spectrophotometry to determine the effect of citrate in Fehling's reagent modification. ## 2. Experimental methods # 2.1. Materials Materials used include: FTO (Fluorine-doped tin oxide) glass (sigma aldrich), copper(II) sulfate pentahydrate (Merck), sodium citrate dihydrate (Merck), NaOH (Merck), Glucose (Merck), Na₂SO₄ (Merck), Ethanol, tea tree essential oil. #### 2.2. Equipments Glasswares (Pyrex), analytical balance (Ohaus), Hot plate and magnetic stirrer (Thermo Scientific), multimeter (Krisbow), Furnace (homemade), Sonication (Best CJ-008), Oven (Kirin KBO-90M), Spin-coating (homemade), Potentiostat (Corr Test CS-150), UV-Vis Spectrophotometer (PG Instruments T60 Spectrophotometer), X-ray Diffraction (PANalytical X Pert3 Powder), SEM-EDX (Phenom Pro-X desktop SEM with EDX). ## 2.3. Research procedures The research began with the synthesis of Cu₂O using the citrate modified Fehling method as a complexing agent with Cu:citrate mole ratios of 1:1; 1:2; 1:4. Then, the obtained Cu₂O was used for preparing a Cu₂O thin film on FTO using the spin coating method and followed by annealing. The powder sample was analyzed using SEM-EDX to determine its morphology and composition and XRD analysis to determine its crystallinity. In addition, the initial reagents of cupper, citrate, and tartrate ions were investigated by a UV-Vis spectrophotometer to see their spectrum profiles. **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 Meanwhile, the current density and onset potential of Cu₂O thin film were measured to determine its photoelectrochemical properties. - 2.3.1. Synthesis of Cu₂O. Synthesis of Cu₂O was initiated by making modified Fehling and B solutions. Fehling A's solution was prepared by dissolving copper(II) sulfate pentahydrate (0.02 mol) in distilled water (100 mL). Then proceed to vary the citrate-modified Fehling B solution by dissolving trisodium citrate dihydrate by varying the mole of the Cu:sodium citrate ratios of 1:1; 1:2; 1:4 (0.0275 mol, 0.055 mol, and 0.11 mol) and sodium hydroxide (0.0552 mol) in distilled water (100 mL). After the Fehling A and B solutions were prepared, then mixed each solution and stirred for 15 min. After that, 100 mL glucose 10 g was added to the mixture as a reducing agent. T₄ n the final mixture was heated at 60 °C and stirred. After obtaining Cu₂O brick red color solid then washed with distilled water (3 times) and ethanol (2 times) and dried in an oven at 80 °C for 2 h. - 2.3.2. Preparation of FTO glass. The preparation was conducted by cleaning 1cm x 2 cm FTO glass with 10 mL of 0.1 M nitric acid, acetone, ethanol, and distilled water successively to remove impurities. - 2.3.3. Characterization of Cu₂O. After obtaining Cu₂O, then it was characterized using X-Ray Diffraction to determine the crystallinity of Cu₂O, SEM-EDX to determine the surface morphology of Cu₂O and its composition, scanning wavelength UV-Vis spectrophotometry was used to prove that the Cu-citrate complex was formed and compared with Cu-tartrate. - 2.3.4. Preparation of Cu₂O thin film Semiconductors. Preparation of Cu₂O in film semiconductor was done by dissolving 0.1 g of Cu₂O into 5 mL of tea tree essential oil. The solution was stirred using a magnetic stirrer for 1 h then sonicated at room temperature for 10 min to make a homogeneous solution of Cu₂O in the solution. Then, 1 drop of the solution was put on FTO glass and the FTO was spinned using spin-coater at 500 rpm for 15 s. Further, after spin coating process the FTO was heated at 110 °C for 5 min. This step was repeated up to 15 drops. After that, the thin layer was annealed at 400 °C for 30 min. - 2.3.5. Photoelectrochemical Measurements. Photoelectrochemical measurements used pot33 iostat (CorrTest CS-150) in a chamber containing three electrodes of Cu₂O thin layer on F 70 as a working electrode, platinum as anode, and Ag/AgCl as a r 23 rence, and electrolyte solution of 0.1 M Na₂SO 12 pH 9.0. The measurements was carried out at an initial potential of 0.1 V to the final potential of -1.0 V vs Ag/AgCl with a scan rate of 10 mV/s in the conditions with and without irradiation using 1.5 AM simulated light. # 3. Results and discussion # 3.1. Synthesis of Cu2O by Modified Fehling Reagent Synthesis of Cu_2O was carried out using the modified Fehling method by replacing potassium sodium tartrate with sodium citrate in Fehling B's solution. Based on the research conducted by Kooti & Matouri [7] Cu_2O was successfully prepared by using Fehling's reagent, through this method, Fehling's modification was carried out with sodium citrate solution. In this study, the variation of Cu_2O synthesis was carried out with the variation of sodium citrate used, namely three variations of the synthesis with the addition of less, balance, and excess citrates. The use of citrate is adjusted to the stoichiometric reaction from Kooti & Matouri [7] recipe to calculate the moles used. Based on stoichiometric calculations, the mole ratio of Cu:sodium citrate is obtained with a variation of 1:1; 1:2; 1:4. The mechanism of Cu_2O formation is through a redox reaction with Fehling's reagent according to the following reaction [9]. **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 $$R - c_0^{-1} + 20H^{-} \rightarrow R - c_0^{-3} + H_2O + 2e^{-}$$ (1) $$2^{+2}_{CU}$$ + $2e^- \rightarrow 2^{-1}_{CU}$ (2) $$2Cu + 2OH \rightarrow Cu_2O + H_2O$$ (3) $$R - c + 2Cu + 40H \rightarrow R - c + Cu_{2}O + H_{2}O$$ (4) Figure 1. Reaction mechanism for the formation of Cu₂O. The reaction mechanism for the formation of Cu₂O using citrate complexes is as follows: $$CuSO_{4}\left(aq\right) + 2NaOH\left(aq\right) + 2Na_{3}C_{6}H_{5}O_{7}\left(aq\right) \rightarrow \left[Cu(C_{6}H_{7}O_{7})_{2}\right]\left(aq\right) + 4Na_{2}SO_{4}\left(aq\right) \tag{5}$$ $$[Cu(C_6H_7O_7)_2] (aq) + C_6H_{12}O_6 (aq) (reductor) \rightarrow Cu_2O (s) + carbocyclic acid (aq)$$ (6) The total reaction is as follows: CuSO₄ (aq) + 2NaOH (aq) + 2Na₃C₆H₅O₇ (aq) + C₆H₁₂O₆ (aq) (reductor) $$\rightarrow$$ Cu₂O (s) + 4Na₂SO₄ (aq) + carbocyclic acid (aq) (7) Powders of Cu₂O were obtained for Cu:citrate mole ratios of 1:1, 1:2, 1:4 with a yield of 89.3; 98.7 and 96.4%, respectively. # 3.2. Characterization of Copper Complex Formation by UV-Vis Spectrophotometer Characterization of complex formation with UV-Vis spectrophotometer aims to determine the effect of citrate addition as a complexing agent in the synthesis of Cu₂O with Fehling's reagent modification. The results of this characterization can distinguish between the complexing agent in Fehling's reagent using tartrate and citrate ions based on the shift in wavelengths formed. **Figure 2.** UV-Vis Scanning Graph of CuSO₄, sodium citrate and Cu-citrate mixtures. The results of UV-Vis analysis on $CuSO_4.5H_2O$ in distilled water appeared an absorption peak at a wavelength of 810 nm, while in the complex compound $[Cu(II)-(C_6H_6O_7)_2]$ the absorption peak appeared at a wavelength of 710 nm, whereas in a solution of trisodium citrate dihydrate in distilled water there is no peak absorption because the solution is colorless (Figure 2). In the figure, it can be seen that there is a shift in the maximum peak towards a smaller wavelength. Research conducted by [10] was able to produce complex $[Cu(II)-(C_6H_6O_7)_2]$ with the addition of citric acid to $CuSO_4$ solution. Based on this result indicates the formation of a complex compound $[Cu(II)-(C_6H_6O_7)_2]$ has doi:10.1088/1742-6596/1943/1/012179 occurred. When compared with the complex formation in Fehling's reagent using tartrate ions, the results obtained show different peaks with the addition of citrate ions, as shown in figure 3. 1943 (2021) 012179 **Figure 3.** UV-Vis spectra of Cucitrate and Cu-tartrate. These results indicate that the Cu-tartrate complex appears at a wavelength of 750 nm, while in the Cu-citrate complex an absorption peak appears at a wavelength of 710 nm. The figure shows a shift in wavelength towards short wavelengths from the Cu-tartrate complex to Cu-citrate which is commonly called the blue shift. The blue shift will increase the energy value of the crystal field splitting of the complex compounds that will be formed, so that it will increase the energy of crystal field stabilization which will affect the crystals to be formed. Na₃Cit•2H₂O was used as a capping ligand to react with Cu²⁺ to spbilize the Cu²⁺ precursor and slow down the nucleation. The diameter of the prepared single-crystal solid Cu₂O spheres have been successfully synthesized to reach sizes 168 nm to 265 nm by varying the amount of sodium citrate [8]. Meanwhile, the reduction of Fehling's solution (alkaline solution of copper sulfate and tartaric ions) by glucose only yielded Cu₂O nanoparticles with a diameter of about 30 nm [7]. From these results, it can be concluded that the use of citrate as a complexing agent is better than tartrate, because the complex formed will be more stable. #### 3.3. Characterization of Cu₂O powder by SEM-EDX Figure 4 shows SEM analysis of Cu₂O powder. The presence of Cu₂O is indicated by spherical morphology [11] in accordance with the SEM results, where at mole ratio of 1:1 Cu:citrate of Cu₂O morphology is spherical with small clustered sizes. The ratio of 1:2 has the morphological form of clustered polyhedron balls with a size greater than the addition of less and excess citrate. Whereas the 1:4 variation shows the spherical morphological shape and some irregular cubic shapes. **Figure 4.** SEM results of Cu₂O powder synthesized with Cu:citrate mole ratios of (a) 1:1; (b) 1:2; (c) 1:4. 1943 (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 | Table 1. | EDX | analysis | results for | Cu ₂ O | powder. | |----------|-----|----------|-------------|-------------------|---------| | | | | | | | | Ratio of Cu:citrate — | Percentage (%) | | | |-----------------------|----------------|-------|--| | Rado of Cu.citi ate | Cu | O | | | 1:1 | 78.84 | 21.16 | | | 1:2 | 77.62 | 22.38 | | | 1:4 | 76.14 | 23.86 | | EDX analysis results for Cu₂O powder with Cu:citrate of 1:1; 1:2; 1:4 ratios have different values of Cu and O elements for each variation, as shown in table 1. From this table, it can be seen that the more citrate used, the lower the Cu percentage and the higher the O percentage. This difference shows that the addition of citrate affects the Cu₂O results obtained. Probably it was influenced by the complex compounds formed with the Cu as a central atom that makes it more stable with the increasing amount of citrate added. However, the percentage of Cu is greater than that of O. It is probably due to the incomplete reduction of Cu²⁺. #### 3.4. Characterization of Cu₂O powder by XRD XRD characterization was carried out only for synthesized Cu₂O powder with Cu:citrate mole ratio of 1:2, because based on the SEM-EDX characterization shows almost the same results between the Cu₂O synthesized results from Cu:citrate ratios of 1:1; 1:2; 1:4. The XRD analysis is presented in Figure 5. Figure 5 shows there are three strong peaks, namely peaks located in the 2nd, 4th and 5th peak sequence with a value of 2θ of 36.54; 42.43; and 61.47° as the peaks of Cu_2O . Whereas at 2θ of 36.99° is the Cu peak, where Cu^{2+} is completely reduced to form Cu. The Cu_2O polycrystalline average size is calculated from the value of Full Width High Maximum (FWHM) based on the diffractogram peaks using the Debye-Schererr equation. **Figure 5.** XRD results of Cu₂O powder from synthesis with a Cu:citrate mole ratio of 1: 2. Table 2 presents the polycrystalline size data and the FWHM values from the results of X-ray diffraction analysis of Cu₂O powder samples. This is consistent with the Debye-Schererr equation that the grain size is inversely proportional to the FWHM value, where the greater the FWHM value, the smaller the grain size and the greater the diffraction pattern so that the crystallinity decreases. Vice versa, if the smaller the FWHM value, the crystal size will be bigger, and the solid will be more crystalline. From the calculation results in table 2 can be confirmed that the synthesized Cu₂O is crystals. The average grain size of Cu₂O is 38.08 nm. Crystallinity affects charge separation and charge transfer [12]. Crystalline solids have a regular arrangement; the more crystalline a solid is, the easier the charge separation and charge transfer will be because there are only a few obstacles, so the resulting current density will also be greater [13]. **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 Table 2. Polycrystalline Cu₂O sizes and FWHM values. | 2θ (°) | θ (°) | FWHM | D (nm) | |---------|---------|--------|---------| | 29.6899 | 14.8449 | 0.2213 | 38.7913 | | 36.5435 | 18.2717 | 0.2118 | 41.2586 | | 42.4736 | 21.2368 | 0.2218 | 40.1377 | | 61.4736 | 30.7368 | 0.2664 | 36.2393 | | 73.2986 | 36.6493 | 0.2872 | 36.0372 | | 73.5999 | 36.7999 | 0.2878 | 36.0076 | #### 3.5. Photoelectrochemical Measurement with Simulated Light Photoelectrochemical measurement aims to determine the potential first time the current appears at the time of light exposure (onset potential) and the maximum current density produced by the photocathode when irradiating the Cu₂O semiconductor from the modified Fehling reaction. CorrTest CS-150 with CS Studio 5 application was used to measure the onset potential and m₁₂ mum current density at the photocathode. The series of measurements are the photocathode as the working electrode, platinum as the anode, while Ag/AgCl as the reference electrode in the sodium sulfate electrolyte solution. The electrolyte solution serves to increase the conductivity of the solution because it contains ions that can conduct electricity. If the photoelectrochemic measurement uses only water, the redox reaction will be place slowly. Measurements were made with an initial potential of 0.1 V to a final potential of -1.0 V vs Ag/AgCl with a scanning rate of 10 mV/s under and without irradiation (chopped) using a simulated light of 1.5 AM (100 mW/cm²) every 5 seconds. This irradiation aims to determine the effect of artificial sunlight on the current density produced by the photocathode. 3.5.1. Measurement of Current Density and Potential Onset. Measurement of current density and onset potential was carried out with and without irradiation every 5 seconds in Na₂SO₄ solution (pH 9) to determine the actual current density in water solution applications. The result of the current density measurement is presented in Figure 6. **Figure 6.** J-V curves of Cu₂O prepared by Cu:citrate mole ratios of (a) 1:1, (b)1:2, and (c) 1:4 measured in 0.1 M Na₂SO₄ under chopped 1.5 AM irradiation. Figure 6 shows the current density appears when there is irradiation (light on) and returns to zero when there is no illumination (light off). This shows that the presence of the photocathode. Light functions in the process of exciting electrons from the valence band to the conduction band, and produces electron-hole pairs $\frac{1}{36}(h^+)$, which play a role in redox reactions. Electrons reduce H_2O and form hydrogen gas, while the holes will oxidize water to form oxygen gas [6]. In the absence of light the usual electrochemical process has not been achieved so that on the curve, no current is generated. 1943 (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 The concentration of citrate added in the Cu₂O formation reaction affects the current density produced by the photocathode. The value of the current density produced by the Cu₂O photocathode in Na₂SO₄ solution is presented in Table 3. **Tabel 3.** Current density of Cu₂O prepared by varied Cu:citrate mole ratio at 0.2 V vs RHE | Cu ₂ O prepared by Cu:citrate
mole ratio | Current density (mA/cm ²) | |--|---------------------------------------| | 1:1 | 0.09 | | 1:2 | 0.18 | | 1:4 | 0.12 | The current density produced by Cu₂O in the synthesis results with a Cu:citrate ratio of 1:1 has a very small current density value of 0.09 mA/cm², while the Cu:citrate ratio 1:2 has the largest current density value, namely 0.18 mA/cm², and for the Cu: citrate ratio of 1:4 to e current density value was lower than that of the Cu:citrate 1:2 ratio, which was 0.12 mA/cm² at 0.2 V vs RHE. From these results indicate that in equilibrium or with a Cu:citrate ratio of 1:2 in the citrate modified Fehling reaction, the Cu₂O photocatode has the highest current. This is possible because at equilibrium, the modified Fehling reagent has completely reacted to produce Cu₂O precipitates, so that there is no impurity in Cu₂O powder which has been made for Cu₂O thin layer photocathode. Meanwhile, the Cu:citrate ratio of 1:1 and 1:4 produces Cu₂O which still has a lot of impurities so that it affects the process of measuring the current. The concentration variation of citrate addition in Cu_2O synthesis also shows a shift in the onset potential. The onset potential is the initial potential that the current appears when the photocathode is irradiated. Determination of the onset potential is done by plotting J^2 vs potential for each photocathode. The intersection of the dotted line and the straight line on the curve indicates the photocathode onset potential [12]. The onset potential at various concentrations of citrate addition to the synthesis of Cu_2O used as a photocathode is shown in Figure 7. **Pigure 7.** Onset potentials of Cu₂O semiconductors prepared by the mole ratio of Cu:sodium citrate (a) 1:1; (b) 1:2; (c) 1:4. From these results, it can be seen that the onset potential of Cu₂O semiconductors with variations in the concentration addition is shown in Table 4. Table 4. Measurement results for onset potential. | Cu ₂ O prepared by Cu:citrate ratio | Onset potential (V vs RHE) | |--|----------------------------| | 1:1 | 0.04 | | 1:2 | 0.08 | | 1:4 | 0.02 | **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 A semiconductor with a Cu:citrate ratio of 1:2 have the highest onset potential value. So it can be concluded that in equilibrium it produces pure Cu_2O with a high value of photon currents and a high onset potential. While under and over citrate conditions obtain lower onset potential and current density. It is possible that the resulting Cu_2O is impure or impurities are still present. 3.5.2. Applied Bias Photon-to-Current Efficiency (ABPE) Measurement. ABPE measurement aims to determine the efficiency of the photocathode in responding to photons/light energy into an electric current under a given voltage. In determining the ABPE value on the photocathode 17 eviously, the photocurrent (current density) was measured using 3 electrodes, namely Cu₂O as the working electrode, platinum as the anode, and the Ag/AgCl electrode as the reference electrode, which was inserted into the Na₂SO₄ electrolyte solution (pH 9) which is ideally used in the process of measuring the efficiency of water splitting by photoelectrochemistry. The curve of the ABPE (%) value in Na₂SO₄ solution is p₃₈ented in Figure 8. The figure shows the effect of variations in the addition of citrate on the ABPE, and the maximum values are summarized in Table 5. Figure 8. ABPE curves for Cu₂O priconductors prepared by Cu:citrate ratio of (a) 1:1, (b) 1:2, (c) 1:4. Table 5 shows the efficiency of photocathodes in responding to light. The ABPE value in Cu₂O from the Cu:citrate ratio 1:1 has the highest efficiency, which is 0.062%. Meanwhile, Cu₂O from an equilibrium state (1:2) has the lowest efficiency value of 0.057%. Although for efficiency of the photocathode on Cu₂O from equilibrium has a low ABPE value, when it is used as a photocathode in water splitting it has a higher current than Cu₂O from the addition of less citrate. **Table 5.** ABPE values (%) for each photocatode | Cu ₂ O prepared by | Potential (V) | ABPE | |-------------------------------|---------------|-------| | Cu:citrate mole ratio | vs RHE | (%) | | 1:1 | 0.154 | 0.062 | | 1:2 | 0.239 | 0.057 | | 1:3 | 0.165 | 0.058 | #### 1 Conclusion Modification of Fehling's reagent using sodium citrate has effects on the measurement of current and onset potential of Cu₂O semiconductor under equilibrium conditions. The Cu₂O thin film semiconductor has been successfully prepared using the spin coating method. SEM analysis results showed Cu₂O with spherical morphology. The EDX analysis results confirmed that the sample contained 78 and 22% of Cu and O elements, respectively. The XRD analysis results revealed the presence of Cu₂O with an average grain size of 38.08 nm. Meanwhile, based on UV-Vis spectrophotometry, measurement showed that Cu-citrate was complexed better than Cu-tartrate. The results of current and onset potential measurements for Cu₂O photocathode from the Cu:citrate mole ratio of 1:2 gave the highest values, namely 0.18 mA/cm² and 0.09V, respectively. However, the highest efficiency (ABPE) was found for photocathode of Cu₂O prepared by Cu:citrate of 1:1. **1943** (2021) 012179 doi:10.1088/1742-6596/1943/1/012179 ## Ackusavledgment The authors are thankful to the Faculty of Science and Mathematics at Diponegoro University for supporting this work (Non-APBN FSM UNDIP 2020). ## References - Septina W, Prabhakar R R, Wick R, Moehl T and Tilley S D 2017 Chem. Mater. 29 4 1735-[1] 15 1743 - Chen Z, Dinh H N and Miller E 2013 Photoelectrochemical Water Splitting SpringerBriefs in [2] Energy (London: Springer) Zhang Z, Zhang S, Liu S, Wang M, Fu G, He L, Yang Y and Fang S 2015 Sens. Actuators - [3] B. Chem. 220 184–191 Tamirat A G, Rick J, Dubale A A, Su, W-N and Hwang B-J 2016 Nanoscale Horiz. 1 4 243– - [4] - [5] in N, Serin T, Horzum S and Celik Y 2005 Semicon. Sci. Technol. 20 5 398–401 - [6] Ma Q-B, Hofmann J P, Litke A and Hensen E J M 2015 Sol. Energy Mater. Sol. Cells 141 178- - oti M and Matour L 2010 IEE Trans. Nate technol. 17 1 - [8] J, Wu S, Xia H, Li L and Zhang S 2019 J. Mater. Chem. C 7 15 4551–4558 - Asthana S, Samanta C, Voolapalli R K and Saha B 2017 J. Mater. Chem. A 5 6 2649-2663 [9] - Purry R W and DuBois F W 1952 J. Am. Soc. 74 15 3749-3753 - [11] reng L, Zhang C, Gao G and Cui D 2012 Nanoscale Res. Lett. 7 1 276. - [12] Chen Z, Jaramillo T F, Deutsch T G, Kleiman shwarsctein, A, Forman A J, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, Mcfarlan E W, Domen K, Miller E L, Turner J A and Dinh H N 2010 J. Mater. Res. 25 1 3-16 - [13] Nurosyid F, Purnama B and Ayuni L A 2008 Jurnal Ilmu Dasar 9 9-14 Synthesis of Cu2 O from modified Fehling reaction for the preparation of Cu2 O thin film photocathode by using the spin coating method, characterization, and its photoelectrochemical properties | ORIGINA | ALITY REPORT | | | | |---------|-----------------------------------|---|---|---------------------| | SIMILA | 2%
ARITY INDEX | 8% INTERNET SOURCES | 10% PUBLICATIONS | 4% STUDENT PAPERS | | PRIMAR | Y SOURCES | | | | | 1 | iopsciene
Internet Sourc | ce.iop.org | | 1 % | | 2 | Zhang. "
crystal C
generati | Suli Wu, Hongbo
Synthesis of m
u O spheres an
ng structural co
s Chemistry C, 2 | onodisperse s
d their applications ", Journa | single-
ation in | | 3 | onlinelib
Internet Sourc | rary.wiley.com | | 1 % | | 4 | exp-nane
Internet Source | oandes2012.blc | gspot.com | 1 % | | 5 | WWW.M
Internet Sourc | DPI.COM | | <1% | | 6 | WWW.Nrc | researchpress. | com | <1% | | 7 | Wu, Mi, Wei-Jian Chen, Yu-Hua Shen, Fang-Zhi
Huang, Chuan-Hao Li, and Shi-Kuo Li. "In Situ
Growth of Matchlike ZnO/Au Plasmonic
Heterostructure for Enhanced
Photoelectrochemical Water Splitting", ACS
Applied Materials & Interfaces | |---|---| | | Publication | <1% ejurnal.binawakya.or.id <1% 8 Internet Source Submitted to The International School <1% 9 Bangalore Student Paper pubs.acs.org <1% 10 Internet Source From Molecules to Materials, 2015. <1% 11 Publication Submitted to University of Bath <1% 12 Student Paper research.tue.nl <1% 13 Internet Source www.mdpi.com Internet Source www.ukm.my Internet Source | | | <1% | |----|---|-----| | 17 | pubs.rsc.org
Internet Source | <1% | | 18 | Submitted to King Saud University Student Paper | <1% | | 19 | docksci.com
Internet Source | <1% | | 20 | link.springer.com Internet Source | <1% | | 21 | www.mathnet.ru Internet Source | <1% | | 22 | www.beilstein-journals.org | <1% | | 23 | F. A. Harraz. "Pore filling of macropores prepared in p-type silicon by copper deposition", physica status solidi (a), 06/2005 | <1% | | 24 | www.granthaalayahpublication.org | <1% | | 25 | G. Wisz, P. Sawicka-Chudy, P. Potera, M. Sibiński, R. Yavorskyi, Ł. Głowa, B. Cieniek, M. Cholewa. " Morphology, composition, structure and optical properties of thermally annealed Cu O thin films prepared by reactive | <1% | # DC sputtering method ", Molecular Crystals and Liquid Crystals, 2019 Publication | 26 | Palaska, P "Sensitive detection of cyclophosphamide using DNA-modified carbon paste, pencil graphite and hanging mercury drop electrodes", Talanta, 20070515 | <1% | |----|---|-----| | 27 | anyflip.com
Internet Source | <1% | | 28 | apr.psk.or.kr
Internet Source | <1% | | 29 | eprints.gla.ac.uk Internet Source | <1% | | 30 | Antika Prasetyaningtyas, Mochammad Facta,
Susatyo Handoko. "Investigation of
Photovoltaic Panel Topology Performance to
Feed Electricity in Rural Area", 2021 8th
International Conference on Information
Technology, Computer and Electrical
Engineering (ICITACEE), 2021
Publication | <1% | | 31 | Iqbal Singh, R. K. Bedi. "Influence of pH on the | <1% | synthesis and characterization of CuO powder for thick film room-temperature NH3 gas sensor", Journal of Materials Science, 2011 Publication | | 32 | Yu, Xiaojiao, Linzhu Huang, Yuchen Wei, Jian Zhang, Zhuozhuo Zhao, Wenqin Dai, and Binghua Yao. "Controllable preparation, characterization and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology", Materials Research Bulletin, 2015. Publication | <1% | |--|----|---|-----| | | 33 | www.SciRP.org Internet Source | <1% | | | 34 | "Handbook of Materials Characterization",
Springer Science and Business Media LLC,
2018
Publication | <1% | | | 35 | Cui Ying Toe, Shujie Zhou, Michael Gunawan,
Xinxin Lu, Yun Hau Ng, Rose Amal. "Recent
Advances and the Design Criteria of Metal
Sulfide Photocathode and Photoanode for
Photoelectrocatalysis", Journal of Materials
Chemistry A, 2021 | <1% | | | 36 | Johan Hofkens, Maarten B. J. Roeffaers. "Photocatalysts in close-up", Nature, 2016 Publication | <1% | | | 37 | Sharma, P "Synthesis of fluorescent hollow and porous Cu"2O nanopolyhedras in the | <1% | # presence of poly(vinyl pyrrolidone)", Materials Chemistry and Physics, 20090415 Publication | 38 | Wan Zhang, Ruotian Chen, Zhiguang Yin,
Xinyu Wang, Zenglin Wang, Fengtao Fan, Yi
Ma. " Surface Assistant Charge Separation in
PEC Cu S–Ni/Cu O Cathode ", ACS Applied
Materials & Interfaces, 2019
Publication | <1% | |----|---|-----| | 39 | ebin.pub
Internet Source | <1% | | 40 | hal.archives-ouvertes.fr Internet Source | <1% | | 41 | Yi-Hsuan Chiu, Sarah A. Lindley, Chun-Wen
Tsao, Ming-Yu Kuo, Jason K. Cooper, Yung-
Jung Hsu, Jin Z. Zhang. "Hollow Au
Nanosphere-Cu O Core-Shell Nanostructures
with Controllable Core Surface Morphology ",
The Journal of Physical Chemistry C, 2020
Publication | <1% | | 42 | Yingpan Song, Chuanpan Guo, Hongfei Ji,
Shuai Zhang, Minghua Wang, Linghao He,
Donglai Peng, Zhihong Zhang. "CuxO@DNA
sphere-based electrochemical bioassay for
sensitive detection of Pb2+", Microchimica
Acta, 2018
Publication | <1% | Exclude quotes Off Exclude matches Off Exclude bibliography Off