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Abstract— The information content in an image can 
experience a decrease in quality due to noises. Accordingly, 
noise removal and histogram equalization (HE) are among the 
processes used to enhance image quality. The purpose of this 
research is to determine the effect of changes in image quality as 
a result of applying median filtering (MF), Wiener filtering 
(WF), HE, or hybrid methods on noisy images. Here, face 
images are used as input. The research stages began with 
preprocessing, i.e., cropping, size normalization, and color-to-
gray conversion. Then, Gaussian and salt-and-pepper noises 
with intensities of 20%, 50%, and 80% are applied to the 
images. Consequently, the processes, i.e., HE, MF, WF, hybrid 
method 1 (HE and MF), and hybrid method 2 (HE and WF), are 
implemented, and then the image quality is evaluated. The 
results of the research show that the best methods to enhance 
Gaussian and salt-and-pepper noisy images are WF and MF, 
respectively. HE and the two hybrid methods generally do not 
improve image quality. The implementation of hybrid method 2 
results in the maximum structural similarity index with 80% 
Gaussian noise. Meanwhile, MF provides the minimum mean-
square error and maximum peak signal-to-noise ratio with 20% 
Gaussian noise. 

Keywords — histogram equalization, median filtering, 
Wiener filtering, Gaussian noise, salt-and-pepper noise 

I. INTRODUCTION  
Image data acquisition sometimes results in poor quality 

images. The information content in an image can experience 
a decrease in quality due to noises. Accordingly, noise 
removal and histogram equalization (HE) are among the 
examples of processes to enhance image quality. Image 
enhancement methods are required to improve the quality of 
images and maximize the information content that exists in 
the input image so that it can obtain a form of visualization 
that is better and more easily interpreted by humans and 
computer machines. The most commonly used image 
enhancement methods are HE, Wiener filtering (WF), and 
median filtering (MF) [1]. 

The purpose of this research is to determine the effect of 
changes in image quality as a result of applying MF, WF, HE, 
and hybrid methods on noisy images. The hybrid methods 
proposed in this research are hybrid method 1 (HE + MF) and 
hybrid method 2 (HE + WF).   

II. PREVIOUS WORKS 
Erwin et al. examined three image enhancement 

methods, i.e., image sharpening, contrast enhancement, and 
standard MF. The image quality parameters used in this study 
are based on mean-square error (MSE), peak signal-to-noise 
ratio (PSNR), and structural similarity index (SSIM) values. 
The results of this study indicate that the highest PSNR, MSE, 
and SSIM values were obtained in the implementation of the 
MF method with PSNR = 37.83, MSE = 145.81, and SSIM = 
0.97 [2]. George et al. concluded that median-based filters are 
commonly used to remove impulse noises. Some types of MF 
include recursive MF, iterative MF, directional MF, weighted 
MF, adaptive MF, progressive switching median (PSM) 
filter, and threshold MF [3].  

Kunsoth and Binwas proposed a modified decision-based 
MF for impulse noise removal. Their experimental results 
show that the proposed method performs better than the 
standard MF, weighted MF, adaptive MF, and decision-based 
MF, especially when a high noise intensity level [4]. Priestley 
et al. proposed a decision-based switching MF for image 
restoration. The performance of this algorithm was tested 
against four noise models with different levels of noise 
densities and was evaluated in terms of performance metrics, 
including PSNR and IEF. It provided better results for images 
that were extremely corrupted with up to 90% noise density 
and outperformed classic filters in terms of handling image 
corruption [5]. 

Darus et al. proposed a modified hybrid MF for the 
removal of low-density random-valued impulse noise in 
images. This technique has been proven to be capable of 
overcoming the shortcomings of a standard MF and improve 
the hybrid MF in restoring image details and operating at high 
noise densities [6]. Khatri and Kasturiwale conducted a 
computer analysis to analyze the performance of the proposed 
method with that of simple MF, simple adaptive MF, and 
adaptive switched MF. The proposed filter was proven to be 
more efficient in terms of objective and subjective parameters 
[7]. Goyal and Chaurasia explained that random-valued 
impulse noise is the most frequent cause of distortion in 
natural images [8].  

Lahmiri and Boukadoum proposed a combination of WF 
and partial differential equation (PDE) filtering to form a 
sequential hybrid filter. Their experimental results showed 
the superiority of the proposed system over using either the 
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local WF or PDE filter alone [9]. Baselice et al. proposed an 
enhanced WF for despeckling ultrasound images. This 
technique can locally adapt the noise filtering intensity to 
combine good edges and detail preservation with effective 
noise reduction [10]. Arazm et al. proposed the noise 
reduction of scanning electron microscope (SEM) images 
using adaptive WF. The proposed filter was compared with 
the original WF, i.e. before modified to be adaptive WF, to 
denoise SEM images. For different noise variances, the 
experimental results indicate that the proposed filter has 
better performance compared with other filters [11]. Sheer 
and Al-Ani investigated the effects of a regularization 
parameter (α), via non-blind iterative WF, for restoring a 
medical image. The best result which measured by SNR 
parameter was obtained with α = 1 and with a small width of 
the blurring function and high values of SNR [12]. 

Kalavathi and Priya studied the removal of impulse noise 
using histogram-based localized WF for MR brain image 
restoration. The performance of this method was evaluated 
by calculating the PSNR value. Their experimental results 
show that the proposed method gives better results on 
denoising impulse noises in medical images compared with 
existing methods, i.e., anisotropic diffusion filter, bilateral 
filter, non-local mean filter, and WF [13]. The review on HE-
based image enhancement techniques by Nithyanand et al. 
indicated that noise removal, contrast improvement, and 
adjustment of brightness are common operations performed 
on raw images captured by a camera. They also concluded 
that HE is an important image enhancement scheme and 
proposed many variations of HE [14]. 

III. RESEARCH METHOD 
The research stages are shown in Fig. 1. 
 

 
 
Fig. 1. Research stages 

 

A. Image Preprocessing 
The purpose of preprocessing is to focus certain parts of 

the input image (determining the region of interest [ROI]), 
with a uniform type, i.e., gray image, and size. We used facial 
images of various expressions as the input images. The first 
step is image cropping, where the images containing the face 
were cropped so that only the face part is captured. 

Then, the images were resized to 224 x 224 pixels to 
normalize the image size. After that, the images were 
converted from RGB to grayscale. The resulting images after 
the three processes were used as the reference images that 
were compared with the output images after the noise 

addition and image enhancement. Examples of the images 
after cropping the facial area, resizing, and converting from 
RGB to grayscale are shown in Fig. 2. 

 

 
(a)                        (b)                          (c)                        (d) 

Fig. 2. Example of the process stages: (a) original image; (b) cropping the 
facial area; (c) image resizing; (d) RGB to grayscale conversion. 

B. Input Image 
The input images were the preprocessing results before 

and after the addition of noises. The noises added were 
Gaussian noise and salt-and-pepper noise with intensities of 
20%, 50%, and 80%. The resulting images were used as the 
input images for the image enhancement method. Figure 3 
shows examples of images before and after the addition of 
Gaussian noises with intensities of 20%, 50%, and 80%. 

 

 
 
Fig. 3. Example of Gaussian noise addition effects: (a) original image; (b) 
20% intensity; (c) 50% intensity; (d) 80% intensity. 
 

Figure 4 shows examples of images before and after the 
addition of salt-and-pepper noise with intensities of 20%, 
50%, and 80%. 

 

 
 

Fig. 4. Example of salt-and-pepper noise addition effects: (a) original image; 
(b) 20% intensity; (c) 50% intensity; (d) 80% intensity. 

C. Method Implementation 
In this research, five variations of the method are 

implemented: (1) HE, (2) MF, (3) WF, (4) hybrid 1 (HE + 
MF), and (5) hybrid 2 (HE + WF). HE increases the dynamic 
range of gray levels in a low-contrast image to cover the full 
range of gray levels [15]. In HE, the new pixel value x is 
calculated by 

 

𝐼(𝑥) = round	 ,-./(0)1234-./
51234-./

6 × (𝐿 − 1). (1) 
 

The cumulative distribution function (CDF) of an image 
is calculated using the following formula: 

 
CDF[𝑘] = ∑ 255	 𝑛E 𝑁G

H
EIJ ,    (2) 

 
where CDF[k] is the CDF value of a pixel with value k in the 
input image, nj is the number of pixels with value j, and N is 
the total number of pixels. All input pixels with 
corresponding values CDF[k] have to re-labeled [16]. 
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When implementing the MF, a 3 x 3 filtering window was 
used. The median was derived from the nine neighboring 
pixels using Eq. 3 [17]. 

 
M(i,j) = median [X(i-1 , j-1), X(i-1 , j), … 
   X(i-1 , j+1), X(i , j-1), X(i , j), X(i , j+1)… 

 X(i+1 , j-1), X(i+1 , j), X(i+1 , j+1)],                         (3) 
 

where M(i,j) is the median value that will replace the pixel 
value at the position (i,j) and X(m,n) is the pixel value at the 
position (m,n). 

The WF was implemented in this research to estimate the 
local mean and variance around each pixel: 

  
𝜇 = 5

LM
∑ 𝑎(𝑛5, 𝑛P)QR,QS∈U         (4) 

 
𝜎P = 5

LM
∑ 𝑎P(𝑛5, 𝑛P) − 𝜇PQR,QS∈U ,       (5) 

 
where 𝜂is the N-by-M local neighborhood of each pixel in 
image A. The software then created a pixel-wise WF using 
the following estimates: 
 
								𝑏(𝑛5, 𝑛P) = 𝜇 + ZS1[S

ZS
(𝑎(𝑛5, 𝑛P) − 𝜇),                     (6) 

 

where 𝜐P is the noise variance. If no noise variance is given, 
then the software implementation uses the average of all the 
local estimated variances [18]. 

D. Image Quality Assessment 
The assessment was conducted quantitatively with the 

MSE, PSNR, and SSIM parameters. The values of the three 
parameters were used as the determinants of the optimal 
method that provided the best output image. 

The MSE was used to obtain the sum of the squares of 
the “errors” between the original image s(i,j) and filtered 
output image y(i,j). The pixels s(i,j) correspond to 1≤ i ≤ M1 
and 1≤ j ≤ M2 [19]. 

 

𝑀𝑆𝐸 =
∑ ∑ [a(b,E)1c(b,E)]SdS

e
dR
f

MR×MS
.          (7) 

 
The PSNR was used to estimate the robustness of 

denoising with respect to the noise. The PSNR between the 
original image s(i,j) and filtered output image y(i,j) of 
dimension 𝑀5 ×𝑀P is defined as [20] 

 
𝑃𝑆𝑁𝑅 = 10 × log5J

lS

Mmn
,         (8) 

 
where P = maximum value in the original image. 

The SSIM estimates the similarity measure between the 
original image s(i,j) and filtered output image y(i,j). SSIM is 
defined as [20] 

 
𝑆𝑆𝐼𝑀 =	 (P	opoqr	sR)(P	Zpqr	sS)

(opSr	o	qS r	sR)(ZpSr	Z	qS r	sS)
,        (9)

     
where 𝜇c is the local mean of the original image s, 𝜇a is the 
local mean of output image y, and 𝜎ca  is the standard 
deviation between s and y. 𝜎cP denotes the variance of s. 𝑐5 =
(𝐾5𝐿)P, 𝑐P = (𝐾P𝐿)P, K1 = 0.01, and K2 = 0.03 by default, 
and L is the dynamic range of pixel values [20]. 

IV. RESULTS AND DISCUSSION 
In this research, Gaussian and salt-and-pepper noises 

with intensity variations of 20% (low-level noise), 50% 
(medium-level noise), and 80% (high-level noise) were 
added. To determine the optimal method for image 
enhancement, the image quality was measured in terms of the 
MSE, PSNR, and SSIM values. Figure 5 shows the five input 
images used as references to the output images. 

 

 
            (a)                  (b)     (c)         (d)              (e)  

 
Fig. 5. Five preprocessed face images in various expressions:(a) angry; (b) 
sad; (c) happy; (d) scared; and (e) shocked. 
 

We used five input images with different facial 
expressions, i.e., sad, angry, happy, shocked, and scared. Two 
different noises were added to the five images: Gaussian noise 
and salt-and-pepper noise. The noise intensity was determined 
by three types of levels: 20% (low-level noise intensity), 50% 
(medium-level noise intensity), and 80% (high-level noise 
intensity). Then, an image enhancement process was 
conducted using six schemes (no enhancement, HE, MF, WF, 
hybrid 1, and hybrid 2). Three measurement parameters, i.e., 
MSE, PSNR, and SSIM, were used to assess the image quality 
of the original images before the noises were added. From the 
description above, there are 5 x 2 x 3 x 6 x 3 = 540 tests. To 
summarize the research results, the testing results of the five 
different facial expressions for one testing scheme were 
averaged. Table I shows the test results of the Gaussian noise-
added images in the no-enhancement process. Table II shows 
the test results of the salt-and-pepper noise-added images in 
the no-enhancement process (note: in both tables, label 1 = 
angry; 2 = sad; 3 = happy; 4 = scared; 5 = shocked). 

TABLE I.  TEST RESULTS FOR THE GAUSSIAN NOISE-ADDED IMAGES FOR 
THE NO-ENHANCEMENT PROCESS 

Intensity Para-
meters 

Facial expression images Average 1 2 3 4 5 

20% 
MSE 373.2 390.8 362.3 386.7 381.9 379.0 
PSNR 22.41 22.21 22.54 22.26 22.31 22.35 
SSIM 0.32 0.32 0.36 0.32 0.32 0.33 

50% 
MSE 2025 2151 1984 2091 2147 2079.9 
PSNR 15.07 14.80 15.15 14.93 14.81 14.92 
SSIM 0.107 0.11 0.135 0.104 0.103 0.112 

80% 
MSE 4424 4593 4214 4457 4575 4452.9 
PSNR 11.67 11.5 11.88 11.64 11.53 11.64 
SSIM 0.055 0.058 0.075 0.053 0.054 0.059 

 
TABLE II. TEST RESULTS FOR THE SALT-AND-PEPPER NOISE-ADDED 

IMAGES FOR THE NO-ENHANCEMENT PROCESS 
 

Intensity Para-
meters 

Facial expression images  Average 1 2 3 4 5 

20% 
MSE 863 731 889 844 770 819.6 
PSNR 18.8 19.5 18.6 18.9 19.3 19.0 
SSIM 0.78 0.79 0.80 0.78 0.79 0.79 

50% 
MSE 2148 1931 2170 2086 2037 2074.2 
PSNR 14.8 15.3 14.8 14.9 15.0 14.9 
SSIM 0.54 0.54 0.57 0.53 0.54 0.54 

80% 
MSE 3382 3059 3465 3360 3202 3293.7 
PSNR 12.8 13.3 12.7 12.9 13.1 13.0 
SSIM 0.37 0.36 0.40 0.36 0.37 0.37 
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The test was performed on the five image enhancement 
processes, i.e., HE, MF, WF, hybrid 1, and hybrid 2. As 
shown in Tables 1 and 2, the parameter values of the MSE, 
PSNR, and SSIM on the same noise type and noise intensity 
produce almost similar values. For the other five tests, the 
same condition applies. Therefore, the succeeding research 
results are given in the form of an average value, not the 
individual value of the image type test. Tables III and IV 
respectively show the average values of the whole test with 
the addition of Gaussian and salt-and-pepper noises. 

 

TABLE III. AVERAGE TEST RESULT VALUES FOR THE GAUSSIAN NOISE-
ADDED IMAGES 

 

Methods Noise 
intensity MSE PNSR SSIM 

No 
enhancement 

20% 379.00 22.35 0.33 
50% 2079.85 14.95 0.11 
80% 4452.85 11.64 0.06 

Averaged 2303.90 16.31 0.17 
Histogram 

equalization 
(HE) 

20% 886.59 18.85 0.28 
50% 2498.27 14.17 0.11 
80% 4543.84 11.56 0.06 

Averaged 2642.90 14.86 0.15 
Median 
filtering 

(MF) 

20% 189.54 25.69 0.66 
50% 535.49 20.89 0.35 
80% 1113.36 17.67 0.21 

Averaged 612.80 21.42 0.41 
Wiener 
filtering 

(WF) 

20% 270.17 23.82 0.65 
50% 485.06 21.27 0.38 
80% 868.25 18.75 0.25 

Averaged 541.16 21.28 0.43 

Hybrid 1 
(HE + MF) 

20% 547.77 21.10 0.58 
50% 751.54 19.44 0.33 
80% 1286.39 17.06 0.21 

Averaged 861.90 19.20 0.37 

Hybrid 2 
(HE + WF) 

20% 546.17 21.01 0.60 
50% 588.56 20.47 0.37 
80% 978.04 18.25 0.25 

Averaged 704.26 19.91 0.41 
 

TABLE IV. AVERAGE TEST RESULT VALUES FOR THE SALT-AND-PEPPER 
NOISE-ADDED IMAGES 

 

Methods Noise 
intensity MSE PNSR SSIM 

No 
enhancement 

(NE) 

20% 819.556 19.006 0.787 
50% 2074.294 14.965 0.541 
80% 3293.689 12.958 0.373 

Averaged 2062.51 15.64 0.57 
Histogram 

equalization 
(HE) 

20% 1200.74 17.373 0.715 
50% 2375.25 14.372 0.496 
80% 3561.21 12.616 0.34 

Averaged 2379.07 14.79 0.52 
Median 
filtering 

(MF) 

20% 119.066 28.886 0.94 
50% 132.68 27.92 0.93 
80% 160.9 26.629 0.916 

Averaged 137.55 27.81 0.93 
Wiener 
filtering 

(WF) 

20% 376 22.393 0.623 
50% 538.006 20.83 0.428 
80% 739.191 19.452 0.324 

Averaged 551.07 20.89 0.46 

Hybrid 1 
(HE + MF) 

20% 509.336 21.514 0.861 
50% 462.8 21.771 0.853 
80% 476.703 21.57 0.839 

Averaged 482.95 21.62 0.85 

Hybrid 2 
(HE + WF) 

20% 667.684 20.067 0.602 
50% 768.095 19.342 0.423 
80% 926.91 18.503 0.323 

Averaged 787.56 19.30 0.45 
 
The observation values are summarized as the average 

values of the overall implementation of six variations, 

consisting of one variation without the enhancement method 
and five variations of the image enhancement 
implementation. The six variations can be shown in Table V. 

TABLE V. AVERAGE VALUES OF THE MSE, PSNR, AND SSIM FOR THE 
GAUSSIAN AND SALT-AND-PEPPER NOISE-ADDED IMAGES 

Methods Parameters Gaussian 
noise 

Salt-and-
pepper noise 

No 
enhancement 

MSE 2303.90 2062.51 
PSNR 16.31 15.64 
SSIM 0.17 0.57 

Histogram 
equalization 

(HE) 

MSE 2642.9 2379.07 
PSNR 14.861 14.787 
SSIM 0.15 0.517 

Median 
filtering (MF) 

MSE 612.796 137.549 
PSNR 21.415 27.812 
SSIM 0.406 0.929 

Wiener filtering 
(WF) 

MSE 541.162 551.066 
PSNR 21.28 20.892 
SSIM 0.428 0.458 

Hybrid 1 
(HE + MF) 

MSE 861.898 482.946 
PSNR 19.2 21.618 
SSIM 0.372 0.851 

Hybrid 2 
(HE + WF) 

MSE 704.255 787.563 
PSNR 19.912 19.304 
SSIM 0.407 0.449 

 
For the MSE parameters, the optimal method produced 

the minimum MSE value. For the PSNR and SSIM 
parameters, the optimal method produced the maximum 
PSNR and SSIM values. The optimal values are indicated by 
bold letters in Table V. 

A. Gaussian Noise Addition 
Table 5 shows that the addition of Gaussian noise will be 

optimally enhanced by WF because the minimum MSE and 
maximum SSIM values are obtained in the implementation of 
WF.  

The maximum average PSNR value was determined with 
the application of MF. However, two of the three individual 
values from the PSNR test show the maximum value in the 
implementation of WF, as shown in Table 3. The two 
maximum PSNR values are for additional noise with noise 
intensities of 50% and 80% and PSNR of 21.27 and 18.75. In 
the application of MF, the maximum value was obtained with 
the Gaussian noise addition with an intensity of 20% (PSNR 
= 25.69). This extreme value resulted in an average PSNR 
being higher than that in the MF. Thus, Gaussian noise can 
be more enhanced using WF rather than MF. This conclusion 
is in accordance with that conveyed by George et al. [3], 
Vishaga and Das [21], and Sravani et al. [22]. Figure 6 
explains the advantages of WF in enhancing Gaussian noisy 
images.  

Exception testing of hybrid method 2 (HE and WF) 
provided a maximum SSIM on high-Gaussian-noise images 
(80%). Meanwhile, the MF was better because it provided the 
minimum MSE and maximum PSNR for the low-Gaussian-
noise images (20%). However, these exclusions do not affect 
the conclusion that, on average, for overall testing, WF can 
best enhance the quality of Gaussian noise images rather than 
the other methods. 

B. Salt-and-pepper Noise Addition 
Figure 7 depicts the graph of the three parameters, i.e., 

MSE, PSNR, and SSIM, to assess the image enhancement 
methods with the salt-and-pepper noise addition. This figure 
also indicates the advantages of MF in enhancing the salt-
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and-pepper noisy images. Table V and Fig. 7 show that the 
addition of salt-and-pepper noise will be optimally enhanced 
by implementing MF because the minimum MSE, maximum 
PSNR, and maximum SSIM values are obtained in applying 
the process. This conclusion coincides with that of Mehta 
[17], Lahmiri and Boukadoum [9], Arazm et al. [11], and 
Sheer and Al-Ani [12]. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Three parameters to assess the image enhancement methods with 
the Gaussian noise addition: (a) MSE; (b) PSNR; (c) SSIM 
 

Figure 8 depicts the MSE graph (e.g., representing the 
PSNR and SSIM graphs) for the Gaussian and salt-and-
pepper noise additions. This graph shows that the 
implementation of HE and the following modifications (HE 
+ MF and HE + WF) for noisy images did not enhance the 
image quality. Similar results can be observed in the MSE, 
PSNR, and SSIM graphs before the HE and hybrid processes 
(HE + MF and HE + WF). 

 
(a) 

 

 
(b) 

 
(c) 

Figure 7. Three parameters to assess image enhancement methods with the 
salt-and-pepper noise addition: (a) MSE; (b) PSNR; (c) SSIM 
 

 
HE and its hybrid methods were unable to remove noises. 

The average MSE in HE was the largest compared with the 
MSE in other methods. The overall average PSNR in HE was 
the lowest compared with the PSNR of other methods. This is 
because HE only equalizes the histogram but does not remove 
noises, so noises still persist after the process. This finding is 
consistent with that stated by Nithyananda et al. [14] and Zhao 
et al. [23]. 

V. CONCLUSIONS 

 The optimal methods that can be used for Gaussian and 
salt-and-pepper noisy images are WF and MF, respectively. 
HE and the two hybrid methods (HE + MF and HE + WF) do 
not generally enhance the image quality of Gaussian and salt-
and-pepper noisy images. This is because HE only performs 
histogram arrangement but does not remove noises, so the 
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noise value remains, and this noise participates in the said 
process. The exception testing of hybrid method 2 (HE + WF) 
resulted in the maximum SSIM in high-Gaussian-noise 
images (80%). Meanwhile, MF resulted in the minimum 
MSE and maximum PSNR for low-Gaussian-noise images 
(20%). 
 

 
(a) 

 

 
(b) 

Figure 8. MSE to assess the image enhancement method on (a) Gaussian 
noise addition and (b) salt-and-pepper noise addition 
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