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Combined Probability Approach and Indirect
Data-Driven Method for Bearing

Degradation Prognostics
Wahyu Caesarendra, Achmad Widodo, Pham Hong Thom, Bo-Suk Yang, and Joga Dharma Setiawan

Abstract—This study proposes an application of relevance
vector machine (RVM), logistic regression (LR), and autore-
gressive moving average/generalized autoregressive conditional
heteroscedasticity (ARMA/GARCH) models to assess failure
degradation based on run-to-failure bearing simulating data.
Failure degradation is calculated by using an LR model, and
then regarded as the target vectors of the failure probability
for training the RVM model. A multi-step-ahead method-based
ARMA/GARCH is used to predict censored data, and its pre-
diction performance is compared with one of Dempster-Shafer
regression (DSR) method. Furthermore, RVM is selected as an
intelligent system, and trained by run-to-failure bearing data and
the target vectors of failure probability obtained from the LR
model. After training, RVM is employed to predict the failure
probability of individual units of bearing samples. In addition,
statistical process control is used to analyze the variance of the
failure probability. The result shows the novelty of the proposed
method, which can be considered as a valid machine degradation
prognostic model.

Index Terms—Autoregressive moving average, censored data,
Dempster-Shafer regression, generalized autoregressive condi-
tional heteroscedasticity, prognostics, relevance vector machine,
run-to-failure.

ACRONYMS

ARMA Autoregressive moving average

BPFI Ball pass frequency inner race

BPFO Ball pass frequency outer race

BSF Ball spin frequency DSR Dempster-Shafer
regression

GARCH Generalized autoregressive conditional
heterocedascity
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LCL Lower control limit

LR Logistic regression

MLE Maximum likelihood estimation

RVM Relevance vector machine

SVM Support vector machine

UCL Upper control limit

NOTATION

Coefficient of ARMA model

Logit model

and Parameter of GARCH model

Kernel function of RVM

Coefficient of GARCH model

Likelihood function for the ARMA (1,
1) model

Likelihood function for the GARCH (1,
1) model

Number of data for each data input of
RVM

Probability of some output event of
logistic function

Prior probability distribution over the
weights

Likelihood of RVM data set

Posterior distribution of weight

Target vector for RVM training

Weight vector obtained from RVM
training

Input vector of logistic regression

Set of data input for RVM training

Vector of hyperparameters

Regression coefficients

Noise process of RVM with mean 0, and
variance

White noise of ARMA model
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and Parameter of ARMA model

Conditional variance

I. INTRODUCTION

In maintenance activities, a failure degradation assessment
can be used as important information to indicate the perfor-
mance of a part or machine at a particular or a range of time
through condition monitoring, and fault diagnostics systems.
To create the appropriate decision in system health manage-
ment, and predict the impending failure, the condition moni-
toring and fault diagnostics of machine performance should be
complemented with an appropriate prognostics system. Prog-
nostics will reduce considerable maintenance cost (for instance
by avoiding unscheduled maintenance, and by increasing equip-
ment usage), and operational safety improvement. Therefore,
finding solutions for the prognostic problem is a challenge. Sev-
eral studies of machine prognostics are presented in [1]–[3].

This study proposes a combination of a probability approach,
and an indirect data-driven method in RVM, LR, and ARMA/
GARCH models are utilized.

Kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution [4]. Kurtosis is also one of the
statistical time domain features that indicates the performance
degradation of bearings, and gives potential damage detections
at an earlier stage. When the defect impacts the rolling element
bearings, it produces a signal which has probability density that
is more peaked than that of normal bearings. In this case, kur-
tosis is the best measure for indicating the peaked distribution
related to a rolling element bearing fault. The literature [5]–[7]
studied the usage of kurtosis for assessing the bearing condi-
tion, and showed the effectiveness of kurtosis in bearing defect
detection. The LR model is utilized to address the probability
of bearing samples. For example, we have a large number of
bearing samples. We run the bearings from new condition, and
stop it at particular future time. Some bearing samples will fail
at different times, and others are censored. The failure time and
censored data are regarded as the target vector input for training
the RVM model. Furthermore, ARMA/GARCH is employed to
predict the censored data. The prediction performance of the
ARMA/GARCH model will be compared with that of the DSR
method. Moreover, the RVM model is used for training the kur-
tosis bearing data, and target vectors of failure probability ob-
tained from the LR model. After training, the RVM model is
employed to predict the failure probability of individual bearing
samples. In addition, to yse the variance of failure probability,
statistical process control (SPC) is employed to analyze the vari-
ance of failure probability in this study. The result shows that the
proposed method can be considered as a machine degradation
prognostic model.

II. THEORETICAL BACKGROUND

A. Logistic Regression (LR)

LR is a variation of the ordinary regression method which
is used where the dependent variable is a dichotomous vari-
able (which is usually represented as the occurrence or non-oc-
currence of some output events, usually coded as 0 or 1). The

goal of LR is to find the most fitting model to describe the rela-
tionship between the dichotomous characteristic of the depen-
dent variable, and a set of independent variables [8]. Here, LR
is used to obtain the bearing failure probability between incip-
ient failure time to final failure time. Then, the probability re-
sult is treated as a target vector input of RVM. In the LR ap-
proach, the dependent variable is the probability of an event oc-
currence. Hence, the output value has a discrete number of re-
sponses which are constrained from 0 (functional) to 1 (failure).
The logistic function is

(1)

where is the probability of some output event,
is an input vector, corresponding to the

-independent variables (predictors), and is the logit
model. The logit model of multiple logistic regressions can be
written as

(2)

where is a linear combination of the -independent vari-
ables , and , are known as the
regression coefficients. These coefficients can be calculated by
applying MLE after transforming the dependent variable into a
logit variable.

B. Relevance Vector Machine (RVM)

RVM is a Bayesian form representing a generalized linear
model of identical functional form to that of SVM. It differs
from SVM in the case of calculating the solution which provides
probabilistic interpretation of its outputs [9]. As a supervised
learning, RVM starts with a set of data input , and their
corresponding target vector . The aim is to determine a
model of the dependency of the target vectors on the inputs in
order to make accurate prediction of for the unseen value of .
Typically, the predictions are based on a function defined
over the input space, and the learning process of inferring the
parameter of this function.

In the context of SVM, this function takes the form of

(3)

RVM seeks to predict a target for any query of such that

(4)

The likelihood can be written as

(5)

where is the design matrix with
.

The MLE of and in (5) often result in over fitting. There-
fore, Tipping [10] recommended imposition of some prior con-
strains on the parameters by adding a complexity to the likeli-
hood or error function. This prior information controls the gen-
eralization ability of the learning process. Typically, new higher-
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level parameters are used to constrain an explicit zero-mean
Gaussian prior probability distribution over the weights

(6)

where is a vector of hyperparameters that controls
how far from zero each weight is allowed to deviate [11].

Using Bayes’ rule, the posterior overall unknowns could be
computed, given the defined non-informative prior-distributions

(7)

However, we cannot compute the solution of the posterior in
(7) directly because we cannot perform the normalizing integral

.
Instead, we decompose the posterior as

(8)

to facilitate the solution. The posterior distribution of weights is
given by

(9)

Equation (9) has an analytical solution where the posterior
covariance and mean are

(10)

with , and .
Note that is also treated as a hyperparameter which may be

estimated from the data. Therefore, machine learning becomes
a search for the hyperparameter posterior in the most probable
way. Predictions for a new data are then made according to in-
tegration of the weights to obtain the marginal likelihood for the
hyperparameter

(11)

C. ARMA/GARCH Model

The ARMA (1, 1) model is expressed as

(12)

To estimate the coefficients , , and , the error term is
assumed to be white noises which are -independent following
normal distributions with zero-mean and constant variance .
The likelihood function for the ARMA (1, 1) model is

(13)

The log likelihood function, neglecting the constant term, is

(14)

where for are
obtained recursively.

The GARCH (1, 1) model is expressed as

(15)

where is inferred from ARMA (1, 1) model, and assumed to
have the conditional variance .

In the case of a Gaussian , the likelihood function is

(16)

The log likelihood function, neglecting the constant term, is

(17)

where , are obtained recursively.
GARCH prediction is implemented after the functional form

of the model has been specified, and all parameters: , , ,
(for ARMA); , , , (for GARCH) have been estimated.
The ARMA/GARCH model can be used to predict the multi-
step-ahead value of the time series. In this paper, the ARMA/
GARCH model is used to predict the kurtosis. This method has
been utilized for estimating and forecasting machine health con-
ditions from low methane compressor data [12].

D. Statistical Process Control (SPC)

In this study, we introduce SPC into the prognosis application
to analyze the variance of failure time. By applying SPC into the
prognosis area, feedback on the variance and reliability of parts
can be sent to the manufacturer once parts are operated under
same loading condition. A primary tool used for SPC is the con-
trol chart. If the chart indicates that the process is currently under
control, then it can be used with confidence to predict the future
performance of the process. On the contrary, if the chart indi-
cates that the process being monitored, is not under control, the
pattern which it reveals can help to determine the source of vari-
ation to be eliminated to bring the process back into control. To
control the process, upper and lower warning limits are impor-
tant features in control charts.

The formulas of LCL, and UCL with 3-standard errors is

(18)

where defines the average of averages, is standard error,
is range (maximum value–minimum value), is a control

chart constant based on the number of subgroup, and is the
subgroup size.
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Fig. 1. Schematic diagram of the machine degradation prognostic model.

III. METHODOLOGY

The proposed method shown in Fig. 1 is employed for bearing
failure simulating data. One-dimensional statistic, namely kur-
tosis, is calculated initially. This feature can be used to represents
the bearing failure degradation from normal to the final failure
condition. In addition, the ARMA/GARCH model is employed
to predict the kurtosis of censored data up to reach a predeter-
mined final failure threshold. The time series prediction method
using DSR is employed to compare with the prediction result
of the ARMA/GARCH model. The result shows that ARMA/
GARCH prediction is better than DSR, and deserves to be used
further. Then, failure degradation is calculated by using the LR
method, which provides target vectors of failure probability.
RVM is used for training the run-to-failure kurtosis data, and
target vectors of failure probabilities estimated by LR. Further-
more, RVM is used to predict the failure time of bearing. SPC is
used as an additional process to analyze the variance of incipient
failure, and final failure of bearing samples. The results of SPC
can give the information whether bearing sample is failed over
the tolerance limit or not. If the variances are small and do not
exceed the limit, the prediction result will be more accurate.

To evaluate the training performance, the root mean square
error , and the correlation are calculated. The

, and formula are respectively given by

(19)

(20)

where is the correlation coefficient, and is covari-
ance between actual and validated values. Variable indicates
an actual value, and refers to a validated value. In addition, ,
and denote the average result of actual, and validated values,
respectively.

Moreover, is the standard deviation of the actual value,
and is the standard deviation of the validated value. The
symbol denotes the number of predictable data. The smaller
value of indicates a higher accuracy of validation, and
a high correlation value expresses a good validation.

TABLE I
SPECIFICATIONS OF THE BEARING USED IN THE SIMULATION STUDY

Fig. 2. Accumulated signal of three bearing defects: (a) time domain plot of
the raw signal; (b) frequency spectrum of the raw signal; and (c) fault detection
after demodulation.

IV. SIMULATING DATA

The proposed method is validated by using simulating data
of bearing defect degradation. We develop vibration condition
monitoring data that represents defect propagation of rolling el-
ement bearing using a MATLAB program. The properties of the
rolling element bearing in the simulation are in Table I.

Data consisted of bearing outer-race, bearing inner-race, and
ball fault defect at a rotating speed of 100 rpm, and a sampling
frequency 5 kHz. Fig. 2 shows the accumulated signal of the
three defects on the bearing. The calculated frequencies of an
outer-race fault (BPFO), inner-race fault (BPFI), and ball fault
defect (BSF) are indicated on the top of the Fig. 2. Fig. 2(a)
shows the signal over time. This signal is converted to the fre-
quency domain using a fast Fourier transform (FFT), as shown
in Fig. 2(b). This figure reveals that the spectrum is dominated
by high frequency resonant signals. To separate the bearing fault
frequency signal from these dominant signals, the vibration sig-
nals are band-pass filtered and rectified. Fig. 2(c) shows that the
calculation results are closely matched to the fault simulation
peaks that were detected at 4.88 Hz , 10.07 Hz

, and 8.39 Hz .
The three simulated signals are repeatedly generated from the

computer program based on equations presented in [13], [14].
All simulated signals have defect impulses that increase over
time. Bearing degradation signals possess an inherent exponen-
tial growth [15], [16]. The result of feature calculation using
kurtosis is shown in Fig. 3. In this figure, kurtosis of bearing
sample 15 reached the predetermined final failure threshold be-
fore the observation stopped at time step 100 (this is referred as
failure data), while the kurtosis of bearing sample 2 did not hit
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Fig. 3. Kurtosis of two bearing samples.

the predetermined final failure threshold, in other word bearing
sample 2 is not failure up to time step of 100 (this is referred as
censored data). Moreover, this censored data will be predicted
to calculate the final failure time.

V. RESULTS AND DISCUSSION

To acquire run-to-failure bearing data, 25 bearing samples
were simulated in the time step range of 0 to 100. After calcu-
lating the kurtosis, the predefined thresholds of incipient failure,
and final failure were set-up as shown in Fig. 3.

Fig. 3 also shows that the kurtosis value from time step 0
until time step approximately 45 is 3. This value is similar to
the expected value of kurtosis for bearing normal is near 3.

As failures develop over time, the kurtosis signal will exceed
incipient and final failure thresholds. Then, these data are used
for calculating the failure probability from the incipient failure
time until the final failure using LR. In Fig. 3, the kurtosis signal
of bearing 15 has an incipient failure time, and final failure time
of 64, and 95, respectively. We conducted simulations for 25
bearings. When the simulation stopped at 100 units of time,
20 bearings had failed, and 5 bearings were not failed, so were
censored.

This study applies single logistic regression, which means it
models only one s-independent variable. The independent vari-
able is estimated from the incipient and final failure times of
kurtosis data, denoted as . The parameters , and are calcu-
lated by using MLE. Therefore, the logit model corresponding
to (2) is determined by

(21)

Failure probability results according to (1) can be estimated
as shown in Fig. 4. This figure demonstrates the failure prob-
ability of 24 bearings from simulated data. The failure proba-
bility is calculated from the incipient failure (failure probability
equal to 0) until the final failure occurred (failure probability
equal to 1) [17]. Moreover, this result is regarded as the target
vector which will be used for training the RVM model. Fig. 4
also shows the failure degradation starting from the incipient
failure until the final failure is between time steps 48 and 100.
Within the time step of 0 to 47, the condition can be considered
to be a normal state.

Fig. 4. Logistic regression result of simulated data [13].

Fig. 5. Final failure prediction of bearing sample 15.

Fig. 6. Kernel-width selection of the RVM training stage (bearing sample 15).

RVM is trained by input data obtained from the kurtosis of
simulated bearing failure data, and the target vector of failure
probability estimated by LR. For RVM, 24 kurtosis data are uti-
lized for training, and the remaining 1 data is used for testing. In
this study, a Gaussian kernel is employed, and the kernel-width
is searched in the range of to obtain
an optimum RVM training process. The training process calcu-
lates the weight, and the bias. After training, RVM is employed
to predict the failure time of bearing sample 15, which has a
final failure time at 95, as shown in Fig. 3.

Fig. 5 shows the final failure predictions of bearing sample 15.
Fig. 6 informs the kernel-width selection of RVM training. The
optimum values of kernel-width are , and , where
kernel-widths less than , and bigger than , give the
same optimal value of , and . The range between
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Fig. 7. ARMA/GARCH model prediction.

TABLE II
MULTI-STEP-AHEAD PREDICTION OF THE ARMA/GARCH MODEL

and of kernel-width results in over fitting shown by higher,
and lower value of , and , respectively. Using this op-
timal kernel-width value, the final failure prediction of bearing
sample 15 reaches the failure state at 96.

The performance of prediction can be simply calculated as

where refer to actual failure time, and is the prediction of
failure time. This prediction result seems overestimated, but the
accuracy of 98.95% is acceptable for building the prognostic
model.

To predict and estimate the final failure of censored data,
the ARMA/GARCH model is employed. Fig. 7 shows the
comparison between the prediction of DSR [18] and the
ARMA/ GARCH model. DSR used one-step-ahead prediction
of future states based on the training step. In this work, we
set 40 data for training. Fig. 7 shows the prediction of the
ARMA/GARCH model and DSR compared with the actual
data. The prediction performance is signified by RMSE. The
RMSE of the ARMA/GARCH model, and DSR is 0.3801,
and 0.5588, respectively. Because the performance prediction
of the ARMA/GARCH model is better than the DSR, the
ARMA/GARCH model will be utilized for further processes.
Notice that both prediction results are not exceeding the
confidence area (95%). Table II shows the multi-step ahead
prediction result of censored data using the ARMA/GARCH
model. The observation is stopped at time step 104. Moreover,
bearing samples 10, 12, 14, and 20 are used for training; and
bearing sample 2 is used for testing. The failure probability
of censored data prediction is also calculated using LR, then
used for training the RVM. Table III shows the selected optimal

TABLE III
PERFORMANCE OF RVM TESTING FOR BEARING SIMULATION NO. 2

Fig. 8. Final failure prediction of bearing sample No. 2.

Fig. 9. SPC result of incipient failure data.

kernel-width. The result of final failure predictions of bearing
sample 2 is shown is Fig. 8. The accuracy of the prediction
similar to (21) is 97.12%. This result seems to be an underesti-
mation, and smaller than the prediction of bearing sample 15.
However, in real applications, underestimation prediction is
more reliable than overestimation prediction.

Figs. 9 and 10 show the SPC results of incipient, and final
failure of bearing samples respectively. As previously men-
tioned, 25 bearing samples were simulated under the same
bearing defect over time-steps. Five groups are set, and each
group consists of 5 subgroups.

The average value of all sub averages and ranges are calcu-
lated to obtain the standard error. Based on (18) and (19), LCL
and UCL can be estimated. In Fig. 8, the LCL, and UCL values
are 51.59, and 75.53, respectively. In Fig. 9, the LCL, and UCL
values are 83.29, and 102.78. Fig. 9 shows that bearing samples
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Fig. 10. SPC result of final failure data.

2, 9, 10, 16, and 20 exceed the LCL or UCL; while bearing sam-
ples 2, 4, 12, 14, and 20 are over the limit, as shown in Fig. 10. In
the case of the experimental data, the results of SPC will give the
benefit or feedback recommendation for bearing manufacturers.

In one type of bearing under similar loading conditions, we
can recognize whether the failure time of individual bearing is
different or not. If the variance of failure time is small, we can
assume that the quality of bearings is good. Unfortunately, gath-
ering the experimental run-to-failure bearing data is not an easy
task. Thus, this paper employs simulated bearing data to give
the illustration. The combination of RVM and LR has been val-
idated using experimental data as discussed in [17].

VI. CONCLUSION

This study presents an assessment of failure degradation of
simulated bearing fault data. Failure degradation in the form of
target vectors is calculated by using LR. The best model of RVM
is obtained from training process. Over fit prediction appears
when the selected kernel-width value is improper. The ARMA/
GARCH model is employed to predict the censored data. In
addition, SPC is used to analyze the variance of failure data.
Even though this proposed method is only applied to simulated
data, the result illustrates the capability of the proposed method
for failure degradation assessment.
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