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In practice, urban and regional planners often use a pixel-based method for image classification.
Unfortunately, it produces lower accuracy than an Object-Based Image Analysis (OBIA) method, espe-
cially for the high-resolution images. To assess spatial planning, scholars rarely used the OBIA method
in open-source software. This paper aims to develop a method for classifying land cover and assessing
coastal spatial planning. We used Sentinel-2A in 2015 and 2020 as the basic data. For image classification,
sed the OBIA method in Quantum GIS (QGIS) 3.10.6 and Orfeo ToolBox 7.1.0. Furthermore, we used
ificial Neural Network (ANN) and Cellular Automa ) algorithms in QGIS 2.18.20 for projecting
future land cover change, and then used the projected land cover map to assess the spatial planning in
2031. The results show that the OBIA method is useful for image classification, achieving 94.50 and
90.98 percent of the overall accuracy for the imageries in 2015 and 2020, respectively. Our coastal spatial
planning assessment shows that the plan has not considered adequately the rapid land cover change of
the region, especially the increase in waterbodies. We advocate that the local government should con-
sider this issue when evaluating the spatial planning. The methodology using an open-source software
such as QGIS in a developing country context also provides a promising exemplar that other local govern-
nts can use for assessing their spatial planning.

2022 NMational Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an open
access article under the CC BY license (http:|/creativecommons.org/licenses/by/4.0/).

1. Introduction

Coastal areas are only 10 percent of the mainland of the earth
but they are home for 60 percent of the global population
(Lalkshmi and Rajagopalan, 2000). The agglomeration of population
drives the growth of residential and economic activities in coastal
cities (Nurhidayah and Mcllgorm, 2019; Rudiarto et al., 2018; W.
Wang et al., 2014). Consequently, it also drives uncontrolled urban
sprawl in the coastal regions, which typically may cause a loss of
green open spaces and threaten the sustainability of the environ-
ment (Sejati et al., 2019). To minimize the risk of urban sprawl,
government should implement effective policies [Be]ﬁore,B)
such as spatial planning (Buchori et al, 2020; Buchori et al,
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2018b). However, sp@planning in developing countries is often
unable to effftively control the sprawl of the built-up areas (Al
shawabkeh et al., 2019; Buchori et al, 2020; Buchori et al.,
2018b). One of the causes of the ineffectiveness of the spatial plan-
ning is a lack of consideration for the urban sprawl and the projec-
tion of future land cover change (Hakim et al., 2020).

A methodology used in the assessment of al planning con-
sists of classifying imageries, projecting future [and cover map, and
comparing the outcome of the projection with the map of the spa-
tial planning (Amriet al, 2017; Hakim et al., 2020). From th@r-
spective of urban and regional planning practices, a pixel-based
image analysis is a cmonl],.r used method for image classification
(e.g., Al shawabkeh et al, 2019; Amri et al, 2017; Hakim et al,,
2020; Sejati et al., 2019; Sejati et al,, 2020). However, the pixel-
based method has a “salt-and-pepper effect” problem creating

ered pixels that are incorrect in their land cover classification
ﬂo et al., 2012; Kotaridis aimazaridou, 2020; Yu et al., 20086).
This problem can lﬁo lower accuracy of the classified land cover
maps compared to an Object-Based Image Analysis (OBIA) method
(An et al., 2007; Chen et al., 2007), especially when applied to

10-9823@ 2022 Mational Authority of Remote Sensing & Space Science. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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classification of high-resolution imageries %ﬂg et al, 2006;
Lackner and Conway, 2008). The implementation of the OBIA
method for spatial planning assessment can improve the quality
of urban and regional planning in practice.

Despite its advantages, the OBIA method has several technical
challenges. This method requires large amount of computer mem-
ory during the process of image segmentation (Whiteside et al,
2011), long processing time of trial-and-error for classifying land
cover maps (Johnson and Jozdani, 2 , and optimal parameters
for the size of training samples (Ma et al, 2015; Ma et al, 2017).
The development of software or tools for applying the OBIA
method is needed to solve those technical problems. However,
many scholars have been using eCognition/Definiens software for
image classification (Blaschke, 2010) and little attention has been
given to the use of the OBIA method in open-source software, such
as QGIS (Quantum GIS), for assessing a map of spatial planning.
Therefore, this paper aims to fill this knowledge gap by contribut-
ing an insight into the implementation of the OBIA using an open-
source software for assessing regional spatial planning, and for
urban and regional planning studies more broadly.

gtudy area and dataset
2.1. Study area

Semarang Metropolitan Region (SMR) has the fourth-largest
population in Indonesia and is the capital city of Central Java Pro-
vince. The region is experiencing rapid land cover change @/ pe-
cially along the national roads within the region (Sejati et al,
2019; Sejati et al,, 2020). For example, there are several new clus-
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ters of housing and industry in areas surrounding Jakarta-Surabaya
road and toll gates in the north coast of the region in the last
five years. To simulate the rapid land cover change in the northern
coast of the region, we draw our study area to be within 8 km from
the north coast (Fig. 1).

2.2, Dataset

The main dataset used in this study includes three Sentinel-2A
imageries with the tile number of T49MCN, taken on October 7th
2015 (02:59:46), September 6th 2019 (02:35:51), and April 23rd
2020(02:35:51). These imageries were downloaded from the web-
site of European Space Agency (https://www.copernicus.eu/).
Given that some part of the 2020 imagery has cloud cover, we used
the 2019 classified imagery to replace those areas covered under
cloud to produce the final 2020 classified imagery.

The second dataset is the training and testing samples, which
we collected through field photographic observations and Google
Imagery. We used the training samples to classify the I@cover
maps in 2015 and 2020, and used the testisamples 0 assess
the accuracy of the image classifications. The accuracy assessment
was conducted by comparing the classified images with the testing
samples. p

The third dataset is a group of spatial variables used as driving
gors of land cover change. We adopted six spatial variables as

riving factors of land cover change from Kusniawati et al,
(2020) - including distance from the river, distance from the
built-up area, population density, and distance from the road -
and added two spatial variables including land value and slope
level (Fig. 2). This dataset was collected from various sources, such
as Development Planning Agency of Central Java Province, Mational

Kendal Regency

Fig. 1. The study area (Source: diva-gis.org, Central Bureau of Statistics, and Sentinel-2A imagery).
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Fig. 2. The spatial variables used for land cover prediction.

Land Agency, Geospatial Information Agency, and Central Bureau
of Statistics. All spatial variables were processed using several
methods, namely Euclidean distance analysis, unsupervised classi-
fication, slope analysis, and kernel density estimation.

The fourth dataset used is a set of maps of the spatial planning
of the city and regencies within the study area (Semarang City,
Kendal Regency, and Demak Regeif ) in 2031. The classified land
cover maps in 2015 and 2020 were §8ed for the projection of fi
land cover maps in 2025 and 2030. Thereafter, the projected land
cover map in 2030 was compared with the map of spatial planning
in 2031 to evaluate concordance between the spatial planning and
the projected land cover change scenario.

3. Methodology

The methodology we use consists of three components: image
classification, projection of future land cover patterns, and spatial
planning assessment (Fig. 3). Prior to the image classification, we

ormed calculations using a raster calculator tool in QGIS
10.6 (https://www.qggis.org/en/site/forusers/download.html) to
convert some band combinations entinel-2A imageries into
three indexes: MNDW!I (Modified Normalized Difference Water
Index), NDTI (Normalized Difference Tillage Index), and NDVlre
(Red-Edge-Based Mormalized Difference Vegetation Index) using
the following equations (Osgouei et al., 2019). We then combined
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the three indexes to generate a single layer termed MNDWI-
NDTI-NDVIre multi-index imagery in 2015 and 2020, respectively.
The combination is achieved by assigning MNDW!I (representing
waterbodies) as band 1, NDTI (representing built-up areas) as band
2, and NDVIre (representing vegetation cover) as band 3.

MNDWI — ((Green — SWIR1))

((Green + SWIR1))
_ ((SWIR1 — SWIR2))
NDTT = ({SWIRT + SWIRZ))
((RedEdgel — Red))
NDVlre = ————= =
" = ((RedEdgel + Red))
N In Sentinel-2A imagery, Green is band 3, SWIR1 (Short-
wave [nfrared 1) is band 11, SWIR2 (Shortwave Infrared 2) is band

12, Red is band 4, and RedEdge1 is band 5.

The secon p in the image classification was image segmen-
tation using Orfeo ToolBox plugin (https://www.orfeo-toolbox.
org/download/) and QGIS 3.10. is converts pixels with similar
characteristics into a polygon (Thomas et al, 2003; Wang et al,,
2004). With limited literature discussing about the parameters of
image segmentation using Orfeo ToolBox plugin (Kotaridis and
Lazaridou, 2020), we made extensive trial-and-error experiments
to find the optimal parameters of the image segmentation, which
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Fig. 3. The workflow of OBIA In aGIS for image classification and

is time-consuming. The optim rameter settings we used in the
Orfeo ToolBox plugin are: 1 for spatial radius, 0.001 for range
radius, and 10 for minimum segment size. This step converted
the MNDWI-NDTI-NDVIre imageries in 2015 and 2020 into poly-
gons (Fig. 4).

The next steps in the image classification were the classification
of land covers using training samples and the assessment of land

1ient of spatial pl

cover maps using testing samples. Moi and Kappas (2018) sug-
gested that the training samples should be at least 0.25 percent
of the study area, randomly distributed, and outside a radius of
15 m from the testing samples. Based on the average spectral value
of pixels in each polygon from the image segmer on, the
training samples were then used to classify each land cover
imagery using a Support Vector Machine and Radial Basis Function
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Fig. 4. The outcome of image segmentation in 2015 and 2020,

(SVM-RBF) algorithm in QGIS (Laban gl., 2019; Noi and Kappas,
2018). Thereafter, the overall accuracy and the kappa statistics of
land cover maps in 2015 and 2020 were measured using the test-
ing samples.

To project future land cover maps, we used MOLUSCE (Modules
for Land Use Change Evaluation) plugin in QGIS 2.18.20. This soft-
ware plugin has been used by a larg mber of scholars for pro-
jecting future land cover maps (eg., Issiako et al, 2021;
Kusniawati et al., 2020; Rahman et al,, 2017; Reddy et al., 2019;
Satya et al. 0). It uses Artificial Neural Network (ANN) for sim-
ulating the land cover change from one class to another and cellu-
lar automa CA) for simulating future land cover maps
(Kusniawati l., 2020; Rahman et al., 2017; Satya et al., 2020).
Furthermore.%alculates Pearson's correlation between the spa-
tial variables of land cover change and the probability of each land
cover changing to other land covers. The final stpas the assess-
ment of spatial planning, which was conducted by superimposing

the projected land cover map in 2030 and the map of spatial plan-
ning in 2031. Thereafter, we compared the two maps based on a
pixel-by-pixel based comparison.

4. Results

Using the OBIA meth e achieved an overall accuracy of
94,50 and 90.98 percent for the classification of the land cover
maps in 2015 and 2020, respectively (Table 1). The overall accu-
racy indicates that most of the testing samples have been correctly
classified to a land cover type. Table 2 shows the classi on
accuracy for each land use categories. Overall, waterhodiesEdy
fields and bare land, and built-up areas have more than 70 percent
agreement (kappa > 0.70), indicating substantial agreement
between the outcomes of image classification and the testing sam-
ples. On the other hand, canopies have a low agreement
(kappa < 0.30) in both years due to these reasons: (1) most of

Table 1
The accuracy of simulated land cover maps in 2015 and 2020, assessed by comparing the outcomes of image classification to the testing samples.
Year Land Cover Class Errors of Errors of Estimated Kappa Kappa Objects Total Observed
Comission (%) Omission (%) Kappa Variance Correct Objects Correct (%)
2015 (1) \Gfaterbodies 0.81 352 0.98 0.9, 0.00 48,650 51,583 94.50
(2) Faddy fields and bare land 10.23 763 0.86
(3) Canopies 70.26 47.29 0.29
(4) Built-up areas 9.10 735 0.89
2020 (1) \aterbodies 11.02 185 0.77 0.85 0.00 39,310 43,207 9098
(2) Faddy fields and bare land 47 2396 0.93
(3) Canopies 100 100 0.00
(4) Built-up areas 4.06 096 0.95
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Table 2
Statistics showing the area of each land cover of the simulated and projected land cover maps in 2015-2030.
Classification 2015 (ha) 2020 (ha) 2025 (ha) 2030 (ha) A 2015-2020 (ha) A 2020-2025 (ha) A 2025-2030 (ha)
Waterbodies 1596740 18,996.90 19,943.26 20,500.09 3.029.50 946.36 556.83
Paddy fields and bare land 1528290 09,737.36 7.816.20 6,803.67 —5,545.54 ~1,921.16 ~1,012.53
Canopies 63028 1.428.06 1459.73 146812 797.78 3167 8.39
Built-up areas 590965 7.627.92 8571.04 9,018.35 1.718.27 94312 447.31
our testing samples of canopies were drawn from trees growing on change in tFAtudy area is the construction of toll road connecting

land; and (2) mangroves at the edge of the coast were correctly
classified into “canopies” but trees/forest on land were classified
into “paddy fields and bare land". We suggest that future studies
involve addressing this issue if they are using MNDWI-NDTI-
NDVIre imageries for image classification.

In gener. e land cover maps simulated by the OBIA method
are relevant he existing land use based on the know of the
authors (Fig. 5). One of the factors driving the rapid land cover

Semarang (in the center of the study area) to Batang (in the west-
ern part of the study area). The construction began on June 17th

6 and finished on December 20th 2018. Other factors driving
the land cover change in the study area are tidal flooding, land sub-
sidence, a land reclamation project, and the development of indus-
trial cluster on the northern coastal region in the study area. The
tidal flooding (at a rate of 4-14 mmy/year) and the land subsidence
(at a rate of 60-120 mm/year) are suspected of causing the

Land Cover Classification
Il Waterbodies

B Paddy Fields and Bare Land
Il Canopies

& . Built-up Areas
: 0 5 10 km
| =

Fig. 5. The outcome of image classification in 2015 and 2020,
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Land Cover Classification
Il Waterbodies

W Paddy Fields and Bare Land
Il Canopies

Built-up Areas

15 km

Code 2015 2020 2025 2030

Fig. 6. Land cover changes in areas surrounding the toll gates and the land reclamation project during 2015-2030.
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ble 3

Pearson's correlation between spatial variables.

Pearson's Comrelation Distance from the nvers Land value ﬁm:e from the Slope level (degree) Population density  Distance from the roads
ilt-up areas

Distance from the rivers 0.09 -0.14 0.05 028 -0.14

Land value -0.24 015 045 -0.14

Distance from the built-up areas ~017 ~0.34 0.75

Slope level (degree) 026 ~0.12

Population density ~0.26

Distance from the mads

Table 4
Transition Probability Matrix.
2020
Land Cover Waterbodies Eﬂdy fields and bare land Canopies Built-up areas Total
2015 g:erbudies 093 0.03 0.03 0.01 1.00
‘addy fields and bare land 0.25 0.57 0.04 0.14 1.00
Canopies 0.40 0.10 0.49 0.02 1.00
Built-up areas 0.02 0.09 0.00 0.89 1.00

Land Cover Classification

Il Waterbody

[ Paddy Field and Bare Land

Il Canopy
| Built-up

2011-2031 Spatial Pattern Plan (Reclassified)

Il Waterbody

Waterbody; or Paddy Field and Bare Land
I Paddy Field and Bare Land
I Canopy
M Canopy; or Paddy Field and Bare Land

Built-up

Built-up; or Paddy Field and Bare Land

S
2 o s
N

& e \

35
Fig. 7. A visual comparison of the simulated land cover maps in 2020 and 2030 to the spatial planning in 2031.
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increase l the area of waterbodies (Bott et al., 2021; Buchori et al.,
2018b), cially in Semarang and Demak, the middle and the
eastern part of the study area.

Th come of the projection of land cover map in 2030 (Fig. 6)
shows an increase in the density of the built-up areas in Semarang
and the development of the built-up areas along the national road
connecting Semarang to Demak. There are significant or noticeable
land cover changes in several locations coded by the letters A-F.
Toll gates (the letters A, C, F) and a land reclamation project (B,
D, F) are included in those locations. The projected land cover
map in 2030 shows that there will be an expansion of the built-
up areas in areas surrounding the toll gates and a threat of coastal
erosion due to tidal flooding in areas surrounding the land recla-
mation project. The statistics of the current and projected land
cover changes (Table ypically suggest that there is a decrease
in green open spaces and an increase in built-up areas.

Most of the variables have negligible correlation (Pearson's cor-
relation = 0.00 to 0.30 or —0.00 to —0.30), but there are three pairs
of variables having higher correlation (Table 3). For example, there

1 Concordant
M Discordant

Egypt. J. Remote Sensing Space Sei. 25 (2022) 349-359

are a low positive correlation between land value and population
density (Pearson's correlation = 0.30 to 0.50), a low negative corre-
lation between distance from the built-up areas and population
density (Pearson’s correlation = —0.30 to —0.50), and a high posi-
tive correlation between distance from the built-up areas and dis-
tance from the roads (Pearson's correlation = 0.70 to 0.90). The
high correlation between built-up areas and a road network is
showed by fact that residential buildings within the study area
stretch along the roads. It is also supported by a theory that
humans prefer to live in an area with a higher road accessibility
(Patarasul, 2013). Moreover, the transition probability suggests
that there are conversions of 25 perceraf paddy fields and bare
land into waterbodies and 14 percent of paddy fields and bare land
into built-up areas in 2015-2020 (Table 4).

This study compares the simulated and projected land cover
maps in 2020 and 2030 to the map of spatial planning in 2031
for assessing the relevance of the spatial planning to the current
and projected trend of land cover changes (Fig. 7). The comparison
then shows the concordant and discordant areas of land covers in

Fig. 8. Concordance between land cover maps in 2020 and 2030 and the spatial planning in 2031.
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Table 5
Statistics showing concordance between land cover maps in 2020 and 2030 and the spatial planning in 2031.
2020 (ha) 2030 (ha) A 2020-2030 (ha) 2020 (%) 2030 (%) A 2020-2030 (%)
Concordant 26,846.39 25,604.58 1241.81 71.03 67.75 3.29
Discordant 10,947.06 12,188.87 1241.81 2897 32.25 3.29
37,795.53 37,795.53 100.00 100.00

2020 and 2030 with the spatial planning in 2031 (Fig. 8 and
Table 5). The discordant areas are projected to increase in 2020-
2030, indicating that local government had not considered the
worst scenario of land cover changes in future.

5. Discussion

This paper shows that the OBIA method in QGIS gets 94.50 and

90.98 percent of the overall accuracy of clasd land cover maps.
These percentage of overall accuracy are similar to the overall
accuracy of Chen et al. (2007) and An et al. (2007), even when
we were using low-resolution imageries. The similarity indicates
that the outcomes of image classification using of OBIA method
are acceptable, so they can be used further for projecting future
land cover maps and assessing spatial planning. In addition to its
overall accuracy, the OBIA method is capable to solve the “salt-
and-pepper effect” problem in image classification (Blaschke,
2010; Yu et al,, 2006). In general, the OBIA method in QGIS can sub-
stitute for the OBIA method in eCognition/Definiens software,
especially for the purpose of spatial planning assessment. Never-
theless, there are several technical challenges using the OBIA
method that scholars need to be fully aware of, including large
amount of computer memory during the process of image segmen-
tation (Whiteside et al., 2011), long processing time of trial-and-
error for configuring the suitable parameters for image segmenta-
tion and classifying land cover maps (Johnson and Jozdani, 2018;
Kotaridis and Lazaridou, 2020).
P The outcome of the projection of future land cover map shows
there will be a decrease in paddy fields and bare land and
an increase in built-up areas and waterbodies. It indicates a typical
land cover change as suggested jati et al. (2019). Several fac-
tors have been driving the rapid land cover chang@the study
area, such as an industrialization policy (Fariha et al, 2021;
Sejati et al., 2019; Sejati et al., ), tidal flooding, and land sub-
sidence (Buchori et al., 2018a; Buchori et al., 2018b; Buchori and
Tanjung, 2014).

The local government of Semarang metropolitan region had not
considered the worsficenario of land cover changes in future, so
the spatial planning @the study area is less relevant to the trend
of land cover changes, especially to the increase in waterbodies.
Sea level in the study area is rising by 2.1 mm/year and land sub-
sidence at a rate of 60-120 mm/year will only worsen the situation
(Bott etal., 2021). In the worst-case scenario, low-lying communi-
ties d be threatened due to the drastic increase in waterbodies
(Bott et al.,, 2021; Buchori et al., 2021},

This assessment shows how responsive the spatial planning to
land cover changes (Al shawabkeh et al., 20 195t also supports
the fact that the spatial planning is le to control the sprawl
of the built-up areas (Al shawabkeh et al, 2019; Buchori et al.,
2020; Buchori et al., 2018b). A consideration for the projection of
future land cover change is required to r the spatial planning
having good response to the current and future land cover change
(Al shawabkeh et al., 2019; Hakim et al., 2020).

6. Conclusion

This paper mainly offers an insight into the implementation of
an OBIA method in QGIS as one of the open-source software for

358

urban and regional planning studies, especially for assessing regio-
nal spatial planning. The OBIA method can substitute for a pixel-
based imaganalysis method in image classification, before its out-
comes are used for the projection of future land cover and the
assessment of spatial planning. This paper expects to increase the
attention of scholars of urban and regional planning to use the
OBIA method in QGIS software for developing a methodology of
spatial planning assessment.

The assessment of the map of spatial planning in this study
indicates that local government in the study area had not consid-
ered the worst scenario of land cover changes in future. There is
an increase in the discordant areas of land covers in 2020-2030
with the spatial planning in 2031. This study shows that the spatial
planning is irrelevant to the current and future pattern of urban
growth. The spatial planning can also be ineffective in minimizing
the risk of urbanization in coastal cities.

Several recommendations can be made based on this study. We
suggest that scholars in urban and regional planning studies use
imageries with uniform condition of paddy fields (to avoid incon-
sistent classification for paddy fields given they may be classified
as waterbodies), increase the accuracy of classification for tree
canopies growing on lan aluate the accuracy of the outcomes
of land cover projection as suggested by Satya et al. (2020) and
Rahman et al. (2017), and analyze social and political aspects driv-
ing rapid land cover change. In future, researchers who cannot
afford commercial software such as ArcGIS and eCognition/Defi-
niens can develop their spatial planning assessment method using
the OBIA in QGIS given it is freely avail@ with user-friendly
interface. Furthermore, the methodology using an open-source
software such as QGIS in a developing country context also pro-
vides a promising exemplar that other local governments can use
for assessing their spatial planning.
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