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Abstract: Near-surface dfgjnal warming is an important process in the climate system, driving

exchanges of water vapor and heat between the ocean and the atmosphere. The occurrence gghe hot
event (HE) is associated with the high diurnal sea surface temperature amplitude (6SST), which is
defined as the difference between daily maximum and minimum sea surface temperature (S5T).
However, previous studies still show some inconsistency for the ar@ of HE occurrence and high
8SST. The present study produces global 8S5T data based on the SST, sea surface wind data derived
from microwave radiometers, and solar radiation data obtained from visible/infrared radiometers.
The value of 85STs are estimated and validated over tropical oceans and then used for investigating
HE in the western equatorial Pacific. A three-way error analysis was conducted using in situ mooring
buoy arrays and geostationary SST measurements by the Himawari-8 and Geostationary Operational
Environmental Satellite (GOES). The standard cleviatioraﬂr of daily and 10-day validation is around
0.3 °C and 0.14-0.19 °C, respectively. Our case study in the western Pacific (from 110°E to 150°W)
shows that the area of HE occurrence coincided well with the area of high 8SST. Climatological analysis
shows that the collocated area between high occurrence rate of HE and high 8SST, which coincides
with the western Pacific warm pool region in all seasons. Thus, this study provides more persuasive
evidence of the relation between HE occurrence and high 5SST.

Keywords: diurnal SST amplitude; hot event; western equatorial Pacific; three-way error analysis;
microwave radiometry

1. Introduction

Sea surface temperature (SST) has a typical daily cycle, called diurnal SST. The generation of
diurnal SST is mainly caused by the changes in solar heating as a result of day and night differences.
The amplitude/range of the diurnal SST variation (8S5T) is enhanced up to more than 3 °C under the
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calm and clear conditions [1-4]. This large 655T may lead to the appearances of unnatural patches or
strakes in the daily SST map if satellite-derived SSTs are simply averaged without considering the
diurmvariation [5,6].

Near-surface diurnal warffihg is an important process in the climate system since it drives
exchanges of water vapor and heat between the ocean and the atmosphere [7-9]. Emie etal. [10]
and Li etal. [11] indicated that the diurnal SST variatiunﬂuences the atmosphere over the western
Pacific warm pool. Gas exchange, such as carbon dioxide flux at the sea surface [12], is also affected by
diurnal SST cycle, and it has also been suggested that including the diurnal cycle in the calculations
of climate model cmd improve representations of climate variability [7]. Moreover, the diurnal
aiffpa interaction may play an essential role in the longer time scale of climate variabilities such
as Madden—Julian oscillation (MJO), and El Nifio and Southern oscillation (ENSQO) [13-17]. For the
shorter scale, 85ST variation determines the formation of the short period and high SST phenomena,
called hot event (HE) [18-20].

Wirasatriya et al. [20] defined HE as the occurrendgFAf SSTs higher than the space-time dependent
threshold (about 30 °C), with the minimum area of 2 x 10° km? and lasting for a period longer than six
days. Statistically, they indicated the role of HE distribution for the formation of the western Pacific
warm pool. Higher occurrence rates of HE correspond to higher climatological SSTs. Thus, these short
term and high SST phenomerfg may have climatic consequences if they accumulate and then affect the
long-term mean SST pattern in the western Pacific warm pool.

Furthermore, Wirasatriya etal. [21] proposed the possible mechanism that explains the relationship
between the western Pacific warm pool and the HE rrences. They described that the frequent
occurrence of HE could maintain the warm isothermal layer in the western Pacific warm pool through
the heat exchange from the surface layer to the deeper layer. During e development stage of HE,
the heat is accumulated in the surface layer as a consequence of high solar radiation and low wind
speed. Strong westerly wind during the decay stage of HE generates convergent currents that transport
the surface accumulated heat to the dg)er layer. They demonstrated that the period with frequent HE
occurrence could maintain the warm mixed layer of the western Pacific warm pool.

The mechanism of HE occurrence cannot be separated from the variability of 855T. HE only occurs
under the condition of high solar radiation and low wind speed. This condition is associated with high
dSST [18-20]. The relation between HE occurrence and high 8S5T was firstly examined by Qin et al. [18]
for 31 HE cases spread i‘hrtwhnut the whole equatorial region during the period from 1999 to 2009.
They used estimated 3SST data at 1 m depth produced by Kawai and Kawamura [22]. Their 8SST
data were constructed using a paramac model from solar radiation, wind speed, and precipitation
data with 0.25° grid interval. Their root-mean-square error (RMSE) ranges from 0.2 °C to 0.3 °C.
Qin et al. [18] has shown that the large 85ST corresponds to the large amplitude of HEs. However,
there were some area differences between large 8S5T and the large amplitude of HEs. By improving
the threshold of Qin et al. [18], Wirasatriya et al. [20] managed to identify 71 HEs, even only in the
western equatorial region in a shorter period, i.e., frogF003 to 2011. Nevertheless, the spatial analysis
of 8SST variation was absentin their study. Thus, the purpose of this study is to investigate the relation
between HE occurrence and 855T variation.

To achieve the objective, we reconstructed a global diurnal S‘Eimarming based on diurnal SST
range (3S5T) defined as the daily maximum minus minimum SST, calculated from satellite-derived
wind and solar radiation. The basis of the estimation of 6S5ST is the optimally-interpolated (OI) SST
data using the blended microwave and visible/infrared measurements from polar-orbiting satellites.
Thus, there are two main works presented in this paper, i.e., the production of 855T data, and its
application for investigating HE in the western equatorial Pacific. Section 2 provides fa dataset and
method to produce §SST data while its validation and its rel@#n with HE distribution in the western
Pacific warm pool are presented in Section 3 and concluded in Section 4.
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2. Dataset and Methods
2.1. S5T Data Production

2.1.1. Diurnal SST Range and Foundation SST Estimates from Polar-Orbiting Satellite Data

The quality of blended multi-satellites SST product is essential for investigating the relation
between HE occurrence and T variation. The global observation of SST by passive microwave
radiometers was begun by the Advanced Microwave Scanning Radiometer for Earth Observing System
(AMSR-E) on thegfjua satellite, which was launched on 4 May 2002. While the AMSR-E operation was
terminated on 4 October 2011, its successor AMSR2 was launched on the Global Change Observation
[Esion-Water (GCOM-W) on May 18 ZE to extend the global observations of the AMSR series
(AMSR-E and AMSR2). On the basis of data from the Tropical Rainfall Mapping Mission (TRMM)
Microwave Imager (TMI), it had beelnuted that cloud-free microwave SST observations are useful
in capturing short-term phenomena in the ocean [23], the air-sea coupling of S5T and sea surface
wind (SSW) around SST fronts [24,25], and in providing superior SST coverage compared to infrared
measurements [26]. However, the TMI observation area was limited to within the low- and mid-latitude
oceans, and without a lower frequency channel, the TMI 10 GHz channel was relatively insensitive
to S5Ts in low temperature ranges [27,28]. Thus, the 6-7 GHz channels of the AMSR-E and AMSR2
systems are essential for ofining global SST values with high accuracy.

In addition, WindSat on the Coriolis satellite, which was launched on January 6 2003, is another
passive microwave radiometer, conducting global SST observations on the 6 GHz channel. While the
swath widths of these microwave radiometers are as narrow as 1000-1500 km, the combination
of measurements from two microwave radiometers renders it possible to obtain a daily S5T
composite with wide data coverage [6]. Among the daily composite calculation acquired in this way,
the diurnal variation of SST is a key data point in producing the SST field without pseudo-signals.
Such pseudo-signals arise because the local equator crossing times on the ascending node (LTAN)
of the two instruments are different: the LTAN of the AMSR series is 13:30, close to time with daily
maximum SST, whereas the daily-minimum S5Ts are frequently observed at local time sunrise around
06:00, which is the local equator crossing times of the WindSat descending node. A method of obtaining
gridded diurnal-free SST data is described in [29], in which the SST data at various observation times
are diurnally corrected to daily—miaum SST using solar radiation and SSW data. This diurnal-free
SST corresponds to the concept of foundation SST (S5T¢,g), which is defined as the “water column
temperature free froffEiumnal variation” [30]. Comparing diurnally varying SST with non-varying SST
reveals average net-heat flux differences of up to 10 W/m?, with seasonal and interannual variations
also apparent [31]. Therefore, calculating the diurnal SST range, as presented in this study, is a critical
aspect to produce a blended multi-satellites SST product.

The formula for calculating diurnal effects is based on the research by Kawai and Kawamura [5].
The method of calculating diurnal SST range from satellite observations was described in Hosoda [6],
in which the diurnal correction method was developed to estimate daily maximum/minimum SST at 1
m depth (SST yax/min;1m) from satellite measurements at the various local times, as follows:

SSTmax/min:im = Co + €19ST15t + ¢z In(SSW) + c35R? + ¢,SR” In(SSW) (1)

where SR and SSW are the daily-means of solar radiation and SSW speed, respectively, and 55T, is the
first-guess SST, which can be provided from daily gridded data or satellite remote sensing. Coefficients
¢y, €1, €2, C3, and ¢y vary with satellites and can be seen in Hosoda [6]. §5ST is defined as the difference
between daily SSTmax and SSTmin. A number of formulations similar to this diurnal correction model
have been proposed [32-35].

Based on this method, a global daily minimum SST or foundation SST was produced from OIL
multi—satelliameasuremmts [29]. This dataset is primarily based on microwave SST observations
from global sun-synchronous satellites: AMSR-E, WindSat, and AMSR2. The daily gridded data
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are available from January 2003, with a spatial resolution of 0.1°. Additionally, the infrared S5T
measurements made by Moderate Resolution Imaging Spectroradiometers (MODIS) on the Terra and
Aqua satellites were also merged to reproduce sub-mesoscale structures in the ocean in our SST product.
The validation of this blended multi-satellites SST product against in situ data from the drifting buoys
and Argo-floats shows that the root-mean-square error (RMSE) ranges from 0.46 °C to 0.48 °C [29].

In this study, Equation (1) was applied to estimate 8SST with 0.1° spatial grid size from our
blended multi-satellites SST product. The inputs are the daily means of solar radiation and SSW. SSW
data are daily composites of microwave radiometer observations based on AMSR-E, AMSR2, WindSat,
the Special Sensor Microwave Imager (SSM/1), and the Special Sensor Microwave Imager Sounder
(SSMIS) series. These daily SSW composite data (0.25° x 0.25%) were adjusted with bicubic interpolation
to obtain SSW values on the 855T calculation grid point (0.1°). For the solar radiation data, we primarily
used the JAXA Satellite Monitoring for Environmental Studies (JASMES) dataset, which was produced
from visible radiometer data from sun-synchronous satellites. The daily mean solar radiation data
were prepared with a spatial grid size of 0.1° from original 0.05° grid data. An example of §55T as a
function of daily mean solar radiation and SSW is shown in Figure 1, in which the first-guess 55T is
assumed to be 25 "C as 55T qq4. The relationships between the first-guess SST, SSW, and solar radiation
were empirically derived by the co-location of satellite and drifting buoy measurements, as [6].
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Figure 1. Diurnal sea surface temperature range (8S5T) estimated from Equation (1) as a function of
daily mean solar radiation (SR) and sea surface wind (SSW) used in this study. The first-guess sea
surface temperature (SST) is assumed to be 25 °C as the foundation SST. The contour is 8SST with the

interval 0.5 °C.
Ell
2.1.2. Intercomparison Data from in situ and Geostationary Satellite Observations

In Situ SST Data

This study used in situ SST measurements ad on the tropical moored buoy networks [36],
consisting of the Tropical Atmosphere Ocean and Triangle Trans Ocean buoy Network moorings
(TAO/TRITON) array, Research Moored my for African—Asian—Australian Monsoon Analysis and
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Prediction (RAMA), and Prediction and Research Moored Array in the Atlantic (PIRATA). The locations
of the moored buoy networks used in this study are shown in Figure 2 alongside the validation results.
Based on high temporal resolution (< 1 h) of each buoy, the 855T was calculated as daily maximum
minus minimum. The daily minimum SST was determined near to local sunrise (LST 6:00 £ 2 h),
and maximum SST was within local afternoon (LST 12:00-16:00).
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Figure 2. Standard deviationdistributions for the daily satellite-based SST estimates againsteach moored

buoy measurement. (Top) diurnal SST range estimates, and (bottom) foundation SST estimations.
Geostationary Satellite-Based SST Data

Infrared radiometers aboard geostationary meteorological satellites can also provide
high-resolution time series of SST (<1 h) in low and mid-latitude areas if the pixels are under
clear sky condition. In this study, we used two satellite products that cover the tropical Pacific i.e.,
Geostationary Operational Environmental Satellite (GOES) and Himawari-8. The GOES series Level3 6
km resolution SST data [37] are used for the eastern Pacific and Atlantic oceans (combined from GOES
East and GOES West) with a temporal resolution of 1 h. GOES SST data have been provided alongside
cloud screening information using the Bayesian approach since 2008 [38]. For this study, the threshold
cloud contamination possibility is set to 2% to obtain accurate SST with a wide coverage. The spatial
and temporal coverages of the GOES SST are 45°5-60"N, 180°-30"W, and January 2008-December
2015. The hourly SST estimates derived from the Himawari-8 satellite with a spatial resolution of
2 km have been provided by the JAXA [39]. The spatial and temporal coverages used of these data
in this study are 60°5-60°N, 80°E-160°W, and August-December 2015. Only those SST data flagged
as the “best quality” level were used in the comparison of the present study. The definitions of daily
minimum and maximum SST are the same as for the in situ observations. Both geostationary SST
datasets were re-gridded to 0.1° x 0.1° and compared with our product.

2.2. Datasets for HE Analysis

Daily New Generation Sea Surface Temperature for Open Ocean (NGSST-O-Global-V2.0a) was
used for the HE identification. This dataset is produced by merging SST observations acquired by
two satellite microwave sensors (AMSR-E onboard Aqua and WindSat onboard Coriolis) with a grid
interval of 0.25°. An optimal interpolation technique was applied for merging, using decorrelation
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scales derived by Hosoda [40] after applying diurnal correction desgped in Hosoda [6]. The RMSE
of this dataset is 0.43 °C. We used six-hourly reanalysis data from the |apanese 25-year Reanalysis
(JRA-25)/Japan Meteorological Agency (JMA) Climate Data Assimilation System (JCDAS) on a 1.25°

izontal grid for wind speed [41] and daily net surface solar radiation on a 1° X 1° grid for 2003-2009
from the International Satellite Cloud Climatology Project (ISCCP) dataset [42]. The grid intervals of
these datasets were interpolated into 0.25% to match with NGSST-O data.

For investigating the climatology of 55T of HE in the westem equatorial Pacific, we compared the
composite of 8S5T of 71 HEs identified by Wirasatriya et al. [20] during 2003-2011 with the occurrence
frequency of the identified HEs shown in their research. We also compared the relative frequencies of
8SST from 2003 to 2011 inside the area of HE occurrence frequency more than 5% and inside the area
of individual HE during the HE period, development stage, and decay {f#8e. The definitions of HE
period, development stage, and decay stage are described in Wirasatriya et al. [43].

3. Results

3.1. SST Validation

Figure 3 presents frequency diagrams comparing buoy and satellite 8SST and S5T¢,q in the
tropical oceans. In the first approach using the traditional method of validation, in situ moored buoy
observations are considered as truth data. The calculation was conducted using all available data from
2003 to 2015. In Figure 3, the upper panels show comparisons between daily data, while the 10-day
mean data corfg@arisons are given in the lower panels. The match-up-data density was calculated as the
percentage of match-ups in a 0.1 °C x 0.1 °C grid in comparison with the total number of match-ups.
If the match-up-data density value is less than 0.01%, the box is colored white. Absolute valugfipf
biases by both 855T and SST#g were less than 0.05 °C, while their standard deviation (STDV) was
0.25°C and 0.41 °C, respectively. The STDV of 5SS5T is smaller, but the match-up data in Figure 3a have
a wide distribution. The geographical distributions of the STDV are shown in Figure 2. Large STDVs
of 855T (>0.3 °C) were located within the western tropical Pacific (140-160°E). However, the uneven
distribution of such large errors was not seen in the 55T 3 estimations. This wide distribution is
probably due to the traditional approach of validation. We improve the approach by using a three-way
error analysis described in the next paragraph. In contrast, in the 10-day mean comparison, this wide
distribution was reduced, and the STDV of §SST was (.12 °C. This STDV reduction was also found in
the 10-day mean comparison of SSTg,g. This means that, while there is room for improvement in the
reproduction of short-term variability of both S5Tg,4 and 8557, the long-term analysis using several
days or monthly mean is suitable for use in climate analysis.

The traditional method of satellite SST validation against thein situ SST as shownin Figures 2 and 3
left some problems. The in situ SST, which is assumed as the true SST, may not be consistent in terms of
the depth of measurement depending on the buoy types. Lack of instrument maintenance, especially
for drifting buoy, may affect the accuracy of the observed S5Ts [44]. Furthermore, potential errors of
traditional validation also can emerge due to the uncertainty differences between skin S§Ts obtained
from satellite measurements and bulk SSTs measured from in situ measurements. To overcome those
problems, O'Carroll et al. [45] developed a three-way error analysis that considers these differences
and corrects them where possible. The three-way error analysis, or triple collocation, is employed to
estimate the unknown errors of three independent measurements, wit‘mlt assuming that any one
system is able to obs@jve the truth data perfectly. The concept of the three-way error analysis by
O’Carroll et al. [45] is as follows:

If tHEerrors in the three independent observation systems (i; j; k = 1; 2; and 3) are uncorrelated,
then the variance of errors in each observation type o7; are expressed as,

& = 5(Vi+ Vi = Vi) @
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2

ghere Vij gives the variance of the difference between two observation types i and j. This relationship
has been recently applied to SST validation analyses [46—48], and it is used to inter-compare daily and
10-day mean SST (S5T,q and 855T) of the present study, with in situ measurements, and geostationary
high-resolution datasets.

Density(%)
1072 1071 100 10!
_— —
3 : : '
bias: =0.03°C P o
_ |smowv:02s°c | STovoatec L30 ~
%) Num.: 289,925 Num.: 289,925 O
¢ o
‘U._;’ 2 - 2
P—
] A
2 . F25 O
T 1 - T
= ©
0] i 3 ®
(a) (b)
0 . ‘ . 20
3 L L .
bias: -0.03°C bias: 0.00°C =
| sTov:0.42:0¢ 1 sTDV:0.29°C s, F30 —
5 Num.: 29,387 Num.: 29,387 ‘ O
¢ o
21 - 2
0 —
2 A
2 . 125 &
2’ 2
- o
n o w
" (c) (d)
0 : : - ‘ : 20
0 1 2 3 20 25 30

Buoy 8SST(°C) Buoy SST;4(°C)

Figure 3. Frequency diagrams between satellite-based estimation and buoy observations of diurnal
SST range (55ST, left column) and foundation SST (SS5Tg,g, right column). Daily step data comparisons
((a) and (b)), and 10-day averaged data comparisons ((c) and (d)). The density was calculated by the
number of data values in each 0.1 *C x 0.1 °C grid. The comparison was conducted for all data from
2003 to 2015.

Table 1 shows that the in situ buoy measurements provided data with the lowest amount of errors
as expected. The large errors of 0.55-0.64 °C in the geostationary SST may be partly due to cloud
or aerosol contamination in the infrared algorithm, or observation depth differences since the skin
SST is measured by infrared sensors, while the bulk temperature is given by the in situ sensors [41].
The errors in the infrared sensors were reduced to 0.20-0.39 "C by calculating the 10-day mean.
The errors of S5T¢,g and 3SST in the products of this study were 0.27-0.47 °C and 0.14-0.23 °C for the
daily and the 10-day comparisons, respectively. These are less than the geostationary measurements,
and comparable to the in situ data. This result suggests that the blended microwave and infrared
products are able to provide diurnal SST cycles (655T) and S5Tg,q with higher acgyacy than the
infrared geostationary Ubser\fatiua.
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Table 1. Three-way error analysis derived individual satellite and buoy standard deviations (STDV)
for diurnal range (8SST) and foundation SST (SST,g). Italic number shows the collocated match-ups in

each condition.
This Study This Study
(Blended Geostationary Buoy Number (Blended Geoslationary Buoy Number
Product) Product)
49 8SST (daily) 85ST (10-day)
STDV (GOES) 027 °C 0.64°C 0.24 °C 3317 0.14°C 039 °C 0.02 °C 528
:
" STDV . 035°C 0.58°C 0.36 °C 610 0.19°C 031°C 0.06 °C 86
(Himawari-8)
55Tgmg (daily) 55T g (10-day)
STDV (GOES) 047 °C 0.55°C 0.42°C 2040 023°C 020°C 0.21°C 629
:
STDY 039°C 0.59°C 0.34°C 423 0.15°C 035 °C 0.11°C 92

(Himawari-8)

It should be noted that the data coverage of the geostationary sensors is strongly affected by
cloud presence, even if the temporal sampling rates are ultra-high frequency (less than one hour).
The medians of data coverages of the Himawari-8 855T and 55Tg,g measurements were 46% and 57%,
respectively, while those of the GOES were 11% and 26%, respectively. The smaller 8SST coverage
was due to the requirement of a persistent clear-sky condition throughout sunrise and afternoon,
because 855T was calculated as the temperature difference between the two four-hour composites in
these periods. The slightly larger coverage of the Himawari-8 data is likely due to the higher sampling
rate by the Himawari-8, which has an original observation frequency of 10 min.

The temperature dependencies of the measurement errors derived from the three-way error
analysis of the daily comparisons are presented in Figure 4. In the S5Ty, 4 estimation, no significant
temperature dependency was identified. In contrast, a monotonic increase in error variance in 55T
estimates made by this study was apparent at a temperature of =28 °C. This characteristic was not
found in error variances by either geostationary or in situ measurements. This monotonic increase
in error varifjce in §SST corresponds to the geographical distribution of STDV (Figure 2) maly in
the western tropical Pacific, which is characterized by warm water >28.5 °C and known as the Pacific
warm pool [49].

The area of the present HE study is located in the western equatorial Pacific, which shows a large
error of 8SST data. Since HEs are categorized as short scale phenomena and 855T data have more
accuracy for long term mean analysis, we need to re-validate the 55T data with TAO/TRITON buoys
in the western equatorial Pacific for HE analysis. We compared the accuracy of 8SST data between HE
period and non-HE period to ensure the reliability of $SST data for HE study. The result shows that
the bias and effr STDV of 555T data against TAO/TRITON buoys in the western equatorial Pacific
for 2003-2011 is —=0.002 °C and 0.315 °C, respectively. For the non-HE period, the error STDV slightly
decreases to 0.302 °C. In contrast, during the HE period, the STDV increases to (0.359 °C, and the bias
turns into positive. This positive bias means that for HE period, the 5SST data are mostly h@r than
8SST calculated from buoys. This condition may be caused by the extreme condition of low wind
speed and high solar radiation that occurred during HE period. Thus, we suggest that the linear
parameterization used for constructing 8SST data should be evaluated especially for the extremely low
wind speed and high solar radiation that co-occur. However, this dataset is reliable enough for the
present study since the variation of 8SST investigated in this study is much higher than its error.
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Figure 4. Standard deviation of error for each observation type as a function of SST. The calculation
was carried out for each 1° grid using Geostationary Operational Environmental Satellite (GOES) and
Himawari-8 data for the period 2008-2015, and August-December, 2015, respectively.

3.2. Relation between 6SST Variability and HE in the Western Equatorial Pacific

To investigate the relation between 8SST variability and HE, first we examine HE started on
16 December 2004 (hereafter HE041216) presented in Wirasatriya et al. [20] as a representative of HE in
the western equatorial Pacific. Figure 5 shows the average map of 855T, solar radiation, and wind
speed during the period HE041216 overlaid with the area of HE041216. The area of HE refers to the
area with the SST more than the time-space dependent threshold (~30 °C) and lasting during the period
of HE. The area of HE041216 agreed with the area of 8SST more than 0.5 °C. The area of 355T more
than 0.5 °C was consistent with the area of wind speed of less than 3 m/s and located at the area of
solar radiation more than 200 W/m?. Thus, this result supports the role of wind speed as the key factor
for the HE occurrence as stated in Wirasatriya et al. [20].

For the climatological analysis, we show the distribution of 8SST during the HE period for
2003-2011 in the western equatorial Pacific (Figure 6). Figure 6a shows that high 55T of more than

0.4 °C s distributed from 10°S to 10°N along the northern coast of New Guinea Island until 170°W.
The high §SST distribution is collocated with the area of HE frequency occurren@@pf more than 5%.

The seasonal change also shows the same tendency (Figure 6b,c). me northward (southward) shift of
the area of high 85ST distribution is followed by the northward (southward) shift of the area of high
HE frequency occurrence during boreal summer (winter). This indicates the strong relation between

HE and 65ST distribution.
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Figure 5. (a) 3SST map, (b) solar radiation map and (¢) wind speed map of HE041216. The red contour
denotes the area of HE041216. The gray contour in (a) denotes the §SST of 0.5 °C. The white contour in
(b) denotes solar radiation of less than 150 W/m? and more than 300 W/m?2.
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Figure 6. The composite of 8SST map during hot event (HE) period overlaid with the contour of
occurrence rates of HEs, shown in frequency per grid (%) during 20032011, for (a) the whole period
(100% is 3163 days; =9 year period), (b) boreal summer (April-September; 100% is 1615 days), and (c)
boreal winter (October-March; 100% is 1548 days).

For investigating the 8SST variation in the development and decay stage of HE, the relative
frequency of each value of 55T inside HEs during the development and decay stages of HEs is
presented in Figure 7. The #S5T inside HEs during the development stage is higher than the decay
stage, indicated by the higher relative frequency of 8SST of more than 0.4 °C. This result is consistent
with Wirasatriya et al. [44], who showed the higher (lower) solar radiation (wind speed) during the
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development stage than the decay stage. Furthermore, this study shows the relative frequency of 855T
of more than 0.3 °C is higher inside the HE area during the HE period than outside the HE area during
the HE period. This indicates the high §55T often occurs in the western equatorial Pacific, which makes
the western equatorial Pacific favorable for HE generation.
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Figure 7. Histograms of the mean relative frequencies of 85ST values, with discrete intervals of 0.05 °C.
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4. Discussion

This study presents the production of 655T data based on the satellite-derived 55T, S5W, and solar
radiation. This dataset was produced based on Kawai and Kawamura [6] with the enhancement in the
validation method using three-way error analysis, which can reduce the uncertainties between bulk
and skin S5T measurements [45]. Our product becomes the first §55T dataset that applies three-way
error analysis, resulting in the significant improvement compared to other products. It is noted that
the Equation (1) used for generating this product only applies to the open ocean. In the coastal
area, the variable that influences the diurnal range of SST becomes more complex. For example,
Wang et al. [50] demonstrated that tidal level and air temperature are responsible for the great diurnal
SST variation in the coastal area. Furthermore, Maneghesso et al. [51] has reported the systematic
positive bias of level four SST products against the in situ SST in the coastal upwelling area. Therefore,
further improvement should be conducted to estimate the 3SST for the coastal area. This task is left for
future studies.

For the HE study, Wirasatriya et al. [20] has shown that the shifting pattern of 8SST distribution is
the result of the distribution of solar radiation and wind speed. Comparing the relation between the
occurrence of HEand the occurrence of low wind speed and high solar radiationin Wirasatriya et al. [20]
and the relation between the occurrence of HE and the occurrence of high 8SST in Figure 6b,c, 55T
distribution during the HE period shows a better relation with the HE occurrence rate than SR or wind
speed distribution for both boreal summer and winter. Although Wirasatriya et al. [20] found that the
low wind speed distribution became a key factor in the occurrence of HEs in the western equatorial
Pacific, the area with a low wind speed of less than 4 m/s does not always coincide with the area with
high occurrence rate of HE of more than 5%. This relation is because low wind speed should co-occur
with high solar radiation to produce HE occurrence. Thus, neither only low wind speed nor only high
solar radiation can be used as an indicator of HE occurrence. In the present study, we show that high
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8SST can be a good indicator of HE occurrence in the western equatorial Pacific since both wind speed
and solar radiation have been included for the calculation of 8SST as described in Equation (1).

The climatological analysis of 855T during HE period in the equatorial region has also been shown
by Qin et al. [18]. However, the inconsistency areas of HE and high 8SST still appeared in their study.
The area with high intensity of HE is located along the northern coast of Papua, while the area with
high 8SST is located along the equatorial line. The present study shows better consistency as shown
in Figure 6. The improved threshold used in the present study i.e., SST threshold that excludes the
seasonal variation, smaller areal size threshold, and shorter period threshold, resulted in the increased
number of HE in a smaller study area. The increased number of HE may contribute to constructing the
better composite of 8SST of all HEs. Another difference is related to the relative frequency distribution
of SST. Qin et al. [18] showed that the relative frequency distribution of 3S5T follows the exponential
function while in the present study it is positively skewed (Figure 7). This finding indicates the warmer
SSTs in the western equatorial Pacific may promote the more frequent occurrence of high 855T than
other areas in the equatorial region. However, the tendency of the relative frequency distribution of
dSST is similar for both studies observing inside and outside the HE area during the HE period.

5. Conclusions

This paper describes the calculation, validation, and a climate study application of the diurnal
SST range estimations using satellite observation data (SST, SSW, and SR). The validation was
conducted using data from moored buoy arrays in tropical oceans: TAOQ/TRITON, PIRATA, and RAMA.
The standard deviations of the estimations of in situ and satellite-based 5SST are around 0.25 °C and
0.15 *Cgfr daily and 10-day mean comparisons, respectively. In order to investigeffhe characteristic
errors, a three-way error analysis was employed between satellite-based estimates, in situ observations,
and geostationary measurements. The in situ measurements give the smallest errors while the
geostationary measurements have the largest errors, and the errors of the satellite-based 55S5T lie in the
middle and close to the errors of the in situ measurements. This result suggests that the measurements
of the full diurnal cycle by a geostationary satellite equipped with ultra-high-resolution sensors, such as
the 10-min resolution of Himawari-8, are compromised due to cloud cover. The blended microwave
and infrared products are the essential basis for these diurnal SST and HE studies.

The application of 5SST data for investigating HE in the western equatorial Pacific demonstrated
a robust relationship between the occurrence of HE and high 855T, which is summarized as follows:

(a) In the case study, the area of HE041216 occurrence coincided well with the area of 5SST of more
than 0.5 °C.

(b) The climatological mean of 8SST shows that high 8SST of more than 0.4 °C is distributed from 10°S
to 10°N along the northern coast of New Guinea Island until 170°W. The high 55T distribution
is collocated with the area of HE frequency occurrence of more than 5%.

(c) During boreal summer (winter) the high 8SST distribution shifts northward (southward).

(d) The 8SST inside HEs during the development stage L‘ﬁgher than the one during the decay stage.

(e) High 8SST can be a good indicator of HE occurrence in the western equatorial Pacific since both
wind speed and solar radiation have been included for the calculation of 5SST.
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