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strong along these routes, and the major direction of the variability in winds is
well aligned with these routes. The wind jets are formed in the central part of
The Australian winter monsoon is stronger and more persistent than the East
Asian winter monsoon in the Indonesian seas. The onset of each monsoon dif-
fers by approximately 40 days between the east and west of the Indonesian

s. The amplitudes and spatial extents of diurnally varying winds dominate
gzng the northern coasts of Java Island and the small islands to the east, along
the northwest and northeast coasts of Borneo, along the coast of southern
Sulawesi Island, and to the southwest of Papua, and vanish along the centre
lines of the monsoon routes. Sea areas with a large amplitude of diumally
varying wind are much the same throughout the year. The amplitude of diur-
nally varying wind has an annual maximum in September in the southern
Indonesian seas, possibly in correspondence with the annual maximum of the
temperature difference between land and sea.
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1 | INTRODUCTION two monsoons reverse seasonally and undergo a tragsition

in Aprili and November. The wind inducedr?yg the
E the Maritime Continent, the East Asian winter monsoon  Asian-Australian monsoon system blows throughout the
dominates in December-March, and the A ian winter Maritime Continent, which comprises islands of various
monsoon dominates in May-October drian and sizes and heights and seas connected to straits (Figure 1a).

Susanto, 2003; Ronghui et al., 2004; Wang et al., 2010). The  The small seas and straits within the Maritime Continent
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aGUR E 1 Annual averages of
wind speed derived from (a) ASCAT
and (b) hourly data of ERAS at 10 m
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shading in these maps and the other
map figures show topographic
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referred to in this paper are shown
in (a). Black-and-white points at sea
in (b) are the six selected locations
for the subsequent analyses. The
dashed grey lines in (b) show the
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are collectively referred to as the Indonesian seas. The
monsoon wind is a key factor influencing the regional cli-
mate. In the Indonesian seas, the monsoon winds influence
regional oceanographic conditions. The along-shore winds
indu astal upwelling owing to seaward Ekman trans-
port H;nm et al., 2006; Iskandar et al., 2009). The sea-
sonally reversing monsoon winds change the volume
transport of the Indonesian Throughflow (Xu, 2014;
Sprintall et al, 201p4The variability in the monsoon sys-
tem is induced by global climate systems, such as the El
Nifio Southern Oscillation (ENSO; md Chan, 2001;
Meehl and Arblaster, 2011) and the Indian Ocean Dipole
(IOD; Jourdain et al., 2013), and the Madden-Julian Oscil-
lation (MJO; Zhang, 2013). Currently, studies on winds in
the Indonesian seas have attracted increasing attention in
m development of offshore wind energy (Hasan
el al., 2012; Gernaat et al., 2014; Ahmed et al., 2017; EMD
International A/S, 2017). Thus, understanding the winds
over the seas of the Maritime Continent or the Indonesian
seas has been a long-standing challenge and of increasing
importance.

Distributions and temporal variations of surface
winds in specific regions have been investigated using
satellite scatterometers or satellite-based wind data. The
QuikSCAT wind data used to examine the winds in
the Java Sea (Hattori gal., 2011), the Makassar Strait
(Gordon et al., 2003; Susanto et al., 2012), the seas around
Sulawesi and Molucca Islands (Mahmuddin and
Hamzah, 2015), and the Halmahera Sea (Setiawan
et al., 2019). Wirasatriya et al. (2019) show the surface
winds in the northern Molucca Sea using the cross-
calibrated multiplatform (CCMP) data. Lang (2017)
investigates the winds in the seas around the Philippine
Islands using the RapidScat and CCMP data. The mon-
soon winds in the lower atmosphere over the Indonesian
seas are examined in terms of large-scale atmosphgpig cir-
culation using atmospheric reanalysis data (e.g., Juneng

and Tangang, 2005; Chang et al, 2005a; Jiang
et al., 2019). In addition, the diu cycle of wind has
been discussed within the context of the diggmal cycle of

precipitation in the Indonesian seas (e.g., Ichikawa and
Yasunari, 2006; Qian et al., 2010, 2013; Bhatt et al., 2016;
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Vincent and Lane, 2017). Short et al. (2019) showed that
the diurn cle of surface winds significantly contrib-
utes to the Iormation of precipitation over the isl and
surrounding seas. Araki ef al. (2006) investigated seasonal
and interannual variations in the diurnal cycle of wind in
Serpong, Indonesia. In the Java qa, the diurnal cycle of
wind is modified by fluctuations of the East Asian winter

nsoon owing to the tongue-shaped cold water in the
gilth China Sea (Koseki et al., 2013).

However, the results of the aforementioned studies
are limited to specific seasons or specific regions of the
Indonesian seas. Although a considerable number of
studies have been conducted on meteorology and climate
in the Maritime Continent, their principal objectives are
the role of the Maritime Continent in large-scale meteo-
rology and climate. Only a few studies specifically focus
on the low-level winds in the Indonesian seas, where
many islands and seas form complicated topography and
land-sea contrast. The current understanding of the low-
level winds is inadequate for many practical applications.
For example, the wind from the surface up to 150 m is
important for the development of offshore wind energy.
The topographic effects exert particularly strong influ-
ences on the surface wind field. Observations of the sur-
face winds are relatively accessible and observational
evidences of the surface winds are an important indicator
of the low-level winds. Nonetheless, wind climatology in
the Indonesian seas remains an open question. Thus, the
following three challenges need to be addressed. Firstly,
few studies have investigated the detailed distributions of
wind in the Indonesian seas. The focus must be placed
on the wind in the Indonesian seas to characterize the
wind distribution and to examine the topographic effects
of the islands on the wind. Identifying key locations
where strong and persistent wind occurs is also useful for
statistical analyses. Secondly, the complicated topography
of the islands in the Indonesian seas exerts a significant
influence ongathe variability of the monsoon winds.
Accordingly,r'is necessary to e ine the variability in
surface winds associated with m:?man—Australian mon-
soon system. Thirdly, the diurnal variations of wind have
been examined mainly in the vicinity of the islands. The
seasonal and regional changes of the spatial extent and
the strength of diurnally varying winds resulting from
the complicated land-sea contrast must be investigated.
These challenges have not been addressed in the previous
studies, because few studies have attempted to obtain a
comprehensive picture of surface winds in the Indone-
sian seas. Therefore, in this study, we investigate the sur-
face winds in the Indonesian seas using satellite
observations and reanalysis data. We focus on the Indo-
nesian seas or the inner seas in thqaritime Continent,
bounded by the Pacific Ocean, the Indian Ocean, and the
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South China Sea (Figure 1a), to provide further insights
into the detailed structures of surface winds and regional
differences in wind variability.

Section 2 provides an overview of the data and methods
used in this study. In section 3, we present the distribution
of surface winds and the key locations selected for the sub-
sequent anﬁses. Section 4 describes the variability in sur-
face winds associated with the Asian-Australian monsoon

syste ction 5 explores the diurnal variations in surface
winds. Section 6 presents a summary and conclusions.
2 | DATA AND METHODS

We used wind measurements by the Advanced SCATter-
ometer (ASCAT) onboard Meteorological Operational-A
(MetOp-A) and Meteorological Operational-B (MetOp-B)
satellites at a sampling resolution of 12.5 km for 2010-
2018 (EUMETSAT/OSI SAF, 2010, 2013). The near-real-
time datasets common to ASCAT/MetOp-A and ASCAT/
MetOp-B are consistently used, which is available from
2010. The ASCAT datasets provide observational evi-
dence of surface winds in the island-studded seas. The
MetOp-A and -B satellites cross the equator at 09:30
(local solar time) on the descending node and at 21:30
(local solar time) on the ascending node. We used
approximately 3,100 swath data over the Maritime Conti-
nent per year for each satellite to derive gridded data
with a 0.125°x0.125° interval by applying the land pres-
ence flag to remove low quality data near the coast. The
land presence flag is set if some portion of a wind vector
cell includes land. The AS operates in the C-band,
which is less sensitive to rain than Ku-band scatter-
ometers, such as QuikSCAT (Figa-Saldaiia et al., 2002).
The ASCAT wind product showed the highest accuracy
in both wind speed and direction and have the least error
statistics compared to other scatterometers data
(i.e., OSCAT and HY-2A SCAT; Wu and Chen, 2015).
Kumar et al. (2019) showedmat both ASCAT datasets
have a negligible bias (0.14 m s~ for ASCAT/MetOp-A
and 0.20 ms™' for ASCAT/MetOp-B) by comparing to
the observations acquired by the buoys in the Indian
Ocean. The results derived from the ASCAT data in this
study are based on the 9 r data.

We analysed hourly winds at a height of 10 m from
the fiftbsmeneration atmospheric reanalysis ERAS pro-
vided by the European Centre for Medium-Range
Weather Forecas CMWF) at a spatial grid of 0.25°
for 2010-2 opernicus Climate Change Service
|C38], 2017; Hersbach et al., 2020). The ERAS5 wind data
at a height of 100 m are used for comparison with the
wind fields at a height of 10 m. Skin temperature data
were also used to derive land and sea surface
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temperatures. Previous studies discussed the accuracy of
ERAS5 wind and skin temperature data. Rivas and
Stoffelen (2019) showed systematic differences in the
mean zonal winds of ERAS in the tropics up to 0.5 m s™*
relative to ASCAT. However, the use of the ERAS wind
data is ffective approach because the ERAS wind data
shows a 20% improvement relative to the ERA-Interim
wind data (Rivas and Stoffelen, 2019) and because the
ERAS data show the best estimation of surface wind com-
pared with other five reanalysis data (Ramon
et al., 2019). Luo and Minnemﬁza'}) validated the ERAS
sea skin temperature dataset with ship-based radiometric
measurements and sho that these two datasets have a
high correlation of .993, with an average bias of —0.213 K
@nive to the ship-based radiometric measurements.

ese results indicate the applicability of the ERAS data
for climate analyses in the tropics. The latest reanalysis
data of ERAS with high spatiotemporal grid resolution
enable the effective analyses of the wind distribution in
the Indonesian seas and of the diurnally varyipg wind.
The results derived from ERAS in this study are gsed on
the 9-year data.

To examine the consistency between the ERAS data
and in situ data, we used wind data acquired at obse
tion stations on the Indonesian islands, which are
obtained from the ional Centers for Environmental
Information (NCEI) of the National Oceanic and Atmo-
spheric Administration (NO . Furthermore, we used
hourly wind data from four Triangle Trans-Ocean Buoy
Network (TRITON) buoys located in the north Papua,
which are obtained from the Pacific Marine Environmen-
tal Laboratory (PMEL) of the NOAA for the same data
period as the ERAS. The wind speeds acquired at a height
of are converted to those at a height of 10 m using
the COARE Bulk algorithm (Fairall ef al., 1996).

To analyse the variability in wind, we used a principal
component analysis method. We compute locity vari-
ance ellipses and eddy kinetic energy Iollowing the
method of Chelton et al. (2000) and Shimada (2010). The
principal axes of variance in wind are derived from the
eigenvalues and eigenvectors of the covariance matrix of
the data at a given location. The eddy kinetic energy is a
mean of eigenvalues. For example, the highly anisotropic
velocity variance ellipses accompanied by large eddy
kinetic energy indicate high wind variability in a particu-
lar direction. This analysis method is useful in regions
where the winds are influenced by topography.

To show the regional differences in the diurnally
varying wind, the vector anomaly of hourly wind is calcu-
lated by subtracting daily vector average wind from
hourly vector average wind. Then, we defined the diurnal
amplitude as the mean magnitude of 24 wind vector
anomalies for every hour. In addition, we computed

monthly means of daily maxima of the surface tempera-
ture difference between land and sea. This temperature
difference is derived by subtracting the monthly mean of
hourly sea surface temperature from the monthly mean
of hourly land surface temperature for each grid in the
defined regions.

3 | DISTRIBUTION AND KEY
LOCATIONS

The annual mean of the scalar wind speed in the Indone-
sian seas using the ASCAT wind measurements is
depicted in Figure la. The Incglesian seas are sur-
rounded by three regions (the South China Se e
Pacific Ocean, and the Indian Oceag“rith mean wind
speeds typically greater than 5 m s~ (Chang et al., 2005b;
Wang et al., 2010; Koseki ef al., 2013). In the Indonesian
seas, high wind sp@ comparable to those in open
oceans are apparent. High wind speeds exceeding 6 m s™*
are observed in the Arafura Sea and the Banda Sea.
Localized high wind speeds are observed in the Java Sea.
On the other hand, the mean wind speeds are relatively
low in the Molucca Sea, Halmahera Sea, Karimata Strait,
Makassar Strait, and especially to the north of Sulawesi
Island, possibly owing to the topographic blockage. These
features are consistently confirmed in the corresponding
map derived from the ERAS data (Figure 1b). The wind
speed in ERAS exhibits a lower speed than in ASCAT in
most of the Indonesian seas. The spatial correlation
between these #fid fields is .94 and the root mean square
error is 0.71ms~', although the bias is [¥Rative
(—0.52ms™") especially for speeds less than 4 ms™*
(Figure Sla). Thus, the wind speeds in the Indonesian
seas have large spatial variability.

To distinguish the features seen in Figure 1, we illus-
trate the monthly means of vector winds in January
(Figure 2) and August (Figure 3). Thega two months cor-
respond to the peak periods of the nst Asian winter
monsoon and the Australian winter monsoon, respec-
tively, and the wind fields in these two months are repre-
sentative of thosegduring the respective monsoons. In
January, the wind associated with the EagAsian winter
monsoon blows into the Indonesian seas from the South
China Sea ards the Arafura Sea via the Karimata
Strait, the Java Sea, and the Banda Sea, with speeds
exceeding 5 m s~ (Figure 2). This wind flow is clearly
distinguished from the ambient winds. The moderately
strong winds extendi om the trade wind region in the
Pacific Ocean blow through the Molucca Sea to the
B Sea, merging into the wind flow originating from

uth China Sea. In August, the southeasterly wind
with speeds exceeding 6 m s™* blows mainly through two
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routes i e Indonesian seas (Figure 3). One route

extends from the Arafura Sea to the south of the
Philippine Islands or the Pacific Ocean through the
Molucca Sea and the Halmahera Sea. Winds are intensi-
fied in the Molucca Sea and the Halmahera Sea when
passing between the islands, and these strong winds are
in contrast to the weak winds in the lee of Sulawesi

Island and Papua Island. The other route bifurcates from
the da Sea and extends to the Karimata Strait through
the Java Sea, rea g the South China Sea. Moderate
wind speeds (3-4 ms™') are observed in the Makassar
Strait, suggesting a wind route from south to north in
August. The distributions of surface winds derived from
the ERAS data in Figures 2b and 3b are consistent with
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those derived from the ASCAT data in Figures 2a and
3a, although the differences in speeds are spfhtly
larger in the Java Sea. The mean bias is —<0.15m s,
the root mean square error is 0.74 m s™*, and the cor-
relation is .94 from the comparison of wind speed
derived from vector average winds between ASCAT
and ERAS (Figure S1b). Thus, from these results, it is
established that the Indonesian seas provide impor-

tant routes of the monsoon wind.

oE 1ade FIGURE 3 same as Figure 2
...... but in August our figure can be
viewed at wileyonlinelibrary.com|

We here explore the monthly means of vector winds at
100 m from the ERAS data (Figures 2c and 3c). The distri-
bution or spatial contrast of the wind fields at a height of
100 m is consistent with that at a height of 10 m. While the
differences in wind speeds between 10 m and 100 m
increase with speed, the relationship of wind speeds
between 10 and 100 m are evident (Figure 4a,c), in spite of
possible regional differences in stratification. The wind
directions are consistent between 10 and 100 m (Figure 4b,
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0.25% by excluding the data at land grid points. The thick line is the regression line, and R is the correlation coefficient. The ERAS data

plot this figure have the same time as ASCAT (number of samples is 219,7

he root mean square errors in (a-d) are the following:

0.55ms ', 155° 0.58 m s, and 9.66°, respectively. The biases in (a-d) are 0.25 m s, 0.34°, 0.44 m s ™", and 0.06°, respectively

d). From these results, the wind routes with high wind
speeds are clearly confirmed at a height of 100 m.

The monthly means of the wind curl reveal the fine
structures of the wind fields (Figure 5). The wind curl is
computed as V x u where u is the horizontal wind vector.
A wind jet blowing from a mountain gap or a channel
between islands is detected as a pair of positive and nega-
tive values of wind curl, and wind passing through the
tip of an island or a peninsula is detected as a positive or
negative value of wind curl (Chelton et al., 2004). In
January, the positive axm'legative wind curl are respec-
tively found along the northern and southern coasts of
the Java Sea and the Banda SeagiFigure 5a). These struc-
tures indicate a large wind jet associated with the East

Asian winter monsoon. The axis of the wind jet, which is
represented by the line of the wind curl, is centrally
located in the Java gand the Banda Sea. It is notewor-
thy that the jet structure is not detected in the Karimata
Strait, while this strait is the major route of the East
Asian winter monsoon. Only a positive wind curl appears
when the monsoon blows into the Karimata Strait. In the
Molucca Sea and the Banda Sea, small-scale structures of
pairs of positive and negative wind curls indicate strong
winds blowing through th nnels between the islands.
In August, a large wind jet associated with the Australian
winter mo: n is indicated by the positive and negative
wind curlsg;g the southern and northern coasts of the
Java Sea and the Banda Sea (Figure 5b). The interisland
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gaps and channels form d jets along the northern
coast of Java Island and the islands to the east. In the
Molucca Sea, the Halmahera Sea, and the Makassar
Strait, multiple pairs of positive and negative wind curl
are found. These structures indicate small-scale wind jets,
inducing large spatiyariability in sea surface winds
owing to the islands. Along the southern coasts of Suma-
tra and Java Islands, the narrow bands of the positive
and negative wind curl are seen in January and August,
respectively, reflecting the drag effect on the strong winds
blowing along the coasts. In the wind curl fields derived
from the ERAS data, these features are smoothed but rec-
ognizable (Figure 5c,d). The mean bias is —0.08x107% s,
the root mean square error is 9.95 x 10757, and the cor-
relation is .81 (Figure Slc). Thus, we could shed light on
the fine structures of wind in the entire Indonesian seas,
which are blurred in the wind curl fields derived from
the QuikSCAT wind data with a m grid resolution
and have not been focused on elton et al., 2004;
Risien and Chelton, 2008).

From the results in Section 3, we chose the following
six key locations on the routes of the monsoon winds for
the subsequent analyses: the Karimata Strait (1.00°S/
107.00°E), Java Sea (5.00°S/111.50°E), Banda Sea
(5.75°S/128.00°E), Arafura Sea (8.25°S/134.25°E), Makas-
sar Strait (2.25°S/118.00°E), and Molucca Sea (2.00°N/
126.25°E; Figure 1b). The wind variability in these six
locations can be representative of that in the surrounding

seas. Although we mainly focus on the ASCAT wind
measurements for investigating the spatial distribution of
winds shown in Figures 1, 2, 3, and 5, we confirmed that
the spatial grid size of the ERAS data is enough to ana-
lyse the wind along the main monsoon routes. In this
and subsequent sections, we discuss the general features
of winds observed in both datasets.

4 | VARIABILITY ASSOCIATED
WITH THE MONSOON SYSTEM

To examine the variability in wind, omputed vari-
ance ellipses and eddy kinetic energy e Indonesian
seas (Figure 6). The most remarkable feature is that the
velocity variance ellipses argshighly anisotropic in the
Indonesian seas (Figure 6a). From the South Chi ea
to the Arafura Sea via the Karimata Strait, the Banda
Sea, and the Arafura Sea, the major axes of the aniso-
tropic velocity variance ellipses are well aligned with
the coastlines of the large islands and the chains of the
small islands. These seas are characterized by large
eddy kinetic energy (>15 m” s™%). The most anisotropic
velocity variance elli and the largest eddy kinetic
energy are distributed 1n the Arafura Sea and the South
China Sea. In the Molucca Sea, Halmahera Sea, and
Makassar Strait, the velocity variances are still weakly
anisotropic, and the major axes of the velocity variances
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and crossed lines) and eddy kinetic
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from (a) ASCAT and (b) hourly data
of ERA5 at 10 m for all the months
during 2010-2018. The ellipses are
plotted at every 12 grid points in (a)
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are aligned with the mean wind direction in Figures 2
and 3. Thus, the strong wind regions shown in Fig-
ures 1, 2, and 3 are accompanied by highly anisotropic
velocity variance ellipses and large eddy kinetic energy.
The large eddy kinetic energy arises mainly from vari-
ability in the wind direction associated with the seasonal
reversal of the monsoons. Figures 2, 3, and 6 indicate that
the monsoon winds blow through the study region mostly
over the seas along the routes formed by the coastline of
the large islands and the chains of the small islands. We
can confirm the anisotropic velocity variance ellipses and
consistent distribution of the eddy kinetic energy from the
ERAS data, except that the eddy kinetic energy derived
from the ERAS data is lower than that derived from the
ASCAT data, especially in the Karimata Strait, the Java
Sea, and the seas around Sulawesi Island where the wind
speeds of the ERAS data are lower than those of the
ASCAT data (Figure 6b). The spatial correlation of eddy
kinetic energy between Figure 6a,b is .91, the root mean
square error is 3.13m” s, and the mean bias is
—2.39 m” s (Figure S1d).

We confirm the variability of wind in the Indonesian
seas from the annual wind roses in the selected six loca-
tions (Figure 7). The wind roses show the occurrence
probability of wind direction for wind speeds less than a
given threshold. All the wind roses show high direction-
ality in two opposing directions. The directions of the
two dominant peaks correspond to the directions of the
coastlines formed by the large islands and the chains of
the small islands around the respective locations. This
result indicates that the wind direction associated with
the monsoons is signifigpatly stable. In the locations
along the route ranging gm the Karimata Strait tgethe
Arafura Sea, the peak frequencies of wind direction asso-
ciated wi e Australian winter monsoon are more
than twice those associated with the East Asian winter
monsoon (Figure 7a,d—f). In the Makassar Strait and the
Molucca Sea, the wind roses are slightly wider than the
others because of the variable wind direction at low
wind speeds (Figure 7b,c). The high directionality of
the wind roses is also represented by the ERAS data
(Figure 7g-1), except that the variable winds associated
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FIGUR Annual wind roses composed of (a-f) ASCAT and (g-1) ERAS hourly data at 10 m in the selected six locations shown in
Figure 1b. Wind direction is defined as the direction from which the wind blows. The compass is divided into 16 sectors. The polygons show
the cumulative relative frequency of wind direction with speeds less than a threshold speed for every 1 m s™" (thin and bold contours). The
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with the East Asian winter monsoon are under- We derived major-axis wind components, which are
estimated in the Karimata Strait, Makassar Strait, and  wind components projected onto the major axes of the
Molucca Sea (Figure 7g-i). velocity variance ellipses, to illustrate their relative
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frequencies in the selected six locations (Figure 8). The
resultant histograms derived from the ERAS data are
consistent with those derived from the ASCAT data,
ough the slight differences are confirmed only in the
akassar Strait and Molucca Sea due to the different res-
olution of the datasets. The histograms are bimodal in
the locations along the wind route ranging from the
Karimata Strait to the Arafura Sea and in the Molucca
Sea (Figure 8a,c,d—f). This means that the two peaks are
the result of the seasonal reverse of the monsoon wind.
The peaks corresponding to the Aust?ian winter mon-
soon are more dominant than the East Asian winter
monsoon, especially in the Java Sea, Banda Sea, and
Arafura Sea. The following previous studies discussed
ge possible factors, which intensify and weaken the
ast Asian Wirm monsoon and the Australian winter
monsoon. The posigew and intensity of the Hadley cir-
culation affect the‘E;t Asian winter monsoo hang
and Zhang, 2010). Chen et al. (2019) found that the
intensification of the Australian high is favourable for

of Climatology

the strengthening of the Australian winter monsoon. In
the Makassar Strait, the histogram is megemodal
(Figure 8b). This result indicates that the Makassar
Strait is a minor route of the monsoons and that the
resulting wind speeds are relatively weak. Thus, there
are regional differences in the wind speed frequency
between the two monsoons.

The monthly averages and standard deviations of the
major-axis wind component in the selected six locations
were used to respectively investigate the seasonal varia-
tions in speed and variability of the monsoon wind (Fig-
ure 9). The results derived from both datasets are
consistent with each other. The magnitudes of the major-
axis wind components during the Aust?ian winter mon-
soon are larger than those during the East Asian winter
monsoon, especially in the Molucca Sea and the Arafura
Sea, which are consistent with the aforementioned
results (Figures 2, 3, 7, and 8). Another important distinc-
tion is that the major-axis wind components exhibit
larger variability during the East Asian winter monsoon

o
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in winter monsoon in Figure 3. The positive and negative values of the major-axis

consistent with the mean wind vector during the Aus!

Major-axis wind component (ms ")

Major-axis wind component (ms )

“ted six locations shown in Figure 1b. The ASCAT and
e major axis of the velocity variance ellipse as the direction

wind component indicate the wind mainly associated with the Australian winter monsoon and the East Asian winter monsoon, respectively.

The numbers of ASCAT and ERAS data used are the same as Figure 7
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FIGURE 9

Monthly mean (thick lines and dots) and +1 standard deviation (thin vertical lines) of the major-axis wind co

ent

derived from ASCAT (grey) and hourly data of ERAS at 10 m (black) at a single grid curresl:»pling to the selected six locations 1n Figure 1b.

Positive and negative values of the major-axis wind component represent the winds blowing

East Asian winter monsoon, respectively

than that during the Australian @ntﬁr mon along
the route of the monsoon (the Karimata Straiiﬂgva Sea,
Banda Sea, and Arafura Sea; Figure @a,d—f). This distinc-
tion is particularly prominent in the Sea, Banda Sea,
and Arafura Sea (Figure 9d-f). In the Makassar Strait and
the Molucca Sea, the variability in the major-axis wind
component is comparable between the two monsoons.
The large variabilities in the major-axis wind component

are evident ing the monsoon transitions in the
Molucca Sea, Java Sea, Banda Sea, and Arafura Sea
(Figure 9c— he overall features of the seasonal varia-

tions in the Java Sea, Banda Sea, and Arafura Sea are
similar to each other (Figure 9d-f), with earlier peaks of
the Australian winter monsoon than the other locations
(Figure 9a—-c). Winds in the Makassar Strait are markedly
weaker than the other locations (Figure 9¢). These results
above clearly exhibit the difference between the two
mMoOnsoons.

We examined the seasonal advance of the monsoons
in the Indonesian seas from the daily means of the

uring the Australian winter monsoon and the

major-axis wind component along the main monsoon
routes shown in Figure 1b (Figure 10). Although in the
results so far, we used both ASCAT and ERAS data, in
this and subsequent analyses, we use the ERAS data to
take advantage of its high temporal resolution. Although
the onset and retreat dates of the monsoons have been
discussed mainly from rainfall data or wind data in the
lower atmosphere (Tanaka, 1994; Moron et al., 2009,
2010), we considered this issue in terms of sea surface
winds. In Figure 10, positive and negative values persist
for months and divide a year into two seasons. This per-
sistence of the positive and negative values of the major-
axis wind component represents the duration of the Aus-
tralian winter monsoon and theEast Asian winter mon-
soon periods, respectively. The switch between the
positive and negative values or the major-axis wind com-
ponent of 0 m s~ means the transition between the mon-
soons. The Australian winter monsoon starts from the
Arafura Seas at the end of March. The duration of the
Australian winter monsoon decreases with distance from
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FIGURE 10 Distance-time diagrams of the daily mean of the
major-axis wind component along the main monsoon routes
denoted by the dashed grey lines in Figure 1b. The ERAS hourly
data at 10 used. The defined routes extend to the Arafura Sea
from (a) the South China Sea and (b) the Pacific Ocean. Along
these routes, the data are sampled at every 0257 in longitude or
latitude and the numbers of sampling locations along the routes are
137 grid points in (a) and 53 grid points jpg(b). Positive and
negative values show the winds blowing during the Australian
winter monsoon and the East Asian winter monsoon periods,

e vertical dashed line serves as the only guide of sea
lour figure can be viewed at wileyonlinelibrary.com|
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the Arafura Sea to the glth China Sea (Figure 10a).
That is, the Australian winter monsoon has a duration of
7.5 months (from early April to the middle of November)
in the Arafura Seaa .5 months (from early May to the
middle of October) in the South China The East
Asian winter monsoon starts in mid-October in the South
China Sea and reaches the Arafura Seas at the beginning
%ember (Figure 10a). The complete transition

n the East Asian winter monsoons and the
Australian winter monsoons in the Indongs®mn seas takes
approximately 40 days. Along the route extending from
the Arafura Sea to the Pacific Ocean (Figure 10b), the
overall features are common to thgsg in Figure 10a. In
the Pacific Ocean, the transitions?om the Australian
winter monsoon to the East Asian winter monsoon occur
after a delay of a half month (starting at the beginning of
November), compared to the South China Sea. Thus, we
can see the onset dates and the transition of the mon-
soons in the Indonesian seas from the wind components
along the monsoon routes.

Along the defined routes, we can see the following
regional distributions of the major-axis wind compo-
nent. The Australian winter monsoon has maximum

ds of approximately 10 m s~ only in the Arafura
gand the Banda Sea (Figure 10a,b). The maximum
speeds occur during May-August or the first half of the
Australian winter monsoon period. In the boundary
region between the Java Sea and the Karimata Strait,
the Australian winter monsoon intensifies up to afjpeed
of approximately 8 m s~ in August (Figure 10a). In the
Molucca Sea and the Pacific Ocean, the maximum
speeds also appear in @gust (Figure 10b). In contrast,
the maximum speeds associated with the East Asian
winter monsoon extend far downstream from the Java
Sea to the Arafura Sea with comparable speeds (approx-
imately 8 ms™) to those in the South China Sea
(Figure 10a). Moreover, the maximum speeds persist
throughout the East Asian winter monsoon. A local
minimum of wind speed is found in the Karimata Strait.
Along the route from the Pacific Ocean to the Arafura
Sea, wind speeds blowing through the Molucca Sea are
slightly weaker than those in the Banda Sea and
Arafura Sea (Figure 10b). Thus, Figure 10 corroborates
the spatial analyses of the monsoon wind in Figures 1-
3 in terms of seasonal variations.

5 | DIURNAL VARIATION

The ERAS5 hourly wind data were used to analyse the
diurnal variation of wind by taking advantage of long-
term data and of higher temporal resolution compared to
the data used in Short et al. (2019). The diurnal variations
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of wind derived from the ERAS data and in situ data
show consistency (Figure S2c). The differences in wind
speeds between these two datasets are attributed to the
observation height of the stations, representativeness of
the in situ observation, and the grid interval of ERAS
(Table S1, Figure S2a,b). Furthermore, the comparison
between wind speeds obtained from ERAS and those
from the Triangle Trans-Ocean Buoy Network (TRITON)
buoys located to the north of Papua show significantly
high correlations (>.8) with a mean bias and root mean
square less than —0.27 and 142 ms™', respectively
(Figure S3). Thus, we conclude that the ERAS wind data
can be effectively used for the analysis of diurnally vary-
ing wind in the Indonesian seas.

Figure 11 depicts the result for September when diur-
nal wind variations are the most prominent in a year, as
shown in Figure 13a. The vector wind field in September
is similar to that in August (Figure 3a,b) but with slightly
lower speeds. The vector anomalies indicate land breezes
during the nighttime and sea breezes during the daytime.
The wind rapidly changes its direction to be perpendicu-
lar to the coastline (Figure 11). This result is consistent
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year (Figure S4).

The map of the diurnal amplitude clearly shows
regional differences in the diurnall rying wind
(Figure 12). Amplitudes greater than 1.5 m s~ ' are found
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areas with amplitudes of diurnally varying wind greater
than 1.5 ms™ are common throughout the year and
asymmetrically formed around the islands. In September,
these sea areas are commonly located in the lee of the
islands. The diurnal variation of wind is presumably
enhanced because of weak winds in the lee of the islands.
Moreover, the weak wind contributes to an ingpease in
surface temperature over land, increasing themd—sea
temperature difference during the daytime. In contrast,
the amplitudes of diurnally varying wind are persistently
low alongghe centre lines of the main monsoon routes
extending from the Arafura Sea to the South China Sea
and to the Pacific Ocean. This feature is especially promi-
nent around the islands in the Molucca Sea, the Halma-
hera Sea, and the Banda Sea. Thus, regional differences
in the amplitudes of diurnally varying winds are
identified.

Figure 13a shows the seasonal variation of the
diurnal amplitude of wind in the representative
regions shown in Figure 12. In the Java Sea, to the
south of Sulawesi Island, and to the southwest of
Papua, the amplitudes of diurnally varying wind reach
a significant mmnum in September, with the ampli-
tude of 1.3-1.6 m s™'. To the northwest of Borneo and
to the north of Sulawesi Island, the amplitudes of diur-
nally varying wind have two moderate maximum
peaks of 0.7-1.0 m s~ in April and in November or
September. We speculate that these seasonal
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variations of diurnally varying wind are attributable to
the daily maxima of the surface temperature difference
between land and sea (Figure 13b). We focus on the
regions with amplitudes of diurnally varying wind
greater than 1.5 m s'. The land-sea temperature dif-
ferences in the Java Sea (Region a), off southern Sula-
wesi Island (Region b), and off southwestern Papua
(Region c) reach a high amplitude (more than 1.8 K)
in September, consistent with the peak of wind anom-
aly. The land surface temperature is mainly higher
than the sea surface temperature with a significant
peak in September (the Java Sea and off southwestern
Papua) and October (off southern Sulawesi Island). In
these regions, the land-sea thermal contrast and the
seasonal variations in temperature over land and sea
exert a significant influence on the amplitude of diur-
nally varying wind in the Indonesian seas. Meanwhile,
off northwestern Borneo (Region d) and off northern
Sulawesi Island (Region e), the land surface tempera-
ture is mainly lower than sea surface temperature
(except from January to March for the northern Bor-
neo). Accordingly, the land-sea surface temperature
differences in the northern Borneo and northern Sula-
wesi Island are mainly lower than those in the Region
a—c. This result suggests the presence of other factors
contributing to the seasonal variations in the ampli-
tudes of the diurnally varying wind. This point needs
to be further explored in future studies.

1.2 1.5

gGU RE 12 Monthly mean of the amplitude of diumally varying wind in Septembe, ived from hourly data of ERAS at 10 m. Five

rectangles with legends of (a—e) show the selected regions for the analyses in Figure 13a |

wileyonlinelibrary.com|

our figure can be viewed at
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FIGURE 13 (a) Monthly mean amplitudes of diurnally
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Figure 12
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| SUMMARY AND

CONCLUSIONS

This study investigated the surface wind in the Indone-
sian seas on seasonal and diurnal timescales. The results
are summarized as follows:

1.

The monsoon winds blow through the Maritime Con-
tinent mostly over the seas along the routes formed by
the coastline of theglage islands and the chains of the
small islands. The East As@n winter monsoon blows
from the South China Sea o the Arafura Sea through
the Karimata Strait, t va Sea, and the Banda Sea.
The trade winds blow Info the Banda Sea through the

. The major directions of variability in

Moluce a. The Australian winter monsoon blows
mainly from the Arafuragea to the south of the
Philippine Islands or the Pacific Ocean through the
Molucca Sea and the I—@mhera Sea and partly from
the Banda Sea to the South China Sea through the
Java Sea. The Makassar Strait also functions as a route
for the Australian winter monsoon blowing to the
southern Philippine Islands. The wind speeds are per-
sistently strong along these routes. Localized high
wind speeds are observed in the Java Sea. The Arafura
Sea has the highest wind speed in the Indonesian seas.
The wind jets are formed within the routes with hi
speeds in the central part of the routes, especially 1n
the Java Sea and the Banda Sea. The interisland gaps
or channels between the islands also produce wind
jets of various scales. Although the Karimata Strait is
an important section of the monsoon routes, the struc-
ture of the wind jet is not formed. On the other hand,
weak winds are formed in the lee of the Philippine
Islands, Borneo, and Sulawesi Island owing to the
blockage of wind.
ind are well
aligned with the monsoon routes. The monthly mean
wind speeds associated wigh the Australian winter
monsoon are higher than those associated with the
East Asian winter monsoon in most o Indonesian
seas. Meanwhile, variability in wind associated with
e Australian winter monsoon is lower than that
associated with the East Asian winter monsoon, espe-
cially along theg@ute of the monsoon (the Karimata
Strait, the Java Sea, the Banda Sea, and the Arafura
Sea). In the Makassar Strait and the Molucca Sea, the
variability in wind is comparable between the two
monsoon periods. This wind variability shows that the
Ausgian winter monsoon is more persistent than
the East Asian winter monsoon. The duration q:e
Australian winter monsoon is longer than that of the
t Asian winter monsoon along the routes ranging
the Java Sea to the Arafura Sea. The onset or
retreat date of each monsoon shows a difference of
approximately 40 days between the east and west of
the Indonesian seas. The Australi winter monsoon
exhibits a maximum speed only In the Arafura Sea
and the Banda Sea during May-August. The maxi-
mum wind speeds associated withmilhie East Asian win-
ter monsoon span a wide range from the Java Sea to
the Arafura Sea.

. 9’18 amplitudes of diurnally varying wind are larger

ong the northern coasts of Java Island and the small
islands to the east, along the northwest, northeast,
and southwest coasts of Borneo, along the coast of
southern Sulawesi Island, and to the southwest of
Papua than the other regions near the coast. In the
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middle of the seas and along the centre lines of the
monsoon routes, the diurnal variation in wind van-
ishes. Sea areas with a large amplitude of diurnally
varying wind are much the same throughout the year.
The amplitude of diurnally varying wind has
an annual maximum in September, especially in the
Java Sea, Banda Sea, and Arafura Sea. These seasonal
variations are consistent with the daily maximum
temperature differences between land and sea,
except in the northern Borneo and northern Sulawesi
Island.

We have presented the climatology of surface winds
in the Indonesian seas. This study can serve as a basis for
a better understanding of weather and climate for the
mitigation of disasters. For example, the distribution and
intensity of precipitation are essentially affected by sur-
face wind, and thus surface wind is a key for flood man-
agement. Then, the study of surface wind is necessary for
the development of offshore wind energy. The surface
wind is a significant indicator of low-level wind at a rotor
height of wind turbines. Moreover, the understanding of
surface winds is essential to examine the ocean environ-
ment, including the sea state required for the construc-
tion and operation of the offshore wind turbines. Further
investigations are required in the following aspects.
Firstly, examining the three-dimensional structure of the
monsoon winds is an important challenge to clarify the
effects of island topography on the wind. Wind curl fields
in the Indonesian seas indicate significant impacts of the
topography of islands of various sizes on the wind. Sec-
ondly, regional differences in the amplitude of diumally
varying wind merit further study. Specifically, the cause
for the seasonal variations in the amplitude of diurnally
varying wiggp must be investigated. Thirdly, we need to
clarify the relationship between the variability of surface
winds in the Indonesian seas and the variability of large-
scale monsoon systems. The impact of large-scale climate
variability induced by ENSO, IOD, and MJO on the sur-
face winds also merits further studies. Further studies
along these lines would provide better insights into the
formation of the main monsoon routes and the variability
in wind on the diurnal to interannual time scales.
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