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Atropical cyclone (TC) usually induces strong sea-surfaceling due to vertical mixips.
In turn, surface cooling influences the intensities and tracks 1 f TCs. Therefore, ge
relationship between sea-surface temperature (SST) and TC is one of the important
components of airsea interaction. Sea-surface cooling associated with three TCs
(Bailu, Linglinnd Mitag) was investigated based on wave-glider observations, satellite
altimetry, and Massachusetts Institute of Technology General Circulation Model (MITgem)
numerical experiments from August 3rd to October 10th, 2019. Surface cooling varied
among the three TCs. TC Lingling had the nearest distance to the wave-glider position,
the slowest translation speed, and the strongest intensity of three TCs, but extreme
cooling (1.4) occurredgaimring TC Bailu. Although MITgem underestimated the extreme
cooling, the SST trend &E&den by the net heat flux, advection, and vertical mixing within the
mixed layer was greater during TC Bailu than during other TCs. Advection was the largest
of the three heat balance terms during TC Bailu, while it was quite small during the other
two TCs. Interestingly, the extreme cooling occurred at the position of preexisting warm
eddy. Based on heat balance analysis, we found that the eddy-induced heat advection
transport reached —0.4/day, contributing 60% of the heat balance; this was attributed
to extreme cooling via eddy disturbance. We suggest TC Bailu leads to the decrease in
SST and increase in the area of the cold eddy, and then, the cooled-enlarged eddy is
advected to the neighbored position of wave glider, which observes the extrerme cooling.
These findings provide the utilization of wave gliders and help improve air-sea coupled
models during TCs.

Keywords: wave-glider, eddy heat advection, sea surface cooling, tropical cyclone, Western north pacific (WNP)
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%RODUCTION

Tropical cyclones (TCs) are characterized by heavy winds and
waves, which cause socioeconomic losses. TCs interact with
the ocean via momentum, mass, and heat excha.nges.ese
interactions induce significant surface cooling of 1-6”C, which,
in turn, influences ck and intensity of the TC (e.g., Price,
1981; Emanuel, 2001; Cione and Uhlhorn, 2003; Price et al., 2008;
Lin et al., 2013; Li et al, 2020). This surface ling may also
regulate seasonal and climatic currents (Wang et al., 2016; Guan
et al., 2021). Therefore, an accurate understanding of the surface
cooling magnitude and its mechanisms are important for TC
fo ting and climate projection.

e amplitude of TC-induced sea-surface cooling could be
affected by TC properties. Statistical analysis has s?n that the
mean/maximum amplitude of surface cooling is related t
intensity, translation speed, size, and duration of forcing el
and Pasquero, 2013; Wang et al.,, 2016). Intens slow TCs
easily trigger strong surface cooling. Asymmetric surface cooli i}
is induced by strong inertial currents and str, wind speed to
the right side of the TC track (Price, 1981; Black et al., 2007;
Sanford et al., 2011; Mei et al., 2015; Mitarai and Mcwilliams,
2016).

re-TC oceanic thermal conditions also influence the
amplitude of TC-induced surface cooling. Local TC-eddy
ractions have been studied. TCs strengthen when passing

a warm core eddy due to enhanced oceanic buoyant forcing
(Lin et al, 2005; Jaimes et al., 2016; Sun et al., 2020). After the
TC, the amplitude, radius, and kinetic energy of cyclonic eddy
increase due to TC-induced current shear or current n (Lu
et al., 2016). TC-induced surface cooling is enh when the
TC passes a preexisting cold eddy; it is@kened when the TC
passes over a preexisting warm eddy (Lin et al., 2005; Walker
et al., 2005). The vertical structure of a preexisting eddy can
also be modified by a TC (Wang et al, 2016; Gordon et al,
2017). Composite analysis shows that after a TC, subsurface water
within anticyclonic eddies becomes colder and saltier, while it
becomes warmer and fresher within the cyclonic eddies (Liu
et al.,, 2017). Subsurface eddies may form when cooling surface
water is subducted to the thermocline (Gordon et al, 2017),
and a TC may also induce upwfing and confine potential
vorticity to the thermocline (Lu et al., 2016, 2020). Prakash
et al. (2018) and Prakash et al. (2021) found that cold eddy-TC
interactions induced higher barrier layer thickness than warm
eddy-TC interaction and no eddy case.

The magnitudes of TC-induced sea-surface cooling can
be quantitatively estimated thrﬂ'n diagnostic analysis, which
explains the contributions of air-sea heat exchange, vertical
advection, censating horizontal advection, and diapycnal
mixing (e.g., Price, 1981; D’ o et al., 2007; Jaimes et al., 2016;
Wu et al, 2020). Turbulent heat flux is presumably crucial to
TC-induced surface cooling in the near-coastal shallow regions
(Shen and Ginis, ), while diapycnal mixing is presumed to
play a major role in the open ocean (Price, 1981). Potter et al.
(2017) noted that the weak TC Dianmu can induce strong surface
cooling; they suggested tl-mhis cooling was influenced by the
westward propagation of a mesoscale eddy. The translation speed

of a mesoscale eddy is usually comparable with the speed of the
first baroclinic Rossby wave (Qiu, 1999; Qiu and Chen, 2005),
which is much slower than the speed of a TC. Therefore, the
eddy advection term is seldom considered when determining
sea-surface cooling, and the processes through which eddy
advection regulates the TC-induced surface cooling still merits
further investigation.

In this study, we observed an instance of extreme cooling
using a wave glider and found that this cooling occurred
on a preexist warm eddy, which is beyond our expectation.
Subsequently, the mechanisms of this ping were examined
through numerical experiments. The data and methods are
presented in section Data and methods; the extreme surface
cooling case is described in section Upper layer responses to
TCs; possible mechanisms are illustrated in sectPossible
mechanisms of the extreme sea-surface cooling; and conclusions
are provided in section Conclusions.

DATA AND METHODS

Data

Wave-Glider Data

As one of the unmanned surface vehicles, a wave glider is capable
of long-duration cruising because it translates wave energy into
forwarding motion and generates el ity using solar panels.
Wave gliders are far less expensive than manned vessels and
more capable than alternative technologies. Therefore, the wave
glider has become an important tool for observation of air-sea
interactions, especially in extreme weather conditions of TCs
(Mitarai and Mcwilliams, 2016).

The “Black Pearl” wave glider was developed by Uce@
University of China and Tianjin University of Technology (Li
etal, 2017; Sun et al., 2019). It was deployed in the northwestern
Pacific on August 3rd, 2019; it experienced three TCs (Bailu,
Lingling, and Mitag) between August 3rd, 2019, and until
October 10th, 2019 (Figure 1). Sensors installed on the wave
glider include a global positioning system, communication gear, a
pumped Glider Payload conductivity-temperature-depth sensor
from Sea-Bird Electronics, Bellevue, Washington, USA and a
station. The conductivity-temperature-depth sensor measures
ocean temperatur 0.3m below the sea surface, which is
consfl@red in situ sea-surface temperature (SST) in our study.
The aather ion provides wind speed, wind direction, air
pressure, and air temperature at a height of 1.2 m above the float.
“Black Pear]l” wave gliders e been successfully used to detect
surface waves below TCs in the Southna Sea(Tian et al., 2020)
and to estimate air-sea heat fluxes in the Kuroshio extension

e (Mao et al.,, 2021). We use these air-sea observations to

analyze the responses of air-sea turbulent heat flux and surface

temﬁ\ture to TCs.
TC Data

The trac TCs were obtained from the Japan Meteorology
Agency, (http://www jma.go.jp/jma/jma-eng/jma- center/rsmc-
hp- pub-eg/trackarchives.html). We used data for the center
positions of TCs and maximum wind speeds. The nearest
approaches between TCs Bailu, Lingling, and Mitag, to the
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FIGURE 1 | Distributions of sea-level anomaly (background color) during TCs Eﬁ Bailu, (D=F) Lingling, and {G-N) Mitag. The white triangles are the positions of
wave glider, and black dot lines are tracks of TCs. The unit of sea-evel anomaly is cm. TCs, tropical eyclones.
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TABLE 1 | Wind spesd, W, translation speed, Uy, the first near-inartial oscilation
speed, ¢, and Froude number,Fr, at the position of wave glider during TCs Bailu,
Lingling, and Mitag.

Wave-glider position Wim/s) Uy (mis) cq (mfs) Fr
under different TCs

Bailu 24.0 6.1 1.6 3.8
Lingling a4.2 4.1 1.5 a7
Mitag 32.0 5.1 1.4 3.6

TCs, fropical cyclones.

wave glider occurred on August 23rcmeptember Ist, and
September 29th, 2019, respectively. The maximum wind speed
and translation speed of the three TCs were listed in Table 1.

@analyms Data

ERAS is the fifth-generation reanalysis product of the European
Center for Medium-Range Weather Fo ts (Albergel et al.,
2018). We used the wind speed dataset at 10-m height, which
.s a spatial resolution of 25 km and temporal resolution of 1h,
as the forcing field during TCs in the numerical model. Before
inputting wind forcing into the numerical model, we conducted
validations of ERAS against field observations (i.e., wave-glider
wind speed data). The wave-glider wind speeds at 1.2-m height

22
were transferred to gm height using the Coupled Ocean
Atmosphere Response Experiment (COARE 3.0) algorithm. The
standard deviation between ERAS5 and in situ wind speeds was
3.3 m/s under normal conditions; it rose to 4.2, 4.5, and 5.9 m/s
during TCs Bailu, Lingling, and Mitag, respectively. @

Initial ocean conditions were obtained from the Copernicus
Marine Environment Monitoring Service (CMEMS, http://
marine.copernicus.eu/). We used the daily mean products of
temperature, salinity, and horizontal velocity dataset, which has
a spatial resolution of 1/4°, for the period from August to
October 15th, 2019. These data were collected using maj orﬁal
networks (Argo, GOSUD, Ocean SITES, and GTS), quality-
controlled using automated procedures, and assessed using the
residuals of statistical analysis.

Meth

Air-sea heat fluxes were calculated using the COARE 3.0
algorithm (Fairall 1., 2003), which was obtained from the
website of https://www.coaps.fsu.edu/COARE/flux_algor/. We
input the wave-glider air temperature, air pressure, wind speed,
and SST into the COARE 3.0 algorithm, then set the measured

he?to 1.2 m.
0 examin

we used the

possible mechanisms of sea-surface cooling,
assachusetts Institute of Technology General
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Circulation Model (MITgecm). The MITgem has a flexible non-
rostatic formulation, which enables efficient simulation of
uid phenomena across a wide range of scales. This model can be
applied to sensitivity experiments, and also parameter and state
estimation problems.
We conducted two numerical experiments, described in
section Possible Mechanisms of the Extreme Sea-Surface

TABLE 2 | Three sats of numerical expariments.

Forcing Initial condition Purpose
T,5V)
Exp 1 Wanve-glider CMEMS data 10 58T responses to
parameters ona-dimensional seq surface
atmospheric
parameters
Exp 2 ERAS wind stress CMEMS profiles Response of real saa
during three TCs data surface to the real

wind

T S, and V represent temperature, salinity, and velocity, respectively:

73

Cooling, gexamine the oceanic response to TCs (Table 2).
The three-dimensional modmvas run using a horizontal
grid of 0.25 with 18 layers in the first 300m of the water
column. For the first experiment (Exp. 1), SS5T was simulated
on a fixed position. The temperature, salinity, and velocity
of wave-glider position were used to generate the initial field
on August 6th. Then we used the observed air pressure, air
temperature, wind speed, and SST data to drive the initial
field. The model was run for 70 days with a time step of
5min. We compared the K-Profile Parameterization scheme,
Mellor-Yamada Turbulence Closure Model, and Gaspar-Grég
Lefevre TKE Turbulent Closure Scheme, finding that the K-

file Parameterization scheme has the strongest vertical mixing
at the bottom of the mixed layer; therefore, we used the K-
Profile Parameterization scheme in this study. For the second
experiment, we used the CMEMS profile as the initial field
and the ERA wind field as the forcing field. We output hourly
temperature and velocity data within 18 layers in the upper

To detect mesoscale eddies, we used the vector geometry
method proposed by Nencioli et al. (2010). This method has
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FIGURE 2| Tims serial of wave glider cbserved (A) SST and air temperature (blue ling), (B) magnitude of wind speed (cyan) and air pressure (yallow), [C) wind vector,
and (D) turbulent heat fluxes calculated from COARE 3.0 algerithm. The red, pink, and green lines in (A) are model results from K-P@ Parameterization,
Mellor-Yamada Turbulence Closure Model, and Gaspar-Grégoris Lefevre Turbulent Closure Scheme. The blue and red lines in (f) are latent and sensible heat fluxes,
respectively. The gray boxes are periods of TCs Bailu, Lingling, and Mitag. TCs, tropical cyclones; SST, sea surface temperature.
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Al
been applied successfully in the Hawaii Islands, subtropical North

Pacific (Liu et al,, 2012), and South China Sea (Lin et al., 2015).

UPPER LAYER RESPONSES TO TCS

Sea-Surface Cooling

The wave glider waslocated at the interface between a warm eddy
and a cold eddy at the beginning of TCs Bailu and Lingling, and
within a cold eddy during TC Mitag (Figure 1). We defined the
days when the wave glider was within the radius of a TC as the
TC forcing days. The numbers of forcing days were 2,4, and 2 for
TCs Bai ingling, and Mitag, respectively.

The time series of air-sea parameters and turbulent heat
fluxes are shown in Figure 2. SST shows a sharp decrease on
August 23rd—24th during TC Bailu (black line in Figure 2A),
and a smaller decrease on September 2nd (Lingling) and 29th
(Mitag). The maximum decrease of 1.4°C was observed during
TC Bailu, while the maximum decreases were ~0.6°C for TCs
Lingling and Mitag. The mean magnitude of wind speeds was
greatest during TC Lingling and lowest during TC Bailu (Table 1
and Figure 1B). Based on our measurements, we calculated
turbulent fluxes using the COARE 3.0 algorithm (section Wave-
glider Data). The turbulent heat fluxes were quite small (<10
W/m?) during TCs Bailu and Lingling (Figure 2D), indicating

that the turbulent heat fluxes term cannot explain the extreme
SST cooling observed during TC Bailu. The turbulent fluxes
during TC Mitag were as large as the turbulent fluxes before
TC Mitag. Therefore, turbulent heat fluxes cannot explain the
extreme cooing that occurred during TC Bailu. The mechanisms
of the extreme sea-surface cooling during TC Bailu were explored
with the numerical model, and the results are presented below.

POSSIBLE MECHANISMS OF THE
EXTREME SEA-SURFACE COOLING

Sea-Surface Responses to Atmospheric

Forcing

The evolution of modeled SST in the first experiment (Exp. 1)
was consistent with observed SSTs (Figure 2A), except during
TC Bailu, when the one-dimensional model underestimated
sea-surface cooling. The vertical profiles of temperature at the
location of the wave glider are shown in Figure 3. Within the
mixed and thermocline layers, temperatures in the experiment
demonstrate a decrease of 1.0°C, which is smaller than the
decrease in wave-glider observations during TC Bailu. After
TCs Bailu (August 26th) and Mitag (September 30th), the

D Bailu U-profile
Temp(°C) s m/s
A pBailu B Lingling © Mitag 120
0 2|l 2|4 2:? 3|0 2.1 2|4 2:? 3.0 2’1 2|4 2|'? 3’] 240
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FIGURE 3 | Profiles of temperature for TCs (A) Bailu, (B) Lingling, and (C) Mitag; profiles of eastward velocity during TCs (D) Bailu, (E) Lingling, and (F) Mitag and
nothward velocity during TCs (G) Bailu, {H) Lingling, and (I) Mitag. Black, red, and blue lines are before, during, and after TCs. The data are from numerical
experimeant set 1. TCs, tropical cyclones.
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temperature began to increase within the thermocline layer (blue
line). SST demonstrated minimal changes during TC Lingling.

Near-inertial currents are tial to sea-surface cooling
during a TC, especially currents to the front and right sides of the
TC track (Price, 1981; Jaimes et al., 2011). Near-inertial motions
generally have shorter or longer time scales than motions during
the inertial period, because of background vorticity (Greatbatch,
1984; Sun et al., 2011). The Froude n er, indicating whether
near-inertmotion is predominant (e.g., Donelan et al., 2004),
is defined as the ratio between the TC translation speed Uy, and
the first mode of near-inertial oscillation ¢y,

Up

1
where M gthe upper mixed layer depth; h: is the thick
of the layer extending from the mixed layer depth to 1,000 m;
and p; and p, are the vertical averages of density within h; and
ha, respectively.

The averages of wind speed and translation speed at the
location of the wave glider during the three TCs are listed in
Table 1. The Froude numbers for these three cases were all = 1
(Table 1), indicating a near-inertial ocean surface. Because our
observations were made at different positions relative to the
three TCs, we investigated velocity variations during TCs Bailu,
Lingling, and Mitag. The modeled velocities from Exp. 1 are
shown in Figure 3. During TC Bailu, the velocity (0.15 m/s)

F, = (1) was much smaller than velocities during the other two TCs. The

€ period of near-inertial oscillation is described by fo5 = /2 + f,

o = g( P2~ pl) hihy (2) where ¢ is the relative velocity and f is the local inertial frequency.

P ha+hy fe values were4.18 x1077,4.01 x 1073, and 3.99 x 107 s~ !, and
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the corresponding periods of near-inertial oscillation were 41, 43,
and 43 h during TCs Bailu, Lingling, and Mitag, respectively. The
oscillation period of modeled velocity was (=24 h) much shorter
than the period of near-inertial oscillation. Therefore, local near-
inertial oscillation maybe not be the main driver of the extreme
cooling observed during TC Bailu.

Temperature Responses to TC-Mesoscale
Eddy Interactions

To illustrate the impacts of the local oceanic state, we designed
experiment 2 (Exp. 2). The wind field from ERAS5 was used
to drive the initial temperature, salinity, sea-level anomaly, and
velocity field obtained from CMEMS. The three-dimensional
structures of temperature before and after the TC are presented
in Figure 4. The preexisting warm and cold eddies had smaller
horizontal extents (~100km) before TC Lingling than before
TC Bailu. Within the mixed layer, the wave glider identified the
boundary of a warm eddy before TC Bailu (August 20th). The
warm eddy weakened during TC Bailu (August 22nd) and moved

westward on August 24th, in association with the passage of TC
Bailu. Below 50m, a cold eddy increased in size and extended
westward during TC Bailu. During TCs Lingling and Mitag,
surface cooling was not significant. The existing subsurface warm
eddy became larger during TC Lingling and the subsurface cold
eddy was not affected by TC Mitag,.

The modeled temperature variations are shown in Figure 5.
The SST in Exp. 2 decreased by 0.8°C, which is much
smaller than the decrease observed with the wave glider
(1.4°C). Note that cooling signals were enhanced on both
sides of the wave-glider position, which could be attributed
to the eddy-TC interaction. A subsurface cold eddy was also
enhanced during TC Lingling. An increase in temperature
occurred at the subsurface during TC Lingling. The temperature
variations were strong during TC Mitag. The model results
were consistent with previous studies, which showed that
cyclonic eddies can enhance TC-induced surface cooling, while
anticyclonic eddies can weaken TC-induced surface cooling
(Walker et al., 2005). This enhancement/weakening of cooling
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may be caused by two processes (Jaimes et al, 2016). First,
anticyclonic circulation is generally associated with downwelling
and a deeper thermocline, while cyclonic circulation is generally
associated with upwelling and a shallower thermocline. Second,
TCs can induce near-inertial waves, and propagation of
this signal to the thermocline occurs in anticyclonic eddies,
while these waves are trapped within the mixed layer of
cyclonic eddies; this may suppress the SST decrease within an
anticyclonic eddy and enhance sea-surface cooling within a
cyclonic eddy. However, the model results could not explain
the observation of extreme cooling at the location of the
wave glider.

Thermocline uplift may be affected by the distance between
the center of the TC and the oceanic eddy (Lu et al, 2020),
because a TC will significantly perturb an eddy at a distance
of =80km; it will negligibly perturb an eddy at a distance of
=200km. The shortest distance between the TC center and the
wave glider was =80km for TC Bailu, whereas it was = 80km
for TCs Lingling and Mitag (not shown here). The short TC-eddy
distance may be a reason for the observed extreme cooling during
TC Bailu.

SST Tendency Induced by Eddy Advection
To quantify the processes responsible for temperature anomalies,
the temporal variations of SST were expressed using the formula
of Menkes et al. (2006),

dS88T 1" assT a58T d88T
—=—z | U= +v— — )dz
ot hj_op  Ox dy dy
RATE ADV
Q a58T 1 dh
+— — = —— — (88T —T 3
20Co Z 0z lz=h + hot ( |z:h) ( )
[———
NHF VMIX
20

where (i, v, and w) are component e ocean current field,
() is the net heat flux term, h is the mix er depth, and k-
is the vertical diffusion coefficient. An rackets () denote a
vertical average over the depth of the mixed layer. The terms
on the right-hand side of Equation 3 are the advection, net heat
flux, and ve mixing terms. In accordance with the approach
by Menkes et al. (2006), the mixed er depth i is defined
as the depth where density is up to 0.01 kg/m?® greater than

surface density.
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2 N

The contributions of each term to SST tendency are
shown in Figure 6. Among the three observed TCs, TC-
induced cooling was most significant during TC Bailu, in
accordance with in situ observations. The temperature tendency
induced by the advection term was —0.85°C/day, namely, the
horizontal advection (—0.6°C/day) and the val advection
(—0.25°C/day). It was larger than the net heat flux term
(—0.35°C/day). The mean horizontal advection term was
—0.6°C/day before TC Bailu. The ainment and mixing terms
were —0.05 and —0.10 “C/day, respectively. To manifest the
contribution of eddy transport, we difffled the horizontal and
vertical advection terms into subterms as follows:

HADV BBAT = VAT + VAT +V AT +VAT  (4a)
L o e [ e e
MH MEH EH EMH
VADV aT _a‘:r+_arf N AT AT (4b)
=w—=W—FtW—+w—+w—
9z FY4 9z 2z 0z
e i
VMH VMEH VEH VEMH
where v = v+ v, w = w+w,T = T+ T.w ¥ and

T are the time-averaged zonal velocity, vertical velocit@‘nd
temperature from August 1st to October 31st, respectively. v/, w’,
and T are the disturbances of zonal velocity, vertical v .
f 8T @T

y ay
horizontal temperature gment. % is the vertical temperature
gradient. The subterms on the right-hand side of Equation
4a are the mean f{low-induced heat transport (MH), mean
flow-induced eddy heat transport (MEH), eddy-induced heat
transport (EH), and eddy-induced mean heat transport. The

2 2
and temperature, respectively. AT = ) + ) is the

vertical advection term in Equation 4b is divided into vepl
mean-flow transport, vertical mean flow-induced eddy heat
transport, vertical eddy-induced heat transport, and vertical
eddy-induced mean heat transport.

The vertical profiles of horizontal and vertical heat advection
are shown in Figure 7. Horizontal EH reached —0.4°C/day in
the upper 50m, and the absolute values of EH were greatest
among the four terms of Equation 4 during TC Bailu, explaining
60% of SST cooling. Below the mixed layer, EH was positive
before TC Bailu (blue) and negative after TC Bailu (red). All
horizontal advection terms were minor within the mixed layer
during TC Lingling, but significant changes occurred within the
subsurface. EH also had a small value during TC Mitag. The
vertical heat advection terms were smaller than the horizontal
advection terms.

Temporal variations in sea-level anomaly are shown in
Figure 8. A low-sea-level anomaly signal (i.e, cold eddy)
extended from 130°E to 123°E, then propagated westward at
5.2 cm/s (Figure 8B). SST at the location of the wave glider is
presented in Figure 8A. SST decreased by —0.6°C at the cold
eddy center during Bailu, decreased slightly during TC Lingling,
and increased by 0.8°C during TC Mitag. The northwesterly
velocity changed to southeasterly during Bailu (Figure 8C),
which also confirmed the wave glider was at the interface of
anticyclone and cyclone. MH was negative (~-0.2°C/day) during
TC Bailu, which may be due to a westward- moving Rossby wave
or depth-averaged flow. The phase speed of a long Rossby wave is
¢ = —fBLp?, where Lp is the internal Rossby radius determined
from the mean density profile. The speed of a cold eddy (~5.2
cm/s) is comparable with the Rossby wave phase speed. This
similarity indicates that MEH was mainly driven by a Rossby
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wave during TC Bai he non-linearity of a mesoscale feature
can be characterized by the ratio of the rotational speed U, to the
translation speed of the feature c;. When Us /c; = 1, the feature
maintains an eddy-like shape as ipagates without dispersion.
During Bailu, Uz /c2 = % > lalong the right side of the wave-
glider track, indicating that the cold eddy was stable and unlikely
to disperse.

The four largest terms during TC Bailu are summarized
in Figure 9. The observed SST' tendency was —1.4°C/day. EH,
net heat flux, and background westward propagation of a cold
eddy resulted in extreme SST cooling during TC Bailu. After
estimation, the SST tendency induced by the sum of EH and
MEH was —0.6°C/day, while the SST tendencies induced by
net heat flux and vertical mixing were —0.35 and —0.05"C/day,
respectively. SST cooling within a cold eddy reached —1.0°C/day
during TC Bailu, and this TC-eddy cooling then is advected to
the position of wave glider, which observed the extreme cooling.
Many previous studies have suggested TC-warm eddy interaction
favors th hancement of TC intensity, which enlarges the
range of cold eddy (e.g., Prakash et al, 2021). The area of
the neighbored cold eddy ranged from 13 to 1.6x10' m?
(Figure 10A), suggesting that the extreme cooling might be
induced by TC-warm eddy interaction and the advection of cold
eddy. During TC Lingling the size of cold eddies enlarged, but the
large area only lasted 2 days (Figure 10B). During Mitag, the size

of the cold eddy increased by 0.9 x 10'! m?, however, the wave
glider was at the cold eddy center during TC Mitag (Figure 10C),
where had weak SST advection (Figure 6). Therefore, eddy heat
transport induced by eddy disturbance and mean flow are the
most important factors driving the observed extreme cooling
during TC Bailu.

CONCLUSIONS

In this study, we analyzed three casengC-induced sea-surface
cooling in the northwest Pacific. Extreme cooling of 1.4°C was
observed, which reached a depth of ~50m. Using MITgecm,
we examined the possible mechanism of surface cooling. Eddy-
induced heat advection was identified as the major factor driving
the case of extreme cooling. We suggested that TC Bailu led to
SST decrease within the cold eddy and enlarge the size of the
cold eddy, and then the cooled eddy was advected and extended
to the n@Mbored position of wave glider, causing the extreme
cooling. This study demonstrated that the wave gli was a
useful tool for eddy and TC analysis. The findings of this study
are useful for understanding the response of the upper ocean
to TCs. To improve air-sea coupled modeling during TCs, EH
should be included.
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