
Analysis of Reinforced Concrete
Capacity for Irregular Cross-Sections
Using Numerical Methods

Nuroji

Abstract Although reinforced concrete member usually forms the rectangular
shape, for architectural reasons or an optimization purpose the sectionmay be formed
on the nonrectangular or irregular shape. Analysis of the sectional capacity in the
case of non-square or irregular sections is very complex and takes time. This paper
offers a cross-sectional analysis with a numerical approach that is implemented in a
computer program. Several cross-sectional forms from the results of previous studies
were adopted for validation purposes. The selection of the cross-section considers the
representation of the cross-section shape and the configuration of the reinforcement.
In addition to the cross-sectional shape, the method of analysis is also a consider-
ation for selection. From the results of the analysis using numerical methods and
comparison of the analysis of previous researchers, it shows a fairly good level of
accuracy with an average deviation of 2.35%. The largest deviation was in Section 7
and 8 with a deviation of 5.03 and 8.62%, respectively. This deviation is more due
to the analysis method. Analysis using finite element method for sections, 9 and 10
show slightly higher than the numerical method due to neglecting tensile strength of
concrete and strain hardening of steel on the numerical method. On the other side,
the analysis with the cross-section conversion approach shows lower results. This
software may be used to solve the nonrectangular or irregular sections.

Keywords Irregular section · Numerical · Flexural

1 Introduction

In contrast to steel materials that have the same strength between compressive and
tensile conditions. Generally, the tensile strength of concrete does not exceed 10%
of the compressive strength [1, 2]. The low tensile strength of the concrete makes
this material often combined with reinforcing steel to withstand the tension so that it
forms a reinforced concrete composite structure. In general, the structural elements
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of reinforced concrete are in the form of a square section. However, due to architec-
tural rea-sons or structural optimization considerations, reinforced concrete sections
can be non-square, such as circle, octagonal, hexagonal, trapezoidal, and triangular.
Moreover, a square section that is subjected to the biaxial moment can also behave
as a non-square section due to the rotation of the section in receiving the biaxial
resultant moment.

In a bending element, the internal forces acting in a section will take balance, so
that the compressive forces will be the same as the tensile forces. The compressive
force in the cross-section is generated from compressed concrete and compressive
reinforcement, while the tensile force is generated from tensile reinforcement. The
compressive force of the concrete is the resultant stress of the concrete which forms a
stress block. By assuming the plane section remains plane before and after bending,
the strain distribution from the neutral axis to the extreme compression fiber can be
considered a linear function of the neutral axis distance. Therefore, the stress distribu-
tion will also be identical to the shape of the stress–strain relationship curve. A stress
block in a reinforced concrete section is a volume formed by the compression area
of the concrete and its stress. In a square section where the width of the compression
area is constant, the concrete compressive force of the stress block can be simpli-
fied to be an equivalent stress block in a square shape [3]. However, for non-square
sections, the simplification of square stress blocks to calculate the compressive force
of concrete may be wrong.

The calculation of non-square sections will be more appropriate if using the
numerical approach than the stress block simplification. This paper discusses the
moment capacity analysis on irregular sections of reinforced concrete beam by using
a numerical approach implemented in a computer program to overcome design
problems, especially in the case of non-square beam sections or biaxial bending
cases.

1.1 Material Model

1.1.1 Concrete Compressive Stress–Strain

The compressive strength of concrete is generally determined from the compres-
sive test of a concrete cylinder with 150 mm diameter and 300 mm length in the
longitudinal direction at the age of 28 days. Numerous approaches are used to deter-
mine the shape of the concrete compressive stress–strain relationship curve before
maximum stress in a second-order parabolic [4]. Hognestad proposed the compres-
sive stress–strain curve of concrete as a parabolic function up to the maximum stress
and subsequently decreasing linearly until it reaches the ultimate strain as shown in
Fig. 1a [5]. The concrete compressive Stress–strain curve is described in two regions
as shown in Eqs. 1 and 2.
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Fig. 1 Stress–strain relationship. a Concrete in compression. b Steel
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1.1.2 Steel

In general, the behavior of the steel is determined from the stress–strain relationship
of the uniaxial tensile test results in the laboratory. The stress–strain relationship
curves of steel for the compressive conditions are considered to be the same and
identical to the tensile [4]. Chen determined the stress–strain relationship of steel by
dividing three parts, the linear elastic region starting from the point of origin until the
steel reaches the yield strain εy, horizontal plateau starting from yield-strain εy up to
8–15 times its elastic range εy, and strain hardening where the steel stress increases
and reaches amaximumat the ultimate strain then gradually decreases until the failure
strain [6]. In this study, the behavior of the stress–strain relationship of reinforcing
steel is modeled as a bilinear function with neglecting the strain hardening effect as
shown in Fig. 1b.

1.1.3 Section Model and Reinforcement Configuration

The irregular sections aremodeled bymultilinear from nodal points coordinate forms
closed polygon. The coordinates of each polygon boundary point are denoted (X(i),
Y(i)), where i = 1, 2, 3, … n, and n is the number of polygon coordinates. The
configuration and location of the reinforcement in the section are also determined by
coordinates (Xr(i), Yr(i)), where i = 1, 2, 3, … nr, and nr is the number of reinforce-
ments in the section. From the cross-sectional coordinates, it can be determined Ymax

which is the outermost compressive point that undergoes the maximum compressive
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Fig. 2 a Section. b Strain diagram. c Concrete stress block. d Forces of reinforcements

strain. Meanwhile, from the coordinates of the location of the reinforcement can be
determined the outermost tensile reinforcement. Irregular cross-sectional shape and
reinforcement configuration as shown in Fig. 2a.

2 Cross Section Analysis

In the analysis of flexural beam with a rectangular section, the compressive force
of concrete, and the tensile force of the reinforcement can be obtained from the
equilibriumof forces,where the compressive forceCc is defined based on a simplified
equivalent stress block of concrete. While the irregular cross-section, determination
of compressive force Cc becomes very complex because it has to be solved through
the integration of the stress–strain relationship function on the compression concrete
area. Therefore, it will be more accurate in case irregular cross-section analysis
undertakes numerically. The analysis of reinforced concrete sections in this study is
based on several basic assumptions on the following flexural sections [7].

1. The first presumption is plane sections remain plane before and after bending
as Bernoulli’s principle. This assumption implies that the strain in the section is
proportional to the distance to the neutral axis. The result of this assumption is
that the distribution of compressive stress in the compressive region is identical
to the stress-strain relationship curve.

2. The bond between concrete and steel reinforcement is assumed as full-bonded,
and there is no slip between both concrete and steel. It means that the strain of
reinforcement is the same as concrete strain at the same level.

3. The tensile stress of the concrete is not more than10% of its compressive
strength, thus the force of the tensile concrete below the neutral axis is also
small. The lever arm of the concrete tension force to the neutral axis is small.
So that, the contribution of concrete tension force to the bending capacity of
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the cross-section is considered very small. For this reason, the tensile stress of
concrete can be neglected.

4. Concrete is considered only to be able to withstand compressive stress until
the ultimate strain. ACI sec. 10.2.3 defined the ultimate compressive strain of
the concrete to 0.003 for design [8]. However, in this study, the ultimate strain
of compression concrete was determined according to Hognestad’s model, i.e.,
0.0038.

Resultant of internal forces in a section can be derived by Eq. 3.

Pt = Cc +
nr∑
i=1

T(i) (3)

Where:
Cc: Concrete compression force.
nr∑
i=1

T(i): Sum of the reinforcement forces, where nr is number of reinforcement.

The resultant of internal forces Pt in Eq. 3 are obtained by determining the value of
the outer tensile reinforcement as shown in Fig. 3. The process of determining Pt is
carried out with the following procedure.

1. Define the strain of the outer tensile reinforcement εs.
2. Assuming the strain distribution is linear, the depth of the neutral axis c can

be defined. (see Fig. 2b).
3. The compressed concrete area is divided into small slices extending in the X

direction in a number of ns slices. The thickness of each slice is Δ = c/ns.
4. Calculate the coordinates of the intersection points between the edge of slice

and the polygon to calculate the width of the slice. b(i), i = 0, 1, 2, …, ns, and
ns is number of slices.

Fig. 3 Bisection iteration
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5. Average slice width can be derived using Eq. 4.

b1(i) = b(i−1) + b(i)

2
(4)

6. The center of gravity of each slice can be assumed exist at midpoint of slice
thickness, thus the arm of these points to neutral axis is approximated by Eq. 5.

Y(i) = (i − 0.5)� (5)

7. The concrete compressive strain on each slice edge is proportional to the
distance of the edge to neutral axis, and the strain can be defined by Eq. 6.

εc(i) = i

n
× 0.0038 (6)

Where: i = 0, 1, 2, …, ns, ns is number of slices
8. Furthermore, the compressive stress of the concrete on each slice edge can be

determined based on the stress-strain relationship according to Eqs. 1 and 2.
9. The average stress of slice can be calculated with Eq. 7.

fc1(i) = fc(i−1) + fc(i)
2

(7)

10. Compression force for each slice can be defined by Eq. 8.

Cc1(i) = (
b1(i) × �

)
fc1(i) (8)

11. The resultant of concrete compressive forceCc is the sumof all the compressive
forces of the on each slice as shown in Eq. 9.

Cc =
n∑

i=1

Cc1(i) (9)

12. The space of the reinforcement to the neutral axis is determined based on
Eq. 10. The negative sign indicates the location of the reinforcement is below
the neutral axis.

Yr1(i) = Yr(i) + c − Ymax (10)

13. The reinforcement strain proportional with respect to the distance of the rein-
forcement to the neutral axis, the reinforcing strain can be calculated by Eq. 11.
In this case the negative sign indicates the tensile strain.



Analysis of Reinforced Concrete Capacity … 63

εs(i) = 0.0038

c
Yr1(i) (11)

14. Base on Eq. 11, then reinforcement stresses in each reinforcing bar is obtained
using expression of Eq. 12.

fs(i) = εs(i) × Es,where Es = 2 × 105Mpa (12)

if εs(i) > εy , then fs(i) = fy .
if εs(i) < −εy , then fs(i) = − fy .

15. The forces on each reinforcement are the product of the reinforcement area
and the stress as shown in Eq. 13.

T(i) = As(i) × fs(i) (13)

16. From the compression force Cc and the reinforcement forces T(i) can be
calculated the resultant internal forces of section using Eq. 3.

2.1 Internal Forces Equilibrium

To achieve a balance of internal forces of the cross section can be obtained iteratively
by using the bisection method. The concrete strain at top fiber is set 0.0038, and the
outer reinforcing steel strain is entered twice, i.e., εsa = 0 and εsb = 0.04 as the initial
strain. Iteration process of bisection method as shown in Fig. 3.

1. The first step is to enter εsa = 0. By using the calculation procedure to find
the resultant of internal forces for εs = εsa will be found Pta that produce the
compressive force, (see Fig. 4c).

Fig. 4 a Section. b Strain iteration. c Internal forces at εs = εsa. d Internal forces at εs = εsb
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2. By using the same procedure enter εsb = 0.04 as εs to get Ptb that produce the
force in tension, (see Fig. 4d). Where εsa and εsb are the initial strain given to
outer reinforcement which has not produce the balance condition (Pt = 0).

3. The Next Step Using εsc as Mid-Point Between εsa and εsb, εsc = (
εsa+εsb

2

)
.

Then Calculate the Resultant of Internal Forces for εs = εsc, i.e., Ptc.
If Ptc × Pta < 0, then εsb = εsc.
If Ptc × Ptb < 0, then εsa = εsc.

4. If
∣∣∣ (εc−εa)

εc

∣∣∣ ≤ Tolerance or
∣∣∣ (εc−εb)

εc

∣∣∣ ≤ Tolerance, then go to step 5. If No,

back to step 3.
5. The εs =εsc, in this iteration the equilibrium occurs.

The balanced condition occurs when the strain of outer tension reinforcement εs
produces internal forces resultant Pt which very small or less than the tolerance value
defined earlier. Then calculate the concrete compressive moment from the number
of slice forces multiplied by its lever arm to the neutral axis as shown in Eq. 14, and
the moment of reinforcement which is the result of an addition of moment of each
reinforcement to the neutral axis as shown in Eq. 15.

Mc =
ns∑
i=1

Cc1(i) × Y1(i) (14)

Mr =
nr∑
i=1

T(i) × Yr1(i) (15)

The flexural capacity can be determined by using Eq. 16

M = Mc + Mr (16)

Numerical solution to determinate the reinforced concrete capacity presented in
Fig. 5.

3 Program Validation

Before the program is used, a validation process is required to ensure whether the
program is correct or still requires improvement. In this study, the validation process
was undertaken by comparing the results of program running and analysis from
previous studies. The sections used for validation represent the geometric shape of the
square and irregular sections. Reinforcement ratio and reinforcement configuration
are also considered in section selection. The selected sections in this study as shown
in Fig. 6 (Table 1).
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Fig. 5 Flow chart of irregular reinforced concrete beam section analysis

Fig. 6 Selected cross section of beam
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Fig. 6 (continued)
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Table 1 The results of analysis

No Section f′c (MPa) f y (MPa) φ μ (kN.m) Deviation (%) Analysis
methodAnalysis Reference

1 Figure 6a 20.7 276 603.31 595.00 1.40 Approximation
analysis [4]

2 Figure 6b 30 400 1141.14 1139.00 0.19 Flexural
equation [9]

3 Figure 6c 30 420 108.56 109.00 0.41 Flexural
equation [9]

4 Figure 6d 30 420 202.22 203.00 0.38 Flexural
equation [9]

5 Figure 6e 30 420 131.99 132.00 0.00 Flexural
equation [9]

6 Figure 6f 30 420 181.45 180.00 0.81 Flexural
equation [9]

7 Figure 6g 30 400 93.38 88.90 5.03 Equivalent
square shape
[9]

8 Figure 6h 30 400 152.72 140.60 8.62 Equivalent
square shape
[9]

9 Figure 6i 41.8 400 11.88 12.10 1.84 Finite element
analysis [10]

10 Figure 6j 33.23 309.5 122.36 128.50 4.78 Finite element
analysis [10]

4 Result and Discussion

Based on the numerical analysis results and comparing with the previous studies, it is
apparent that the cross-sectional analysis using the numerical method implemented
in a computer program is very accurate with an average deviation of 2.35%.

The largest deviation in this study is the comparison between cross-sections 7
and 8 analysis in this study and reference with deviation 5.03 and 8.62%, respec-
tively. These deviations are more due to the analysis method distinction, where
hexagonal and circular sections are simplified with square sections. Cross-sections
analyzed with FEM i.e., 9 and 10 indicate greater capacity than this study. This is
because the numerical analysis of cross-section ignores the concrete tensile stress
as stated in one of the analysis assumptions. The cross-sections 7 and 8 analyzed
with the section area approximation, where the hexagonal and circular sections are
approached by converting the square section to simplify the analysis. The other
cross-sections analyzed with flexural section analysis show a very small deviation
i.e., 0.36%.

A similar numerical simulation was also developed by Dundar and Sahin that
assume the irregular cross-sections as a closed polygon [11]. Even though the simu-
lationmodel can analyze arbitrary reinforced concrete sections subjected to axial load
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and biaxial bending. But, the model still uses an equivalent stress block to compute
concrete compression force that may be inappropriate for the non-square section.
On the other hand, Oscar Fitrah Nur undertook a numerical analysis of rectangular
reinforced concrete beam with divide compression area into small slices to generate
the stress block which appropriates with actual stress–strain [12].

The simulation in this study considers the cross-section as a closed polygon and the
stresses in compression concrete as a function of strain which linear to the distance of
the neutral axis. So, this study indicates that the numerical simulations implemented
in a computer program show progress in research.

5 Conclusion

The numerical method by using a multi-slice approach with bisection iteration to
calculate the moment capacity of the reinforced concrete section shows a good result
with an average deviation of 2.35% compared with other methods. Implementation
of this method as a computer program is very precise to analyze reinforced concrete
beams for the irregular section including circular, hexagonal, T shapes, etc.
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