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 In this paper, self-synthesized TiO2 nanoparticle was used as a coating material 
with the addition of polydimethylsiloxane (PDMS) on the surface of the glass 
and ceramic substrate via spray coating. The self-cleaning properties of the 
coating with photocatalytic activity mechanism were observed under irradiation 
of black lamp as well as surface wettability. The antimicrobial properties and the 
morphology under a scanning electron microscope were also investigated. The 
results showed that the coating exhibited self-cleaning properties, as 
demonstrated by the photocatalytic degradation of methylene blue up to 80% 
and wettability as a super hydrophilic layer with a water contact angle less than 
10° for both glass and ceramic substrate. The coating also shows an 
antimicrobial property by extending the radius of microbial growth up to 67% 
compared to the uncoated sample. 3% TiO2 addition with 50% w/w PDMS is the 
optimum coating ratio for maximum photocatalytic activity, super hydrophilic, 
and antimicrobial properties. 

 

1. Introduction 

The use of cleaning chemicals for building 
maintenance, such as glass and tiles, was reported as 
more than 25% of the total cleaning product used for 
household consumption with a worth value of 76.8 
million dollars for the Asia Pacific Region [1]. In addition 
to the expensive cleaning products, building 
maintenance is also subjected to extensive works and 
intensive labor as well as significant energy 
consumption [2]. Coating the building surfaces can be a 
sustainable method to minimize the use of cleaning 
chemicals that are not environmentally friendly and a 
way of reducing the building maintenance cost. 

The coating is an additional layer applied to the 
surface of an object. The purpose of applying the coating 
may be decorative and functional. Coatings mostly have 
the objective of protecting the surface from damage or 
dirt and dust [3]. Another additional function of the 
coating is that the coating has either self-cleaning or 
antimicrobial properties. The self-cleaning coating is an 
additional layer on the surface of an object that in-built 
the ability to remove any debris or microorganism from 

their surfaces in various mechanisms. This type of 
coating is expected to have hydrophilic or hydrophobic 
wettability properties. Hydrophilic is a mode of material 
that is attracted to water, while hydrophobic is the 
opposite. Many components can be used for self-
cleaning coating, mainly metal oxides semiconductors 
such as Al2O3, TiO2, SiO2, SnO, ZnO, Si3N4, MgF2 [4, 5, 6, 
7]. Other research on self-cleaning coating used MnO2 
[8] and the addition of polydimethylsiloxane (PDMS) [9, 
10]. 

TiO2 nanoparticles have attracted much attention 
due to their potential application in various products 
such as catalysts for water treatment systems or 
renewable energy production, CO2 reduction, and 
construction materials. TiO2 is known for its low cost, 
good chemical, biological, and thermal stability, and 
high physical properties and photoactivity [11, 12]. A 
study revealed that self-cleaning coating using TiO2 
essentially utilizes solar energy to generate electrons 
and holes used to degrade organic compounds (dirt, 
dust, oil, and others) [9]. Meanwhile, low surface 
energy, low reactivity, low toxicity of 
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polydimethylsiloxane (PDMS) are commonly used for 
structuration and surface modification of a transparent 
surface coating [10]. Work on the combination of two 
materials has been reported that TiO2 – PDMS provided 
hydrophobic to superhydrophobic coating with good 
photocatalytic activity in the decomposition of 
methylene blue around 70%, rhodamine B 95% with 
water contact angle above 80-162° [13, 14, 15]. Other 
research reported combining both materials with other 
components such as Ag [16] and Si [11] also reported 
hydrophobic coating with fair photocatalytic activity. In 
such a manner, the correlation between their wettability 
and self-cleaning properties as well as antimicrobial 
properties TiO2 – PDMS with starch as additional binder 
needs further investigation. This paper explained a 
comprehensive work on self-cleaning properties, 
wettability, antimicrobial properties, and the surface 
morphology of super hydrophilic TiO2-PDMS coating on 
glass and ceramic substrates. 

2. Materials and Methods 

2.1. Materials 

Tetra n-butyl titanate (TNBT) as TiO2 precursor, 
Polydimethylsiloxane (PDMS), Polypropylene glycol 
(PPG) were purchased from Shandong Zhi Shang 
Chemical Co., Ltd. Other chemicals such as ethanol, 
isopropyl alcohol, DI water, starch, and potato dextrose 
agar (PDA) were purchased from the local chemical store 
CV Indrasari. All chemicals were used without 
pretreatment. 

2.2. Synthesis of TiO2 nanoparticles 

The preparation of TiO2 nanoparticles as coating-
based referred to the methods described in other 
publications [17]. 200 g TNBT were added into 100 mL 
ethanol, stirred at 800 rpm for 1 hour at 75°C until the 
solution transformed into a gel. The gel was then 
transferred into a furnace for calcination at 500°C for 1 
hour. The product was analyzed using XRD and SEM for 
its crystal structure and morphology. The final product 
was then used for coating solution. 

2.3. Preparation of coating solution 

The coating solution was prepared by mixing a 
proportion of TiO2 solution, PDMS solution, PPG, and 
starch. TiO2 solution was prepared by dispersion of TiO2 
in the ethanol 3:10 ratio (w/v) with continuous stirring 
for 30 min. After that, 2% PPG was added, and the 
mixture was then sonicated for 30 minutes with a 
controlled temperature of 50°C for homogenization. In 
the meantime, the PDMS solution was prepared by 
dissolving PDMS resin into isopropyl alcohol with a ratio 
of 3:10 w/v and continue stirring for 15 minutes. The 
preparation of 100 mL coating solution was following the 
ratio variable (v/v) of TiO2 solution (1,2,3%), PDMS 
solution (45,50,55%), 1% starch and PPG with 
continuous stirring for 15 min at room temperature. 

2.4. Coating application 

Glass and ceramic substrates (50 x 50 mm) were 
cleaned with DI water and ethanol and dried for 2 hours 
at room temperature before application. The substrate 

was then placed in the sample holder vertically, and 
coating solutions were applied to the surface three times 
by spray coating with 100 mm distance. After 
application, the solution was wiped out by wiper and 
dried at room temperature for 3 hours. 

2.5. Coating characterization and analysis 

Self-cleaning performance, its organic degradation 
performance was evaluated by placing five drops (0.5 
mL) of 5 ppm methylene blue (MB) in the surface of 
coated substrate and exposed in the irradiation of black 
light (Bluelans UV Ultraviolet Fluorescent Blacklight CFL 
Light Bulb 25W) for 5 hours. Before and after the process, 
the pictures were taken for RGB analysis using Delphi 
software for color degradation performance. 
Photometric analysis was used in the experiment 
following the procedure described in the literature to 
measure dye photodegradation rate [18]. First, each 
sample that contained MB was captured using a digital 
camera. Then the image was cropped and uploaded in the 
Delphi software program for each sample's RGB color 
index value. The calculation of color index parameters R, 
G, and B is obtained from each pixel in the image. The 
higher the color index, the brighter the image. 

 𝐼𝑏𝑙𝑢𝑒 =
𝐵

𝑅+𝐺+𝐵
  (1) 

Wettability, the measurement of surface water 
contact angle (WCA), was used to determine the surface 
tendency of the coated sample. The Kruss GmbH contact 
angle goniometer measured the WCA. 

Antimicrobial properties, the performance of self-
cleaning coating as protection from bacterial were 
conducted by exposing the coating solution under the 
illumination of black light for 2 hours and then use three 
drops of the solution in the center of media consist of 
solidified potato dextrose agar. The media contained 
coating solution was then placed in the incubator 
chamber for two days for radius microbial growth area. 

Surface morphology, Scanning electron microscopy 
(SEM) was used to observe the coated solution's surface 
morphology. SEM analysis was performed using SEM 
EDX (Phenom Pro X). 

3. Results and Discussion 

3.1. Synthesized TiO2 nanoparticle 

The characteristic TiO2 nanoparticles as coating-
based prepared by methods described in other 
publications can be seen in Figure 1. The XRD pattern 
shows the peaks at two thetas resemble the pattern of 
JCPDS card 78-2486, which was the TiO2 anatase phase. 
The crystal size of prepared TiO2 is estimated at 
approximately 63.5 nm using the Scherrer equation: 

 𝜏 =
𝑘𝜆

𝐵(2𝜃) cos 𝜃
 (2) 

where τ = crystallite size (is the mean size of the ordered 
(crystalline) domains,); B = peak width (FWHM); θ = 
Bragg angle; λ = X-ray wavelength; k = Scherrer 
constant. Meanwhile, the SEM image of the sample 
shows the very fine particles with sizes less than 100 nm 
agglomerated within each other. 
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Figure 1. XRD pattern and SEM image of TiO2 synthesized via sol-gel methods.

3.2. Profile of TiO2-PDMS coating on organic 
compound degradation 

Self-cleaning properties can be determined by the 
performance of a surface TiO2 contained material on 
organic matter degradation in favor of photon 
irradiation. Once TiO2 is illuminated with photons with 
energy larger than 3,2 eV, the charge excitation will 
occur and create hydroxyl and oxygen radicals in the 
environment that consist of H2O or O2 and further lead to 
the reduction and oxidation process. This oxidation and 
reduction can be translated into organic decomposition 
into lower-weight molecules with CO2 and H2O [12, 19]. 
In this research, dye (MB) was used as a representative 
of the organic component. 

The profile of TiO2-PDMS coating on MB 
degradation can be observed in Figure 2 for the glass 
substrate and Figure 3 for the ceramic substrate. For 
glass substrate, the trendline was similar for all PDMS 
ratio variation, which in other words, the addition of TiO2 
was more obvious in controlling the performance of MB 
degradation. Even though the percentage were slightly 
different, as in the addition of 1% TiO2, the degradation 
percentage was around 72-74% for PDMS addition (45-
55%), or in the addition of 2% TiO2, the degradation was 
75-76% and 77-80% of MB degradation for coating with 
3% of TiO2. However, the degradation was improved 
gradually by the addition of TiO2. 

 

Figure 2. MB degradation of coating with different TiO2 
and PDMS addition on a glass substrate 

 

Figure 3. MB degradation of coating with different TiO2 
and PDMS addition on the ceramics substrate 

The presence of TiO2 indeed is the critical factor for 
optimum organic component degradation. Additional 
TiO2 means the more active site of photocatalyst present 
in the coating solution. It also means that more charges 
are excited during the photon irradiation, thus 
generating more hydroxyl radical favored the oxidation 
and reduction process of organic degradation. TiO2 was 
also important in self-cleaning properties on TiO2-SiO2 
hierarchical coating solution [11] and TiO2–Ag self-
cleaning coating for solar panels [16]. 

TiO2 semiconductor has an energy band gap of 3.2 
eV. If TiO2 is irradiated with photons that exceeded its 
bandgap, the electrons (e-) in the valence band will be 
excited into the conduction band, and holes will form in 
the valence band. Hole (h+) reacts with water producing 
•OH while e- reacts with oxygen forming superoxide and 
reacts further with water producing •OH, which will 
degrade methylene blue (MB) as in the following 
reaction equation [20, 21]: 

 TiO2 + hv → TiO2 (e- + h+) (1) 

 h+ + H2O → H+ + •OH (2) 

 h+ + OH- → •OH (3) 

 e- + O2 → O2
- (4) 
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 2O2
- + 2H2O → 2•OH + 2OH- + O2 (5) 

•OH + organic compound → intermediate compound (6) 

 2OH• + organic → CO2 + H2O  (7) 

The different profiles can be seen in TiO2-PDMS 
coating on MB degradation ceramic substrate in Figure 
3. In this type of substrate, it can be observed that TiO2 
addition is not the only parameter that controls the MB 
degradation but the synergetic effect of the PDMS 
addition into the coating solution. Using 50%, PDMS led 
to the optimum MB degradation by adding 3% TiO2 80% 
degradation performance. The difference trendline 
spotted in the glass and ceramic substrates may be due 
to the properties of the substrate itself in favoring the 
photocatalytic process. The photocatalytic process was 
relying on several parameters, including light intensity 
and the photon penetration to the surface of the catalyst 
[12, 20, 21]. Light intensity and photon penetration are 
closely related to the solution's opacity or the substrate's 
properties in terms of light absorption. Glass substrate 
absorbed almost 40% of the light penetration [22]. In 
contrast, ceramic substrates tend to reflect light [23]. 
The behavior somehow influences light penetration, 
thus affect the photocatalysis of the organic degradation 
[24, 25]. 

3.3. Surface wettability of TiO2-PDMS coating 

The wettability behavior of TiO2-PDMS coating is 
determined by measuring the water contact angle 
(WCA), which is the angle formed between the surface of 
the layer and the droplet of the water. Figures 4 and 5 
depicted the water contact angle of coating with 
different TiO2 and PDMS additions on glass and ceramic 
substrates. The water contact angle of the glass substrate 
before the coating was recorded around 96°, and after 
coating was applied to the surface, the water contact 
angle was reduced (Figure 4). Surface wettability is 
classified into superhydrophobic with a water contact 
angle of more than 150°, hydrophobic with a water 
contact angle of 90°-150°, hydrophilic with a water 
contact angle of less than 90°, and super hydrophilic 
with a water contact angle approaching 0° [26, 27]. The 
role of TiO2 in reducing water contact angle is very 
significant, even though further addition has little effect 
on the further decrease of water contact angle of the 
coated glass substrate. By adding 1-3% TiO2, the water 
contact angle decreased until 8-9°, which can be 
classified as a super hydrophilic surface. 

 

Figure 4. The water contact angle of coating with 
different TiO2 and PDMS addition on a glass substrate 

 

Figure 5. The water contact angle of coating with 
different TiO2 and PDMS addition on a ceramic 

substrate 

Observing the exact figure, the addition of PDMS 
inhibits TiO2 in creating the hydrophilic domains on a 
coated glass substrate. The nature wettability properties 
of PDMS are hydrophobic with a water contact angle of 
100° [28, 29]. Referring to the opposite nature of PDMS, 
it is understandable that further addition of PDMS (50-
55%) will slowly reduce the rate of hydrophilicity 
conversion on the surface. Even though eventually, by 
adding 2-3% TiO2, the surface completely converted into 
super hydrophilic. 

Figure 5 depicted the initial water contact angle of 
the ceramic substrate before the coating application was 
54° which can already be categorized as a hydrophilic 
surface [26, 27] and further decreased to 11-13°. The 
difference between the initial water contact angle of 
glass and the ceramic substrate is due to the different 
surface compositions between the two substrates. Glass 
substrate mainly consists of SiO2, which has wettability 
properties in around 90° that are categorized as 
hydrophobic [30]. Meanwhile, the ceramic substrate 
consists of various components, mostly CaO and SiO2, 
which have wettability properties in around 40-60° [31]. 
The other theory mentioned the uneven surfaces reduce 
the surface area of droplets interacting with the layer. As 
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explained by the Cassie-Baxter model, the smaller the 
surface area of particles interacting with water, causing 
large contact angles [31]. In addition, according to the 
basic assumption of Wenzel's theory is the linear 
relationship between the angle of surface contact and the 
surface roughness factor. The smoother the surface, the 
higher its hydrophilic properties [9]. 

In ceramic, as shown in Figure 5, the addition of 
coating consists of TiO2 leads to a significant decrease in 
water contact angle. Even after 2-3% addition, the 
downward was not significant. The tendency is slightly 
different from the surface in the glass substrate. The 
PDMS variable apparently was also not significantly 
affecting the water contact angle as in glass substrate. 

Table 1. Water contact angle images before, after 
coating, and coating with UV irradiation on glass and 

ceramic substrate 

 Glass Substrate Ceramic 
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Earlier research reported the contribution of UV 
activated TiO2 to the super hydrophilicity of surfaces 
such as SiO2-TiO2 coating on polycarbonate substrates 
[32], durable photocatalytic paint contained TiO2 [33] 
both reported that the presence of TiO2 caused a 
significant decrease in contact angle from 40° to 10° and 
162.3° to 75.6° respectively. Others reported the super 
hydrophilic behavior of TiO2 coating without ultraviolet-
light illumination [34]. Super hydrophilic properties 
exhibit lower solid/liquid adhesion and a sliding angle 
smaller than 10°. This phenomenon is due to the 
generation of high energy fields caused by the excitation 
of charges that triggered hydrophilic/ oleophilic 
property on the TiO2 surface [27]. As data are shown in 
Table 1, water contact angle images before, after coating 

and coating with UV irradiation on glass and ceramic 
substrate, the effect of TiO2-PDMS coating exhibit a 
similar tendency to the earlier research, thus confirming 
the synergetic effect of TiO2 and PDMS in creating the 
self-cleaning effect on the surface of the substrate by 
controlling its water contact angle. 

3.4. Antimicrobial performance of TiO2-PDMS coating 

The antimicrobial performance was studied by 
measuring the radius of average microbial growth from 
the center of media contained TiO2-PDMS coating 
solution. The result of antimicrobial performance can be 
seen in Figure 6. The radius of average microbial growth 
from the center media in the sample without TiO2-PDMS 
coating solution was 2.25 cm. The sample contains TiO2-
PDMS coating solution the result of radius microbial 
growth was varied. By adding TiO2 with constant PDMS 
composition at 45%, the radius of average microbial 
growths was increasing steadily from 2.25 to 3.75 cm at 
3% TiO2 addition. On the opposite, by adding more 
PDMS, the growth of microbes cannot be avoided, and 
PDMS seems to inhibit the antimicrobial mechanism of 
TiO2. The result is also visualized in Figure 7 as it consists 
of a photograph of microbial growth pictures of control 
(A) without coating solution and with TiO2-PDMS 
coating solution with 1% (B), 2% (C), and 3% (D) of TiO2 
and 45% PDMS. 

 

Figure 6. The radius of average microbial growth of 
coating solution at different ratio TiO2 and PDMS after 

UV irradiation 

The antimicrobial properties of the TiO2-PDMS 
coating solution are primarily related to the 
photocatalytic effect of TiO2 after UV irradiation. As 
mentioned in the previous section, TiO2 semiconductors 
tend to excited charges (electrons and holes) once it 
irradiated by UV light which carries more than 3.2 eV, 
passing the bandgap energy of TiO2. Thus the charges 
triggered the generation of hydroxyl radical and oxygen 
radical that respond to the destruction of both cell wall 
and membrane of the microbes causing leakage of 
intracellular substances [2, 35]. 
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Figure 7. Microbial growth pictures of control (A), coating solution with 1% (B), 2% (C), and 3% (D) of TiO2 and 45% 
PDMS 

 

Figure 8. SEM images of glass substrate before coating (A), after coating with 1 and 3% TiO2 (B, C) 

3.5. Morphology of TiO2-PDMS coating 

Morphology of substrate surfaces before and after 
coating was observed by the image of Scanning electron 
microscopy (SEM) characterization. Figure 8A shows the 
clean and smooth surface of the uncoated glass 
substrate. In contrast, Figures 8B and 8C show the coated 
glass substrate where uneven particles were spotted in 
many surface areas, and some of them were clumps and 
agglomerated in one spot together. TiO2 used in this 
study, as mentioned in the previous section, were 
nanoparticles with a size less than 100 nm. The nature of 
this type of nanomaterial is that it tends to agglomerate 
as nanosized particles have high surface energy that led 
to the agglomeration process as the counter of 
minimizing the surface energy in the environment [20]. 
In addition, the agglomeration might happen due to the 
coating application process, which in this study, the 
spray coating was used. TiO2 particles were not evenly 
distributed throughout the surface and accumulate at the 

focal point of spraying. After spraying, the solution will 
flow down slowly from the surface of the substrate so 
that some TiO2 particles in the coating solution were 
accumulated and deposited. The spray coating technique 
requires a large pressure and speed when firing a 
solution on a surface to be coated evenly [36]. 

Figure 8 also confirms the water contact angle 
result. As mentioned in the previous section, the 
wettability properties are driven either by the surface 
energy or the roughness of the surface [9, 10, 27, 31, 37]. 

4. Conclusion 

Nano TiO2-PDMS coating has been successfully 
applied on the surface of the glass and ceramic substrate. 
As the nature of TiO2 nanoparticle that tends to 
agglomerate due to high surface energy, thus resulting 
in the uneven coating within the surface even spray 
coating with wiping was used as application method. 
Regardless, the coating still inherits self-cleaning 
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properties proven by the methylene blue photocatalytic 
degradation ability up to 80% and wettability as a super 
hydrophilic layer with water contact angle less than 10° 
both for glass and ceramic substrate. In addition, the 
coating also exhibits antimicrobial properties by 
preventing microbial growth up to 67%. TiO2 addition 
3% and PDMS 50% is the optimum coating ratio for 
maximum photocatalytic activity, super hydrophilic, and 
antimicrobial properties. 
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