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Abstract—Realizing an effective earthquake early warning
system (EEWS) in the case of extensive regions and noisy signals
is challenging, particularly in East Java, Indonesia. This letter
proposes the rapid detection of the p-wave arrival and deter-
mination of the earthquake’s hypocenter and magnitude using
deep learning. The Ncheck algorithm is used for noise handling
for picking the p-arrival on a multistation waveform as a form
of picking target window prediction (PTWP). Then, multitarget
regression (MTR) with a hard-shared orthogonal optimization
model is proposed for earthquake parameter determination. The
data sets used contained data of earthquakes recorded at three
stations from the Indonesian seismic network in East Java;
2009-2017 data were used for training and validation, and
2019 data were used for real-time testing. The results show that
the PTWP for picking p-arrival has a mean absolute error (MAE)
of 0.12 s, and the MTR for earthquake magnitude, longitude,
latitude, depth, and origin time detection shows MAEs of 0.21 M,
9.44, 18.72, 27.81 km, and 2.78 s, respectively.

Index Terms—Deep learning, earthquake early warning sys-
tem (EEWS), hard-shared, multitarget regression (MTR), orthog-
onal initialization.

I. INTRODUCTION

HE development of an earthquake early warning sys-

tem (EEWS) that covers an extensive area with large
earthquakes, which may lead to future megathrust events such
as in East Java [1], is urgently needed to reduce fatalities.
However, seismic stations are far from each other but close
to urban areas, which means that they record noisy seismic
signals insufficient for EEWS development. According to
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the East Java historical earthquake data, a large earthquake
occurred in 1994 with a tsunamigenic massive subduction
thrust (Ms 7.2) [2].

An EEWS using the p-wave has been developed to predict
earthquake hazards (e.g., significant shaking and tsunamis) as
early as possible, involving p-wave detection [3] and sub-
sequently the determination of earthquake parameters based
on the first few seconds of a p-wave signal [4]. Of these,
p-wave detection is a challenging problem in seismic signal
monitoring because of the wide variety of signals—i.e., non-
earthquake signals—and the very low p-wave signal-to-noise
ratios (SNRs).

Deep learning techniques are among the leading p-wave
detection methods in the case of low seismic SNRs; they
include the autoencoder [5], generative adversarial net-
work [6], PhaseNet [7], convolution neural network (CNN) [8],
CapsNet [9], and EQTransformer [10]. However, noise han-
dling is commonly employed only for one station waveform
at onsite EEWSs [11] while regional EEWSs can make use of
multistation waveform inputs.

Earthquake parameter detection via multistation waveforms
has been divided into classification and regression approaches.
In the former approach, the K-means clustering algorithm
is used to arrange the earthquake parameters into groups,
whereas a CNN is used to determine the group [12]. However,
through classification, we might only be able to infer the group
classes as opposed to the exact value; moreover, we might not
be able to classify classes outside the training data.

The regression approach is more general in determining
an earthquake’s parameters; for example, a CNN based on a
6.2 s [13] and 10 s [14] waveform window with multistation
can determine the exact location well. However, to achieve
better generalization and more robust noise handling in the
waveform, an expanded network of the CNN is needed [15].
Moreover, the earthquake parameters are correlated, then the
multitarget regression (MTR) approach could serve as a mul-
tioutput model solution. van den Ende and Ampuero [16]
used this solution and developed a graph neural network
involving station location information and MTR. The main
challenge in MTR is to utilize the dependence between targets
effectively [17]. Zhang et al. [18] proposed MTR with a
multibranch neural network for the first 4 s after p-arrival
picking. Notably, the Italian network station had significant
advantages in terms of coverage and interstation distance.
Therefore, the p-wave arrival recorded by 12 stations could
easily be obtained in the first 4 s after the event occurred.
However, the Indonesian seismic network considered in this
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Algorithm 1 Number of Checking for Picking Target Window
procedureNcheck(G, M, N)

1: i<0

2: n <0

3: F <« empty array 0 until N — 1
4: repeat

5: I < load image G;

6: Liorm < 1/255

7: P <« predict Ljorm with M
8: if(P > 0.5)

9: F, <1

10: n<n+1

11: if (Ftotal = N)

12: return /,,,,,

13: else

14: n<20

15: F <« empty array O until N — 1
16: i<—i+1

17: until end of G

18: return null

study, which is located northward from the events and features
longer interstation distances, differs considerably.

Therefore, this study proposes three types of deep
learning—CNN, MobileNet-V3 [18], and EfficientNet [20]—
as a backbone for p-wave picking and MTR tasks. A CNN
is used as a standard model. MobileNet-V3 is used as a deep
lightweight architecture possibly running on mobile devices,
and EfficientNet has recently been used as the foremost deep
architecture. We also propose an Ncheck algorithm for each of
the three deep learning methods for handling noise problems in
automatic picking target window prediction (PTWP) in a mul-
tistation waveform. Collaboration between PTWP and MTR
is employed to estimate earthquake parameters in real time.
We improve the MTR performance, using the hard-shared
network, by adding nonshared dense and orthogonal initializa-
tion. Orthogonal initialization is applied to the shared layers
to improve feature extraction, and a nonshared layer is applied
to determine each earthquake parameter. Finally, we train,
validate, and test the proposed model using the East Java
earthquake data from the Indonesian seismic network.

II. PROPOSED METHOD
A. Deep Learning Architecture

The objective of the proposed EEWS is to determine the
earthquake parameters within a few seconds of the p-wave
arrival. We propose two deep learning models for PTWP
and MTR to search for the signal and determine five earth-
quake parameters, respectively, (Fig. 1). The proposed models
involve feature extraction as the backbone and a classifier or
regressor using a fully connected (FC) network. The same
backbone has been used for the PTWP and MTR models.
We have compared advanced backbones including the standard
CNN, MobileNet-V3, and EfficientNet-B5 to optimize the
model. Instead of using the default architecture, we have
modified the FC layer section for each deep learning model.
The PTWP uses three dense FCs with sizes of 1024, 512, and
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Fig. 1. Proposed EEWS architecture.

256 after the backbone. Each FC is followed by a rectified
linear unit (ReLU) and sigmoid as the output layer. The
PTWP is optimized using the Ncheck algorithm to handle
noise problems.

B. Ncheck for PTWP

We utilized the Ncheck algorithm because the noise signal
appears within a short window range while the p-wave arrives
across several windows. The algorithm involves G, the mul-
tistation waveform sequential image data at the earthquake
event, M, the PTWP model produced by employing the
backbone for picking p-wave windows, and N, the checking
constraint. As shown in Algorithm 1, the first step is the
initialization of the index and an empty array F. Then, the G
image is loaded and normalized and then classified by the M
model. If the predicted value is P > 0.5, the model detects
the p-wave area; then, the F array will be filled with a value
of 1, and so on. If the F array is filled to N’s size—that
is, F = {1.1, 1.1} indicates that N = 4 or four sequential
images are predicted as the p-wave window area. Therefore,
the MTR determines the earthquake parameters based on the
first images. If we obtain the prediction value of P < 0.5,
the F array will be clear and empty.

C. Hard-Shared Orthogonal MTR

MTR is a multitask learning approach [21] that involves
many output units as target variables. MTR consists of the
input space ¥ € R¥*"*¢ and the output space or target
space T € RY. When determining an earthquake parameter,
for example, i, the input space is a continuous variable
represented by (X;,Y;), with X; € & for the input and
Y; € T for the target, both as a vector i. For example,
S = {X,Y)),...,(X,,Y,)} is a data set with n samples.
Therefore, the purpose of this network is to map a function
f ' F — T that can predict an unseen sample (X,Y) to a
target vector Z, predicting a true target Y.

Input X; is processed by convolutional blocks on the back-
bone into a feature map, which is followed by a pooling
layer and several FCs as part of the shared layers. The hard-
sharing-based approach [22] is applied for flexibility in the
intertarget relationship modeling, and complex input—output
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relationships can be induced. The model tends to be reliable
against overfitting because the target variables can provide
additional evidence for the relevance or irrelevance of the
feature. The size of the shared layers was 1024 with orthogonal
initialization employed to allow for efficient convergence of
gradient descent to a global minimum [23]. Additionally,
the end of the shared layers was connected to all nonshared
layers.

The nonshared layers consist of two FC layers according to
the number of outputs, with sizes of 512 and 256, respectively,
followed by ReLU. The network output is linear with a
FC density of 1. The output layer uses linear activation;
hence, the prediction calculates the raw values of the previous
transformation. If the activation value of the last layer is Al
in example i, the prediction of the rth target can be calculated
as follows:

th- = wlAll 4 pll (1)

where w!'l and b!"! are the weight and bias of the unit output
associated with the rth target, respectively. After the prediction
is computed, the loss function associated with the rth target is a
function L!":r — R, which predicts the error » and produces
a loss absolute between the model z; and the actual value
yi of the rth target sample i, known as the mean absolute
error (MAE) as shown in the following equation:

L1 () = abs(z} — y}). (@)

III. EXPERIMENTS
A. Data Set

We collected 1892 sets of earthquake data for
2009-2017 and 26 sets of earthquake data from the
BMKG catalog for January 2019. These events occurred with
a magnitude 3-6.5 M and depth of 1.16-588.42 km in areas
of 111.5° E < Longitude < 115° E and 6.6° S< Latitude <
11.5° S. We selected 618 events that were fully recorded at
three stations (IA.GMIJI, GE.JAGI, and IA.PWIJI). The three
stations were chosen because their interstation distances were
small, and they recorded the most seismicity in the region.
The three stations with three-component seismogram traces
are represented in red, green, and blue components to form
pixels in a row in one frame in a 10 s window. The sampling
rate at each station varied between 20 and 25 Hz and was then
normalized to 20 Hz. We used a bandpass filter to minimize
noise and normalize each stream by dividing its absolute
peak amplitude. The data set has high noise for 506 seismic
events and has a peak SNR of less than 50 dB. We used
90% of the data for training (556 data points) and 10% for
simultaneous data validation (62 data points). Data validation
was performed randomly and was used for tuning the network
parameters. The waveform data set from January 2019 was
used for the real-time testing to demonstrate the performance
of the proposed method.

In the PTWP task, we divided the number of images into
balanced binary classes to avoid bias to the dominant target
class. The signal class is for target picking windows that
include 20 4 1 images per event from 5 to 6 s after p-arrival.
The noise class includes 14 images each 1 s from —5 to
10 s, five images each 0.2 s from 4.15 to 4.95 s, and two

7502605

8 = CNN 30

MobileNet-V3
mm EfficientNet-BS

Mean

Absolute Error:
0.1242-s

Mean Absolute
Percentage Error:
12.42%

Standard Deviation:
0.18-s

False Positive Events
=y
Number of Events

R ||
-1.0 -0.5 0.0 0.5 1.0
Time Residuals (second)

Number of Check

(@ (b)

Fig. 2. (a) Comparison of the number of N in the NCheck algorithm from
N1 to N5 and (b) optimal result of N4 is in the EfficientNet-B5 model with
the best validation learning scheme.

images per 2 s from 10 to 15 s. In the MTR, we used the
signal class in the PTWP task. All pixels of the images were
normalized to O—1. All training processes were run using a
small batch size for the generalization model [24] at 50 epochs.
The ImageNet pretrained model was used for MobileNet-
V3 and EfficientNet-B5 to avoid overfitting when using small
earthquake data sets. The best validation was used for the final
model weights.

B. Picking Target Window Prediction

In PTWP training, the binary cross entropy loss function
was used to calculate the lost value. To evaluate the model
performance, we used Precision (3), Recall (4), and F1Score
(5) metric evaluation.

Precision = TP/(TP + FP) 3)
Recall = TP/(TP + FN) 4)
FlScore — 2 x Precision x Recall )

Precision + Recall’

In this study, time residuals that have an absolute error less
than 0.5 s compared to the manual picks were counted as a
signal. True positive (TP) represents the number of signals
that are correctly detected as a signal, and false negative (FN)
represents the number of signals that are detected as noise.
False positive (FP) represents the number of noises that are
detected as a signal. The F1 score is a balanced criterion
between precision and recall.

Fig. 2(a) shows a comparison of the number of N in the
Ncheck algorithm for the PTWP. These experiments show
that increasing the N number in the Ncheck decreases FP,
or a false alarm, but a large N number will encounter FN
or signal loss problems. The optimal number of checks is
four, with an MAE of 0.1242 s for EfficientNet, as shown
in Fig. 2(b). Moreover, the results of PTWP, with optimal
numbers, are shown in Table I. EfficientNet-B5 shows the
highest F1Score (96.53%). The CNN showed the fastest
processing with 0.0005 s per image. Moreover, Fig. 3 shows
how Ncheck can reduce FPs and provides a proper picking
window for the MTR input. When N = 1, the PTWP picked
the window at 12.15 s before the p-arrival owing to the noise
signal in the GMIJI station. Moreover, when N = 4, the picking
window is precisely 5.1 s after p-arrival, with an MAE of 0.1.

C. Prediction

Three backbones were trained with each of the six different
FC structures (A-F) on shared and nonshared layers and
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TABLE I
PTWP MODEL COMPARISON FOR 62 VALIDATION DATA

Models Precision  Recall FlScore =~ MAE Comp
CNN 0.9700 0.9503  0.9601 0.1508  0.0005
MobileNet-V3 0.9478 0.9566 0.9522 0.5621  0.0009
EfficientNet-B5 0.9724 0.9584 0.9653 0.1242  0.0022

Comp = Computation time per image in seconds.
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Fig. 3. Example of the real-time PTWP with a validation data of 2017.
TABLE 11
PERFORMING R2 SCORE OF THREE MTR MODEL
WITH 62 VALIDATION DATA
Str Shared" Non-Shared" CNN MBNet EFNet
A 1024 - 64 1 0.4895 0.8103 0.8517
B 3x1024" 1 0.7629 0.8154 0.8467
C 3x1024"°° 512"-256" - 0.7641 0.8242 0.8500
D 1024° 5127-256"- 1 0.7757 0.8381 0.8489
E 1024"%° 512"-256" - 0.8005 0.8368 0.8645
F 1024"*° 5127-256""°-1  0.8042 0.8357 0.8489
Str = Structure, "Hard-Shared Part; MBNet = MobileNet-V3, EFNet =
EfficientNet-B5, 'ReLU  Activation Function; °Using  Orthogonal

orthogonal kernel initialization. The metric evaluation R?score
(6), weighted by the variance s> of each output, is used to
evaluate the results

2
Zscore = 1— Z é'_l ();t " _z’i))z .52, (6)
i=1 Vri t

Table II shows that the addition of nonshared dense to
CNN can significantly improve performance, combined with
orthogonal initialization in both shared and nonshared layers.
On a deeper architecture (MobileNet-V3 and EfficientNet-
BS5), adding nonshared dense slightly improves the model
performance. Moreover, orthogonal initialization on the shared
layer was optimal for EfficientNet-B5 and yielded the highest
R?score of 86.45%.

We compared the MAE of the best MTR model with that of
a single model, as shown in Table III. These results show that
the MTR has a smaller MAE for latitude, depth, magnitude,
and origin time, with MAEs of 18.72, 27.81 km, 0.195, and
2.78 s, respectively. Additionally, the computation time of the
MTR is lower than that of the single model, being 0.0319 s
for determining earthquake parameters. Moreover, experiments
for windowing target ranges of 1-2, 2-3, and 4-5 are shown
in Table IV. This result shows that the MTR model still
performs well in the first second of the p-wave arrival.

Simulated real-time testing using PTWP and MTR on
62 validation data and full multistation waveforms of 26 earth-
quakes in January 2019 is depicted in Fig. 4(a) and (b). The
total time for testing was 3.56 h, which is less than the total
full-waveform time of 4.78 h. Based on the results, the close-
ness between the target and predicted results can be seen.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

TABLE III

MULTITARGET VERSUS SINGLE-TARGET REGRESSION
FOR 62 VALIDATION DATA

Models Mean Absolute Error Comp
Latitude Longitude  Depth  Magnitude Ori

MTR Mean 18.72km 9.44km  27.81 km 0.2105 2.78 0.0319

Std 19.61km 8.60 km 2691 km 0.1830 2.98 0.0004

Single Mean 2594km 9.06 km 2844 km 0.2393 2.86 0.1505

Std  30.27km  10.27km  26.76 km 0.2041 3.07 0.0022

Ori = Origin time in seconds, Std = Standard deviation.

TABLE IV

TIME INTERVAL AFTER P-ARRIVAL COMPARISON FOR
62 VALIDATION DATA

Time Mean Absolute Error

Interval Latitude Longitude  Depth Magnitude  Ori
15225 Mean  27.95km 11.40km  33.09km 0.2195 3.13
Std 32.97 km 11.77km  30.09km 0.1836 3.49

26-3s Mean  21.60 km 10.77km  29.52km 02174 2.89
Std 21.80 km 1351km  26.11km 0.1761 3.05

36-dg Mean  21.57 km 9.58 km 28.29km  0.2082 2.72
Std 22.07 km 9.98 km 27.66km 0.1888 2.87

4s-5s Mean  21.74 km 8.30 km 28.04km 0.2106 2.70
Std 22.22 km 8.31 km 24.64km 0.1887 2.82

Moreover, we modified the machine learning models to accom-
modate the capabilities of real-time picking for the EEWS
in multistation, which was absent in the previous models
([12], [16], [25]). In the future, improving the model is
possible by increasing the number of stations and including
station information within the model, enabling flexibility in
the number of stations.

Fig. 4(c) shows a comparison between station locations,
BMKG catalog location reports, and the proposed EEWS
reports. The average shifts in the earthquake locations in the
x-, y-, and z-directions are 9.4, 18.7, and 27.8 km, respectively.
It is worth noting that our hypocenter location was based
on three stations only to accommodate the time needed for
EEWS, that is, it was not possible to locate the event accurately
using the conventional method. Furthermore, the shifts are in
the range of the BMKG hypocenter location uncertainty [26].

Our predicted hypocenters were more clustered in several
areas when compared to the initial locations. The clustered
earthquakes may suggest a similar source mechanism in the
forearc of Java, which is associated with the ongoing conver-
gence between the Indo-Australian and Eurasian plates. The
earthquake cluster in the southernmost part of the study area,
where the large historical Banyuwangi earthquake occurred in
1994, is related to the subducting plate behind the seamount.
This also triggered the normal faulting earthquake (Mw 7.6)
at the outer rise of the Indo-Australian plate [2].

Currently, the average delay in sending data from the three
stations to the center is 2.33 s (https://geof.bmkg.go.id/slmon/),
while the average time difference between p-arrival and S wave
is 21.53 s. Based on Tables IIl and IV, the best proposed
method can accurately determine all earthquake parameters
in the fifth second of p-arrival. Therefore, the EEWS is
able to issue warnings to areas that are located more than
50 km outside the epicenter, assuming the S wave speed is
3.5 km/s. Soon, the response time for most of the events in
East Java can be reduced due to improvements in network
quality which will occur in the coming years. Moreover, this
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Fig. 4. Distribution of an earthquakes’ parameter reported by the BMKG and
proposed EEWS (a) 62 validation data, (b) 26 data in 2019, and (c) epicenters
of earthquakes.

proposed method can support EEWSs in Indonesia that are
still under evaluation, and in the cases where the system has
not yet been implemented. In addition, it could improve the
InaTEWS system for tsunami warnings.

IV. CONCLUSION

We propose herein the PTWP and MTR tasks for the EEWS
to determine earthquake source parameters in real time. The
Ncheck algorithm improves window prediction selection to
reduce false alarms in multistation waveforms that have noise,
and MTR with hard-shared orthogonal are proven to improve
earthquake parameter determination performance. Our system
can provide reliable earthquake parameters, especially magni-
tude, within a few seconds after a sufficient signal is received.
Our results demonstrate the feasibility of using this method
for real-time EEWSs.
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