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Abstract. Intelligent diagnostics tool for detecting damaged bevel gears was developed based on 

wavelet support vector machine (WSVM). In this technique, the existing method of SVM was 

modified by introducing Haar wavelet function as kernel for mapping input data into feature space. 

The developed method was experimentally evaluated by vibration data measured from test rig 

machinery fault simulator (MFS). There were four conditions of gears namely normal, worn, teeth 

defect and one missing-teeth which has been experimented. Statistical features were then calculated 

from vibration signals and they were employed as input data for training WSVM. Fault diagnostics of 

bevel gear was performed by executing classification task in trained WSVM. The accuracy of fault 

diagnostics were evaluated by testing procedure through vibration data acquired from test rig. The 

results show that the proposed system gives plausible performance in fault diagnostics based on 

experimental work. 

Introduction 

Gearboxes are important component in machinery due to their function to power trasnmission with 

high efficiency. The gearboxes are widely spreaded in use such as helicopter and airplane, ships, 

automobiles and manufacturing machineries. Since their function is very important, a gearbox 

monitoring system is needed as reliable tool for quality control of power transmission. Early detection 

and fault diagnostics of gear is critical for guarantee the functional availability of power transmission. 

In addition, this will be a maintenance tool that enables the establishsment of a maintenance program 

based on early warning and automated fault diagnostics. 

Intelligent fault diagnostics of rotating machinery component such as gearboxes is sequential 

process involving three steps: 1) feature calculation for finding salient feature; 2) feature extraction 

that represents the symptom; and 3) pattern classification (for diagnostics task). Feature extraction 

refers to mapping process from iput space to feature space which usually employs special functions 

such as kernel functions. Salient features that represent charateristics features assicoated with the 

conditions of gearboxes are usually extracted using approriate signal processing technique. 

Pattern classification or sometimes called pattern recognition is the process of classifying the 

features into different categories.  This procedure is augmented by intelligent technique through a 

knowledge-based paradigms [1, 2]. This technique is adopted in this work due to existing of many 

difficulties when deriving mathematical model for very complex system such as gear. The great 

efforts has been reported in using knowledge-based diagnostics as intelligent tools for diagnostics 

such as neural network [3, 4], fuzzy logic [5, 6], sinergetic schemes [7] and support vector machine 

[8]. 

In this paper, a relatively new kernel trick using Haar wavelet function is proposed. In this method, 

wavelet function is performed as kernel function for mapping input data in SVM theory. The 

theoretical development of wavelet kernel are reported in references: reproducing wavelet kernel [9], 

construction of support wavelet network [10], application wavelet support vector to regression [11, 

12], least square wavelet support vector [13]. However, the application is still rare in faults detection 

and classification of gearboxes. Therefore, this study is aimed to evaluate the performance of WSVM 

in diagnosing gearboxes. 
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Wavelet Support Vector Machine (W-SVM) 

SVM is a kind of machine learning based on statistical learning theory. The basic idea of applying 

SVM to pattern classification can be stated as follows: first, map the inputs vectors into one features 

space, possible in higher space, either linearly or nonlinearly, which is relevant with the kernel 

function. Then, within the feature space from the first step, seek an optimized linear division, that is, 

construct a hyperplane which separates two classes. It can be extended to multi-class. SVMs training 

always seek a global optimized solution and avoid over-fitting, so it has ability to deal with a large 

number of feature. A complete description about SVMs is available in Vapnik [14]. 

In the linear separable case, there exists a separating hyperplane whose function is 

 

w⋅x + b = 0,                               (1) 

which implies  

yi(w⋅x + b = 0) ≥ 1,   i = 1, …, N.                        (2) 

 

By minimizing ||w|| subject to this constrain, the SVM approach tries to find a unique separating 

hyperplane. Here ||w|| is the Euclidean norm of w, and the distance between the hyperplane and the 

nearest data points of each class is 2/||w||. By introducing Lagrange multipliers αi, the SVMs training 

procedure amounts to solving a convex quadratic problem (QP). The solution is a unique globally 

optimized result, which has the following properties: 

 

= ∑  .                             (3) 

 

Only if corresponding αi > 0, these xi are called support vectors. 

When SVM are trained, the decision function can be written as 

 

= ∑ 	 . + .                    (4) 

 

For a linear non-separable case, SVMs perform a nonlinear mapping of the input vector x from the 

input space
 
into a higher dimensional Hilbert space, where the mapping is determined by kernel 

function. Typical kernel functions are linear, polynomial and Gaussian RBF kernels. According to the 

different classification problems, the different kernel function can be selected to obtain the optimal 

classification results. The decision function in Eq. (4) contains dot product and can be replace using 

kernel function K(x, x′) = K(〈x⋅⋅⋅⋅x′〉). In the SVM theory, any function can serve a kernel function if 

satisfy the Mercer’s condition [14]. 

Suppose K ∈ L(R
N × R

N
), such that integral operator TK : L2(R

N
) → L2(R

N
) 

 

∙ = ∙,                 (5) 

 

is positive. Let φi ∈ L2(R
N
) be the eigenfunction of Tk associated with the eigenvalue λi ≥ 0 and 

normalized in such way ||φi||L2=1, then kernel function K(x, x′) can be expanded as 

 

, ′ = ∑ λ φ 	 φ ′                          (6) 

 

and must satisfy the positivity condition 

 

∬ , 	 ≥ 0, ∀ ∈⊗ .        (7) 
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In the case of building a new kernel using wavelet, it is helpful to refer the frame theory [15] which 

is an extension of the normalized orthogonal basis. In frame theory, one can reconstruct perfectly a 

function f in a Hilbert space H from its inner product 〈 , 〉 with a family vectors {ψk} if satisfy the 

condition which exists two constant 0 < A ≤ B < ∞ such that 

 

‖ ‖ ≤ ∑ |〈 , 〉| ≤ ‖ ‖ .           (8) 

 

with 〈 , 〉 and ||  || denoting the standard inner product and norm, respectively. Any function in Hibert 

space can be decomposed as follows 

 

= ∑ 〈 , 〉 = ∑ 〈 , 〉 .                        (9) 

 

where 
kψ  is the dual frame of ψk. In L2(R

N
), if f = {ψi}  is a frame and {λi} is a positive increasing 

sequence, a function K(x, x′) can be given by  

 

, = ∑ ′ .                                 (10) 

 

Eq. (10) is similar to Eq. (6) in satisfying the condition for kernel function. A mother wavelet 

ψa,b(x) is called a frame wavelet if ψ ∈ L2(R
N
), a > 1, b > 0 and the family function {ψmn} = {Dam Tnb 

ψ} where D and T are unitary dilatation operator and unitary translation operator, respectively, while 

a is scale parameter and b is translation parameter. A wavelet kernel function can be constructed by 

any mother wavelet which can generate frame wavelet. When a frame is used to construct a kernel 

function, the Mercer’s condition in Eq. (7) must be satisfied. In addition, beside the inner product, 

there exists a kernel called translation−invariant kernel such that K(x, x′) = K(〈x −−−− x′〉). 

If translation−invariant kernel is admissible in SVM kernel function, so the necessary and 

sufficient condition of Mercer’s theorem must be satisfied. Thus, the Fourier transform is written as 

 

= 2 / − ∙                           (11) 

 

is non-negative. Based on the mother wavelet, the wavelet kernel which satisfies the 

translation-invariant theorem can be given as 

 

, = − = ∏ .                                     (12) 

Experimental Work 

Data acquisition was conducted on test rig of machine fault simulator (MFS) with operating speed 

1000 rpm that driven by induction motor of 1 HP, 220 volt, 3 poles as shown in Fig. 1. Two 

accelerometers were used to pickup vibration signal at gearbox in vertical direction. We employed 

data acquisition device (DAQ) hardware called SpectraPad from SpectraQuest Inc., which consists of 

8 channels input and output from many sensors. This DAQ is capable to 24 bits analog-to-digital 

converter (ADC), 102.4 Ksamples/sec, and 40 kHz of analysis frequency range. The DAQ was 

controlled by VibraQuest Software that is an integrated data acquisition and analysis solution 

package designed for diagnosing rotating/reciprocating machinery malfunctions. The maximum 

frequency of the signal acquisition and the number of sampled data were 2 kHz and 40,960, 

respectively. The acquired signals are presented in Figs. 2 and 3. 
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Fig. 1 Data acquisition process 

  

Fig. 2 Vibration signal in time and frequency domain 

Fig. 2 shows the acquired vibration signal of gearbox in three conditions: normal, worn and broken 

gear. Gear mesh frequency (GMF) and their sidebands are clearly presented in signal frequency 

domain that shows the fault was detected occur in the gearbox. In statistical poin of view, the broken 

tooth condition give significant different value of mean, rms and kurtosis of time domain signal as 

presented in Fig. 3. 

The conditions of experimented gearboxes are worn, normal, broken 1 tooth and chipped. Each 

condition is labeled as class from 1 to 4. Feature representation for training and classification is 

adopted from previous work as mentioned in [16]. There are totally 21 features calculated from 

vibration signals and 40 data calculated from 4 conditions, 10 measurements. In addition, feature 

extraction using principal component analysis (PCA), independent componen analysis (ICA) and 

their kernel (KPCA and KICA) were also employed for feature reduction based on eigenvalue of 

covariance matrix. 
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Fig. 3 Feature of mean, rms and kurtosis extracted from time domain signal 

Training and classifiation 

The SVM based multi-class classification is applied to perform the classification process using 

one-against-all methods [14]. To solve the SVM problem, Vapnik (1982) describes a method which 

used the projected conjugate gradient algorithm to solve the SVM-QP problem [18]. In this study, 

SVM-QP was performed to solve the classification problem of SVM. The parameter C (bound of the 

Lagrange multiplier) and (condition parameter for OP method) were 1 and 10
-7

, respectively. 

Wavelet kernel function using Haar series was performed in this study. The parameter δ in wavelet 

kernel refers to number of vanishing moment and is set 4. In the training process, the data set was also 

trained using RBF kernel function as comparison. The parameter γ for bandwidth RBF kernel was 

user defined equal to 0.5. 

Result and Discussion 

The diagnostics of gearbox is presented in Fig. 4 using classification strategy of one-agains-all. 

The performance of WSVM using Haar wavelet function in classification gearbox conditions is 

contrasted with common SVM using RBF kernel function. In this work, WSVM can accurately 

recognize the conditions of gearbox from all input data except data kernel IC with 85% accuracy of 

training and testing. White circle in Fig. 4 refers to support vectors that represent correct recognition 

of gearbox conditions in SVM using kernel wavelet and RBF functions. 
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Fig. 4 Classification of gearbox conditions in SVM using kernel wavelet and RBF functions 

The performance of classification process is summarized in Table 1. All data set come from 

component analysis are accurately classified using Haar wavelet kernel and SVM. SVM using RBF 

kernel function with kernel width γ = 0.5 is also performed in classification for comparison with Haar 

wavelet kernel. The results show that the performance of WSVM approaches SVM using RBF kernel 

functions, those are 85% in accuracy of training and testing, respectively. 

Table 1: Results of classification for gearbox fault diagnostics 

Kernel 
Accuracy (Train/Test) [%] 

IC PC Kernel IC Kernel PC 

Wavelet  

Haar 
100/100 90/90 85/85 100/100 

RBF-Gaussian 

(γ = 0.5) 
100/100 100/100 100/100 100/100 

Conclusions 

The study of gearbox fault diagnostics using vibration signals and wavelet SVM has been 

proposed to approach the existing method of common SVM using RBF kernel function. The proposal 

of introducing wavelet Haar as kernel function in SVM is highlighetd as relatively new trick for 

mapping input data into feature space. In this work, the proposed method is validated by using 

vibration signal acquired from gearbox for fault diagnostics purpose. The results show that the 

performance of WSVM using Haar wavelet is good in training and testing process. Introducing 

wavelet function as kernel for mapping input data in SVM and its application to gearbox fault 

diagnostics is significant in intelligent machine fault diagnostics research field. 
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