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Abstract. A spectral theory studies eigenvalues and eigenvectors of SALR on H. SALR on
Hilbert space H is a linear relation satisfying A = A". Many applications of SALR on
quantum theory, such as the homogenous abstract Cauchy problem.If M is an operator that has
an inverse then eigenvalues and eigenvectors are casily determined, but If M is an operator that
does not have an inverse then eigenvalues and eigenvectors are quite difficult determined. One
way that can be done is to use a linear relation. Furthermore, there are some properties of
spectral theoryof linear operator that can not apply to SALR. This paper aims to give a spectral
theory for SALR and its application in a homogenous abstract Cauchy problem.

1. Introduction
A linear relation is generally referred to as multivalued linear operator. A linear relation on Hilbert
space His a subspace of Hilbert space H® H[1]. The research about spectral theory of linear relation
can be found [1-8]. Arens [1]analyzed spectral theory of SALR considered with an unitary operator
through Cayley transformation. Gheorge and Vasilescu [2]founded strong connection between spectral
theory of closed linear relation and closed linear operator. Recently, Gheorge and Vasilescu [2] given
some properties of closed linear relation. Langer and Textorious [3] analyzed spectral theory of a
linear relation associated with minimal self-adjont extension. A spectral theory of linear relation and
its application can be found in Baskakov and Chernyshov [4], Baskokov and Zagorskii [5] and Sari, et
al [6].

A linear relation has been used anabstract Cauchy problem. An abstract Cauchy problems are often
found in chemistry, biology, physics, engineering, ecology, finance, industry, environment, and so on.
Consider a homogenousabstract Cauchy problem on Hilbert space

%Mr(f)z Lr(t),tell , =[0,4=0) ()
[z
r0)=r,

where M and L arelinear operator on Hilbert space H.Anabstract Cauchy problem is called
degenerate if an operator M is not invertible. A Cauchy problem is called nondegenerate if an

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
v of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOL
Published under licence by IOP Publishing Ltd 1




5th ICMSE2018 IOP Publishing
Journal of Physics: Conference Series 1321 (2019) 022070 doi:10.1088/1742-6596/1321/2/022070

operator M is invertible. If the M operator has an inverse then the problem (1) can be written in the
form:

%Mr(r) =Lr(t),tell , =[0,+00) 2)
¢

r(0)=r
where M and [ are linear operator on Hilbert space H . Therefore, the determination of eigenvalues

and eigenvectors on problem (2) is easy to do. If the operator M does not have an inverse then the
problem (1) can be generalized in the form of a linear relation:

% r(t)e Ar(r),t €ll | =[0,+0) (3)
c
r0=r

whereA=M"'Lis SALR on H. Wegive a spectral theory of SALR and its applications in
homogenous abstract Cauchy problem.

2. Preliminaries
Some notations of linear relation on H can be seen in [1-4, 9-16]. A definition of linear relation, or
relation for short, on Hilbert space H is as follow

Definition 1 [1] A lincar relation is defined by A ={(w,x): w,X € H} . The domain of A is defined by
D(A):{w:(w,x) eA} . The range of A 1is defined by R(A):{x:(u-',x) EA} . The kemel of A is
defined by N(A):{w: (w,0) eA} . The multivalued part of A is defined by M(A)= {x ((0,x)e A} .
A identity relation on H is defined by /= {(w, w):we H} and a zero relation is defined by
0 Z{(H-‘,U) TWe H} . The class of all linear relation on Hwill be denoted by LR(H). An inverse
relation on Hilbert space is defined by A ™' = {(x, w),(w,x) EA} . Afterward, the duality of A and its
inverse A" is
DAY =RA),RAH=DA), NAH)=MA),MA ) =NA).

The following is given the definition of an adjoint relation A" on Hilbert space H.
Definition 2 [9] An adjoint relation of a relationA on Hisa closed relation denoted
by A'={(k D eH :(x k)= (w1),Y(wx)eA}.
We give the following operations of relation.
Definition 3 [1] Let A,B e LR(H), then the sumA +B is defined by

A+B :{(w,x+1) (wx)eA,(wi)e B} .
The product (composition) BA is defined by

BA :{(w,l) :dxeH (w,x)eA,(x,)e B} .
A relation zA is defined by zA 2{(11f,zx):(11f,_x)eA} for zell . A relation z— A is defined by
z—A = {(w,zw—x) (wx)eA,zell } .
The definition of symmetric, self adjoint, isometry, injective, and surjective relation is as follows.
Definition 4 [9] Let A isa relation on H, then

symmetric if A c A"

self-adjoint if A = A~

Isometri if (w,k)=(x,[),¥V(w,x),(k,))e A

Unitary ifrelation A is an isometry and D(A)=R(A)=H

(5]
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Definition 4 [12] Let A isa relation on H, then
Surjective if R(A) =H
Injective if N(A) = {0}
Bounded if D(A)=Hand ||A|| <

3. Result and Discussion
The resolvent set of A is defined in Acharya [9] to be the set p(A)={zel :(z—A)"'is bounded
linear operator} and its complement is the spectrum of A . The spectrum of A is denoted 0(A). A

scalar zsuch that N(z—A)# {0} is called an eigenvalue of A . Furthermore, An non zero vector w is
called an eigenvector of A related to an eigenvalue z. A set of all eigenvalues of A is said the point
spectrum &, (A).Clearly, if zisan eigenvalue of A , then z is elements of spectrum of A [1].

We give the following some Theorems of spectral theory of linear relations.

Theorem 1

Given a relation A on His a self-adjoint. If wis an eigenvector of A corresponding to the eigenvalue
zand fis an non zero scalar, then fWis also an eigenvector of A corresponding to the same

eigenvalue.
Proof. Given wis an eigenvector of A corresponding to the eigenvalue z. Clearly, a relation

A :{(w,x): W,X € H} give xeAw. Therefore, letfl is an non zero scalar, then(fw,zfw)eB .
Clearly, (Bw,zfiw) = ( Sw, Bzw) € fA« Consequently,we get W is an eigenvector of A corresponding
to the same eigenvalue.

Theorem?2

A relation A on His a self-adjoint. If Wis an eigenvector of A thenW cannot correspond to more
than one eigenvalue of A .

Proof. Take any w#0. Letzand Zz,are two distinct eigenvalues of A corresponding to an
eigenvector w. Furthermore, we have(w,zw)eA and (w,z,w)e€A,. So that, we get
A —A, ={(w,:| W—Zgw)Z(W,ZIW)EAI,(W,SEW)EAE}A We get z,w—32w=(z| —z, )we (A, —A)w.
Clearly, w#0 and (z —z,)w=0, so that we have z =z,

Corrolary3A relation A on His a self-adjoint. Eigenvectors W and w,belonging to the two different
eigenvalues of 7z and z,a SALR are orthogonal.

Theorem 4Let A e LR(H)is a SALR that have an eigenvalue z, then an eigenspaces A of are
pairwise orthogonal.

Proof.Let £ and E,is an eigenspaces of the SALR A on H corresponding to the distinct eigenvalues

Ajand A, . Let w € E and W, € E, so that Aw, = zw, and Aw, = zw, . Furthermore, we get

2, (1. w5) = (2w 0, ) = (A w, ) = (. A s ) (4)
and

A’“"Z = ;21'1"2 N (5)
From (4) and (5), we have

2 (wl,wz) = (wl,erz) <z, (wl,w2> =7 (m ,wz) (6)

&(z -z )(w,,wz>: 0.

Clearly, z, # z,s0 that {w,,w,}=0. Hencew, Lw, for each W, € E,and W, €E,. ThusE, L E,.
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A SALR are widely applied to quantum theory, such as the determination of eigenvalues and
cigenvectros on homogenous Abstract Cauchy problems. We give the following examples of
homogenous Cauchy problem where M is not invertible.

Example5:
Consider the Homogenous abstract Cauchy problem for a linear system on a Hilbert space of
continuous function C[0,1]:

R (1) = 25 (1) — 15.(0) + 15 (1) 7
o (0) = r () + 1, (0)
R (6) =1 (1) — 13 (1) + 273.(1)

r(0)=r
The problem (7) can be written in the form
%Mr(f)er(:‘),f ell , =[0,+) (8)
r0)=x
1 00 2 -1 1
where M={0 1 OlandL=|1 0 1]. Clearly, M is invertible so that a Cauchy problem is a
0 01 1 -1 2
nondegenerate. Furthermore, we get
wo [ x
A=M"L= W, | % ||l Ix[0? DX =20 Wy R WL X, = W WL = W =W, 2w ¢ (9)
w, L
and
W, w, 2 -1 1Yw \
z—A= wy |z wy (=] 1 0 L wy | [iw,ww, el . (10)
W, Wy I =1 2)\w [
z=2 1 =1 }Yw

Therefore, we get (z—A)w=0<| -1
-1 1 z=2)\w

=0. Clearly,we get z=1 with

t
I
LY
=
3

-1 1 1
w=| 0 |and w=|1]|, and z=2 with w=|1|. Consequently, the point spectrum of A is
1 0 1
op(A)z{l,Q}AThus, eigenvalues of relation A is z=1 and z=2, while eigenvectors of relation A is
=111
0|11
0]]1
Supposezell , we get
W, 2 =1 1w W, 2 -1 1w
zlw, =1 0 1|w, 2‘z| w, L 0 1w,
Wy 1 -1 2)lwm W, I =1 2)lw (11
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W,

> (|z| =2)[ wy

Wy

We can choose C(:’)=|:|—2>0<:>|:">2‘ Consequently, the resolvent set of A is the set

p(A)={zel :|z| > 2} and spectrum of A is o(A4)={z el :‘z

<2}.

We give the following examples of homogenous Cauchy problem where operator M is not invertible.

Example6:

Consider the homogenous abstract Cauchy problem on a Hilbert space of continuous function C[0,1]:

%Mr(r):Lr(r),f el , =[0,4x)
€

r(0)=r,

I 0 5 4
where M = and L = .
0 0 3 2

Clearly, M is not invertible so that Cauchy problem is a degenerate so that we get

A=M"L ={[[ " J,{Xl }J W, = —él‘l-‘[‘s—t[ = —u-l,V[ e ] S D(L)}
wy )X, . 2 W,

and
W W X, W
AT {[[ L ],:[ l ]_[ IJJ:“E e _“!“V[ l ]e D(L)}
w, w, X, w,
(z+Dw,
Therefore, we get (z—-A)w=0<| 3 = . Clearly, we get
—E:w, —X, 0
W
andw=| 3 where w, #0. Consequently, a point spectrum of Ais o,(A
—EMJI
W
eigenvalues of relation A isz=-1, and eigenvectors of relation A is 3 tw =0
2w
2 1

Let zell , we get

( z+1 ) W, w, —w,
3 2|l 3 -1
X

——Im —X -——w
1 2 1
2 2

(12)

={-1}.Thus,

(15)
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(z+1)w W,
We can notfind C(z) > 0 such that 3 > (|z| -l 3 .Consequently, the resolvent set
~3 ZW = X, > W,

of A is the set P(A)=Tand spectrum of Ais o(A)={z:zel}. A point spectrum of A is
o, (A)={-l}co(A).

4. Conclusion
An eigenvalues and eigenvectors of abstract Cauchy problems can be determined by linear relations. A
relation A on H is a self-adjoint. The following are the properties of spectral theory of SALRon H. If

wis ‘an eigenvector of A corresponding to the eigenvalue zand fis an non zero scalar, then fwis
also an eigenvector of A corresponding to the same eigenvalue. If wis an eigenvector of A then w

cannot correspond to more than one eigenvalue of A . Consequently, eigenvectors W, and

W, belonging to the two different eigenvalues of z, and z,a SALR are orthogonal.Let A e LR(H)is a
SALR that have an eigenvalue z, then an eigenspaces A of are pairwise orthogonal.
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