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Summary 

The capacity of liquid carrier LNG tanks has increased in recent years. One of type LNG 

carriers is membrane type. The tank shape is a prismatic tank. One of the natural phenomena in 

a liquid carrier is sloshing. One of the effective ways to mitigate sloshing is using a baffle. In 

the present study, sloshing in a prismatic tank was carried out with two filling ratios, i.e., 25% 

and 50%. Smoothed particle hydrodynamics (SPH) was used to overcome sloshing with a single 

vertical baffle, double vertical baffle, and T-shape baffle. The height of the baffle is 0.9. This 

value is ratio baffle height and water depth. The comparison is made for dynamic pressure with 

the experiment. It was found that SPH has acceptable accuracy both for dynamic pressure and 

hydrostatic pressure. A baffle significantly decreases the wave height. As a result, the dynamic 

pressure is decreased. Finally, the hydrodynamics force is slightly decreased due to baffle 

installation. 

Key words: Smoothed particle hydrodynamics; Sloshing; Vertical baffle; T-shape baffle; 

Dynamic Pressure; Wave height; Hydrodynamics force. 

1. Introduction 

The capacity of liquid carrier LNG tanks has increased in recent years. One of the LNG 

carrier types is a membrane-type carrier. The shape of the membrane-type carrier is a prismatic 

tank. The prismatic tank has the merit that the shape was similar to the ship hull shape. Another 

advantage is the larger capacity. One of the natural phenomena in a liquid carrier is sloshing. 

Sloshing is defined as the movement of fluid inside the tank due to excitation force into the 

tank. One of the effective ways to mitigate sloshing is using a baffle. Sloshing is one of the 

nonlinear phenomena which are challenging to overcome in fluid dynamics. Many studies were 

carried out in both experiment and numerical analysis. Thanks to computer technology that was 

increasing drastically, the numerical method became popular. The present paper is carried out 

a numerical study of sloshing using smoothed particle hydrodynamics (SPH). SPH is one of the 

particle methods that are meshless and Lagrangian approach. Due to the meshless method, large 

deformation and nonlinear phenomena are easy to reproduce. In the present study, weakly 

compressible SPH (WCSPH) is used to reproduce sloshing in the prismatic tank. 
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SPH is firstly applied for the astrophysical problem [1]. Monaghan developed it for free 

surface flow for dam-break dan water waves case [2]. Moreover, SPH application becomes 

wider, such as structure interaction of the wave with breakwaters [3]. SPH was applied for long-

distance water wave propagation in a large wave basin with experimental validation [4]. It 

shows SPH has good accuracy for free surface flow such as water waves. Furthermore, to 

reduce of reflection wave in the numerical wave tank (NWT), an active wave absorption was 

developed [5]. Later on, water waves simulation was carried out using open boundaries 

combined with active wave absorption [6]. Implementation of SPH for numerical wave tank 

with Incompressible SPH (ISPH) was done using GPU to reduce pressure noise in weakly 

compressible SPH(WCSPH) [7]. It was shown SPH has a promising result for water waves. 

SPH application for violent flow sloshing in low filling ratio using obstacle in the 

rectangular tank was carried out in one-phase SPH [8]. Furthermore, one-phase and two-phase 

SPH was carried out in a prismatic tank with a low-pass filter technique to reduce pressure 

oscillation due to the nature of WCSPH [9]. Later on, one-phase and two-phase of low filling 

ratio of sloshing in the prismatic tank was studied in the three-dimension domain [10]. It showed 

SPH had a high computational cost for three-dimension computation. A study of sloshing with 

baffle had been done using elastic baffle to reduce sloshing in the rectangular tank [11]. The 

study of two-dimension sloshing was carried out with a T-shape baffle to reduce the sloshing 

effect in the RANS solver [12]. Coupled SPH with smoothed finite element method (SFEM) 

used to study sloshing in a rectangular tank with flexible vertical and T-shape baffle [13]. The 

long duration of sloshing using the rectangular tank in three-dimension has been studied with a 

combination of tanks such as the pill, spherical, and cylindrical shape tank [14]. Implementation 

of δ-SPH and particle shifting was used to tackle sloshing with flexible baffle and elastic wall 

of the rectangular tank [15].  The comparison study used Volume of Fluid (VOF), SPH, and 

Arbitrary Lagrangian-Eulerian to study Braking and Roll Responses of Partly Filled Tank 

Vehicles [16]. A single and double vertical baffle study was carried out with rectangular tanks 

[17].  

The present paper is carried out of sloshing in a prismatic tank with single, double, and 

T-shape baffles. The baffle height was based on the work of a previous study, which is an 

effective baffle between 0.75 to 0.9 of the ratio of the baffle and water depth [17]. In this paper, 

the baffle height was chosen 0.9. One pressure sensor was used to verify the validity of SPH 

simulation based on experimental work [18]. There are two water height probes set to capture 

free surface deformation inside the tank. The oscillation motion of the tank is rolling with a 

filling ratio of 25% and 50%. An open-source SPH solver, DualSPHysics version 5.0 was used 

to simulate sloshing in the prismatic tank [19]. DualSPHysics has been implemented with 

General Purpose computing on Graphics processing units (GPGPU) [20]. It makes a million 

particles that can be handled using a single GPU.  

Sloshing in the prismatic tank was done in one phase SPH. It was revealed that vertical 

baffle has a significant effect on reducing fluid movement. The fluid became calm, and 

hydrodynamics pressure was reduced due to the effect of the baffle. Finally, hydrodynamic 

force and moment were decreased. 

. 

2. Theoretical background and method 

2.1 Experimental setup of sloshing and SPH simulation. 

The experimental setup of sloshing in the prismatic tank showed in Figure 1.  There was 

three pressure sensor used in the experiment; in this study, only one pressure sensor was used 

to validate against the SPH simulation. Because in this study, only two filling ratios were used, 
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i.e., 25% filling rato and 50% filling ratio (see Figure 1). As a consequence, a pressure sensor 

is located at the bottom that uses for validation of SPH simulation. It can be explained because 

the filling ratio 25% pressure sensor position is near a free surface. It was a challenging case 

for reproducing of impact pressure caused by sloshing. 

Moreover, the pressure sensor position in the filling ratio of 50%  is at mid of water depth. 

The pressure sensor was set fix in the experiment. There are four cameras used in the 

experiment. Two are inside of the oscillation machine, and others are outside of the oscillation 

machine. The reader can refer to the detailed information of the sloshing experiment [18]. 

Figure 2 depicts the geometry of the prismatic tank for SPH simulation. Where L, H, l, 

and d are the length of the tank, the height of the tank, width of the tank, and water depth, 

respectively. The dimension of the tank is shown in Table 1. Figure 3 depicts a prismatic tank 

with three types of baffle shapes in the filling ratio of 25%. The height of all baffles is 0.9 of 

ratio baffle height and water depth. The position of the vertical baffle is in the mid of the tank. 

While The distance of the double vertical baffle is the width of the tank divided into three 

sections. The T-shape baffle was set in the mid. The width of the baffle is ¼l, where l width of 

the tank. The thickness of the baffle was set as 6.0 mm. d1 and d2 are water depth in filling 

ratio 25% dan 50%. 

Figure 4. shows the displacement of a tank in the experiment for roll oscillation motion. 

The oscillation motion is regular. In this study, the tank's movement is directly imposed from 

the experiment (see Figure 4). This is one of the merits of SPH that the movement of the tank 

is as same as in the experiment. Roll motion is one of the dangerous motions in the seakeeping 

area. Sloshing can endanger a ship when there is energetic sloshing, especially when sloshing 

excitation frequency is near or identical with the natural frequency of the tank.  

The amplitude of roll motion is 8.660. The sloshing excitation frequency is 1.04 Hz for 

25% filling ratio and 1.30 Hz for filling ratio 50%. It shows the frequency of excitation close 

to the natural frequency of the prismatic tank [18]. 

 

Table 1. Principal dimension of prismatic tank 

Dimension (m) 

L 0.38 

l 0.30 

H 0.21 

d 0.0525 (25%) 

0.1050 (50%) 
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Fig. 1 Experimental condition of sloshing filling ratio 25% (a), condition of water depth with 

filling ratio 25% (b),  and 50% (c). 

 

 

Fig. 2 The sketch of prismatic tank with principal dimension. 

  

 

 

Fig. 3 The sketch of prismatic tank with single baffle (a) double baffle (b) and T-shapebaffle 

(c). 
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Figure 4. The displacement of the prismatic tank in SPH computation for filling ratio 25% (a) 

and 50% (b) 

 

 

2.2 Smoothed particle hydrodynamics (SPH) 

Smoothed particle hydrodynamics (SPH) was initially for the astrophysical field that is 

developed by Monaghan [1] and Lucy [21]. Later on, It was applied to the free surface problem 

for dam break and water waves on the beach [2]. SPH is a meshless and Lagrangian approach 

that uses an interpolation scheme to approximate physical values and derivatives of a 

continuous field by using discrete evaluation points. The evaluation points are identified as 

smoothed particles that contain mass, velocity, and position. The quantities are obtained as a 

weighted average from adjacent particles within the smoothing length, h, to reduce the range of 

contribution from the neighbor particles. The main features of the SPH method, which is based 

on integral interpolants, are described in detail [22,23]. 

Figure 5. shows the radius influence of particle a in the kernel function. Where 

contribution of particle inside the kernel is weighting using smoothing length. where rab is a 

distance of particles a and b while Wab is the kernel function. In SPH, the field function A(r)in 

domain Ω can be approximated by integral approximation as Eq (1) where W is kernel function 

and r is a vector of position.  

The Eq (1) can be approximated into a discrete form by replacing the integral with a 

summation over the neighbouring particles in the compact support of particle a at the spatial 

position r, thus leading to particle approximation in the Eq (2). In this study, the Wendland 

kernel function is used in all simulations. Eq (3) shows Wendland kernel function, where αD is 

equal to 21/164πh3 in 3D. q is the non-dimensional distance between particles a and b that is 

given r/h. 

   Eq [4] is the continuity equation with the delta-SPH term to reduce spurious pressure 

in SPH [24]. Eq (5) is the momentum Eq in the SPH framework. Where g is gravity acceleration, 

Pa and Pb are pressure in a particle a and b. Πab is the artificial viscosity term, 𝝁𝒂𝒃 =
𝒉𝒗𝒂𝒃.𝒓𝒂

𝒓𝒂𝒃
𝟐 +𝟎.𝟎𝟏𝒉𝟐

 

, 𝒗𝒂𝒃 = 𝒗𝒂 − 𝒗𝒃 are vector velocity, and  𝒄𝒂𝒃 = 𝟎. 𝟓(𝒄𝒂 + 𝒄𝒃) is the mean speed of sound and 

with α is a coefficient that needs to be tuned to get proper dissipation. 

DualSPHysics is based on weakly compressible SPH (WCSPH), to get pressure in 

WCSPH an Eq of state was used based on Eq (6). Where co , ρ0, and γ are the speed of sound at 

reference density, the reference density, and the polytrophic constant, respectively. This Eq is 

very stiff which a small change of density is made pressure fluctuation. This is one of the 

reasons there is a pressure oscillation in WCSPH. Eq (7) is the Eq to calculate the time step 

based on the work of Monaghan. Where ∆𝒕𝒇 is based on the force per unit mass (|𝒇𝒂|) and Δtcv 

combines the Courant and the viscous time step controls, where CFL is a coefficient in the 

range 0.1 ≤ CFL ≤ 0.3. 
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Fig. 5 Radius of smoothing length and kernel function in SPH 

 

𝐴(𝒓) = ∫ 𝐴(𝒓)𝑊(𝒓 − 𝒓′, ℎ)
Ω

𝑑𝒓 (1) 

𝐴(𝒓𝑎) ≈ ∑ 𝐴(𝒓𝑏)𝑊(𝒓𝑎 − 𝒓𝑏 , ℎ)
𝑚𝑏

𝜌𝑏
𝑏

 (2) 

𝑊(𝑞) = 𝛼𝐷 (1 −
𝑞

2
)

4

(2𝑞 + 1)   0 ≤ 𝑞 ≤ 2 (3) 

𝑑𝜌𝑎

𝑑𝑡
= ∑ 𝑚𝑏𝒗𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏 + 2𝛿𝛷ℎ𝑐0 ∑(𝜌𝑏−𝜌𝑎)

𝒓𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏

𝒓𝑎𝑏
2

𝑏𝑏

𝑚𝑏

𝜌𝑏
 (4) 

𝑑𝒗𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

(
𝑃𝑎+𝑃𝑏

𝜌𝑎 ⋅ 𝜌𝑏
+ 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝐠 (5) 

𝑤ℎ𝑒𝑟𝑒 𝛱𝑎𝑏 = {
−𝛼𝑐𝑎𝑏𝜇𝑎𝑏 

𝜌𝑎𝑏
          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 < 0

0                          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 > 0

 

 

 

 

𝑃 =
𝑐0

2𝜌0

𝛾
[(

𝜌

𝜌0
)

𝛾

− 1] (6) 

∆𝑡𝑓 = 𝐶𝐹𝐿 ∙ 𝑚𝑖𝑛(∆𝑡𝑓 , ∆𝑡𝑐𝑣) (7) 

  ∆𝑡𝑓 = 𝑚𝑖𝑛 (√
ℎ

|𝒇𝒂|
)  

         Δtcv = min 
ℎ

𝐶𝑠+𝑚𝑎𝑥|
ℎ𝒗𝑎𝑏∙𝒓𝑎𝑏

(𝒓𝑎𝑏
2 +𝜂2)

|

   
 

 

Table 2. shows the parameters set up in SPH simulation.  In this study, the Wendland kernel 

function was used in all computations with Sympletic time step algorithm. The artificial 

viscosity term with α is 0.01 to get proper dissipation. Based on the study conducted by 

Trimulyono et al. [18], the speed of sound has a significant impact on pressure magnitude. In 

this study, coefsound of 60 was used to reproduce the same accuracy on the pressure field. 

a 

b 
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Coefh is the coefficient of smoothing length. In 3D Coefh was define 𝐶𝑜𝑒𝑓ℎ =
𝒉

𝒅𝒑√𝟑
.  CFL is 

coefficient of the Courant-Friedrichs-Lewy condition. Delta-SPH was used to reduce pressure 

oscillation, by default 0.1 is used in all simulations. Simulation time is set 28 seconds, as the 

motion is regular motion the motion is the same after the motion reach condition of steady-state 

condition (see Figure 4). 

 

Table 2. Parameters setup of SPH computation. 

Parameters 

Kernel function Wendland 

Time step algorithm Sympletic 

Artificial viscosity 

coefficient (α) 
0.01 

Coefsound 60 

Particle spacing 

(mm) 
1.6 

Coefh 1.2 

CFL 0.2 

Delta-SPH (δφ) 0.1 

Simulation time (s) 28 

 

3. Result and discussion 

3.1 Hydrostatic and hydrodynamic pressure 

Figure 7. shows the hydrodynamics pressure in the bottom.  The pressure was substracted 

with hydrostatic pressure, as result, the pressure is only dynamic pressure. Based on work 

Trimulyono et al. [18] the hydrostatic pressure is well reproduced by SPH with a difference 

under 3%. Figure 6. shows hydrostatic pressure in filling ratio 50% with T-shape baffle and 

without baffle. The hydrostatic pressure is well reproduced by SPH, moreover, the gradient of 

hydrostatic same with an analytic solution where the pressure at the bottom shows the highest, 

on contrary the pressure in the free surface shows the smallest value. A similar tendency shows 

in dynamic pressure. There is no significant pressure phase between SPH with experiment, It 

depicts SPH has similar velocity and displacement with the experiment. Moreover, it shows the 

timing of the pressure sensors in SPH to capture dynamic pressure similar to the experiment. It 

describes the fluid properties such as fluid kinematics has tendency same as physics.  

The hydrodynamics pressure is consists of impact pressure and dynamic pressure. Figure 

7. shows hydrodynamic pressure in the filling ratio of 25%. Redline is an experiment, purple 

line is SPH without baffle. The green line is dynamic pressure with a single baffle, yellow is 

for the double baffle, and the black line is for the T-shape baffle.  The first magnitude is impact 

pressure, it can be seen from Figure 7 that the first magnitude is very high then it decreased. 

The second is dynamic pressure when fluid is start to run-up to the top of the tank. The 

magnitude of dynamic pressure is lesser than impact pressure because the pressure is affected 

by fluid movement without any sudden accelerated fluid movement. In the sloshing 
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phenomena, impact pressure has to minimize to avoid structure damage or explosion for 

dangerous liquid cargoes such as LNG.  

One of the ways to mitigate sloshing is using a baffle. The study shows vertical baffle has 

a significant effect on sloshing. Ma et al. shows the vertical baffles effectively reduce sloshing 

in a rectangular tank [17]. The present study is tried the same way using a prismatic tank with 

a combination of T-shape baffle. It revealed that fluid movement inside of the tank is decreased 

significantly, as a result, the pressure magnitude is decreased. Using one vertical baffle, the 

pressure is decreased by 85.80 %. Two vertical baffles have effectively decreased the pressure 

by 88.24 %. The T-shape baffle effectively decreased pressure by 82.60%.  

Figure 8. shows the dynamic pressure for the filling ratio of 50%. The accuracy is a slight 

difference with a filling ratio of 25%. The impact pressure was not captured by SPH. However, 

the accuracy of the timing of the pressure sensor was similar to the experiment as well as in the 

filling ratio of 25%. It revealed that dynamic pressure is reproduced by SPH. the single baffle 

effect is reduced pressure up to 94.5%. The double vertical baffles are reduced pressure up to 

91.2%. A T-shape baffle effectively reduced pressure by 91.0%. 

 

  

 

 

Fig. 6 Hydrostatic pressure in filling ratio 50% without and with T -shaped baffle. 
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Fig. 7 Comparison of dynamic pressure of pressure gauge with and without baffles for filling 

ratio 25%. 

 

 

Fig. 8 Comparison of the dynamic pressure of pressure gauge with and without baffles for 

filling ratio 50%. 

 

3.2 Free surface deformation 

In the present paper, advanced visualization was conducted using open source blender 

version 2.92. The software is freely downloaded at https://www.blender.org/. Using this 

technique post-processing of SPH is more attractive and close to real physics. Figure 9. shows 

the comparison of visualization in particle, surface, and advanced surface texturing using a 

blender [25]. It can be seen in Figure 9. that fluid looks like real fluid. The post-processing of 

advanced texturing was done for all simulations.   

The free surface deformation inside the tank was influenced by excitation force. When 

energetic sloshing has happened the fluid movement leads to chaos and complicated. The 

energetic sloshing could exist when the frequency of excitation force is close to the natural 

frequency of the tank. To mitigate the fluid movement inside of a tank, one of the effective 

ways is using baffle to reduce fluid movement. It can be seen in Figure 10, and Figure 11 

without baffle installation the fluid run-up to the top of the tank. In contrast, after baffle 

installation in the tank, the fluid becomes calm.  

The effect of a single vertical baffle is to suppress wave height up to 86.3%. It was 

indicated the impact pressure is reduced caused by baffle installation. As seen in Figure 10. the 

fluid becomes calm as a result the impact pressure caused by fluid-accelerated movement is 

suppressed. Similar results show using double vertical baffle and T-shape baffle. The double 

vertical baffle is suppressed wave height up to 91.7% and the T-shape baffle is suppressed wave 

height over 95.0%. Based on visual observation, it can be seen is using vertical baffle, the fluid 

is experience damped by vertical baffle and fluid undergo a suction after passing the vertical 

baffle. The kinetic energy is suppressed by a vertical baffle that made fluid movement becomes 
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slower compare without baffle installation. For T-shape baffle shows similar phenomena, the 

fluid becomes calm caused by a fluid is damped by the T-shape baffle. It can be explained that 

the T-shape baffle is damped the fluid by suppressing fluid movement when it passes the baffle. 

The fluid becomes calm caused by a sudden change of water depth when it passes the T-shape 

baffle as result the wave height is suppressed and then the fluid becomes calm. It can see in 

Figure 10. the wave height is lesser compared to before passing the T-shape baffle. 

In the filling ratio of 50%, using a single vertical baffle is suppress wave height 79.0%. 

Similar tendency phenomena show in the filling ratio of 50%. The vertical baffle is damped 

fluid movement because the fluid experiences a suction effect after passing the baffle as result 

the wave height is reduced and the fluid becomes calm. Double vertical baffle suppress wave 

height over 95.0%. The higher result is obtained by a double vertical baffle. Because the effect 

of the vertical baffle is double in this condition. Wave height is suppressed two times because 

pass double vertical baffle. Wave height near the tank is caused by movement of the tank that 

is lesser compared without baffle. Moreover, impact pressure is reduced and finally fluid 

becomes calm. Using T-shape baffle wave height is suppressed 79.0%. In the filling ratio of 

50%, the T-shape baffle is a lesser damped fluid compared to the filling ratio of 25%. It can be 

explained that the fluid is damped when it passes the baffle and suction by T baffle, 

unfortunately, because deeper water depth is used, the effect of fluid near the wall is not reduced 

by a baffle that is why wave height still height as seen as in Figure 11. It can be one of future 

works to conduct the effective width of T–shape baffle to sloshing. 

 

   

Fig. 9 Visualization of particle, iso-surface, and surface texture. 
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Fig. 10 Comparison of free surface deformation inside tank with and without baffles in the 

filling ratio 25%. 

 

    

    

  

 

  

Fig. 11 Comparison of free surface deformation inside a tank with and without baffles in the 

filling ratio 50%. 

 

3.3 Hydrodynamics force 

The sloshing experiment was carried out with a forced oscillation machine in four degrees 

of freedom. The machine itself could conduct a regular and irregular motion. The couple motion 

can be conducted for sloshing experiment, for example, couple motion of roll and heave. In the 

present paper, only regular motion is used to reproduce the sloshing phenomenon. Because the 

effect of the baffle is can be seen in a regular or irregular motion.  

Hydrodynamics force exists because the fluid inside the tank is forced to move by an 

oscillation machine. Figure 12 shows the hydrodynamics force in the filling ratio of 25%. 

Redline is hydrodynamics force without baffle, green, yellow, and black is single, double, and 

T-shape baffle.  It shows that hydrodynamics force without baffle is higher than with baffle. 

Although the difference is not large enough like dynamics pressure or wave height. It can be 

explained that the hydrodynamics force act in the tank is caused by constantly forced oscillation 
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during the sloshing period. As result the force constantly exists during sloshing, the difference 

will be significant to hydrodynamics force if the motion is not constant. in other words, the 

motion of the tank is free movement and then the movement of the tank is caused by external 

excitation force. The difference of hydrodynamics force without baffle with single baffle is 

33%. A similar trend indicates by a double baffle that the difference is 35%. Using T-shape 

baffle the difference is 47%. The T-shape baffle shows a more effective reduced hydrodynamic 

force. It can be explained of the T-shape baffle reduce the force act in the mid of the tank caused 

by the shape of the T-baffle. 

In the filling ratio of 50%, It shows the hydrodynamics force similar trend exists (see 

Figure 13). Single dan double vertical baffle effectively reduced the hydrodynamics force by 

30%. The T-shape baffle effectively reduces by 49%. It indicates vertical baffle could be one 

alternative to reduce sloshing in the prismatic tank. The free motion of sloshing is one of the 

future works that need to carry out in the next study. Because in the present paper, the direct 

effect of sloshing motion does not exist due to motion is forced excitation. 

 

 

 
Fig. 12 Hydrodynamics force due to of sloshing in filling ratio 25% with and without 

baffle. 

 

 

Fig. 13 Hydrodynamics force due to sloshing in filling ratio 50% with and without baffle. 
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4. Conclusion 

Sloshing simulation in the prismatic tank was successfully carried out in two filling ratios. 

The current study indicates that SPH is one of the promising methods to reproduce sloshing in 

the tank. It was shown that single, double vertical baffle and T-shape baffle are effective to 

mitigate sloshing in the tank.  The results revealed the baffle is effectively reduced the impact 

pressure caused by energetic sloshing. The wave height shows linear effect as impact pressure. 

The wave height is reduced by single, double, and T-shape baffle.  Hydrodynamics force 

slightly decreased by the baffle.  Though the excitation force is using forced oscillation motion. 

Future works of couple motion sloshing with ship motions need to conduct to know the effect 

of sloshing with ship motions. 
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Summary 

The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in 

recent years. One of the most common types of LNG carriers is the membrane type, which is 

often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its 

effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to 

evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was 

conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. 

Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with 

ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with 

the experiment. The results show that SPH has an acceptable accuracy for dynamic and 

hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic 

pressure and hydrodynamic force. 

Keywords: Smoothed particle hydrodynamics; Sloshing; Vertical baffle; T-shape baffle; 

Dynamic Pressure; Wave height; Hydrodynamic force. 

1. Introduction 

The capacity of liquid carriers has increased in recent years, and this is caused by the 

increasing demand for liquefied Natural Gas (LNG). A common type is the membrane type, 

which is often built by a shipyard, and is shaped like a prismatic tank. One of the advantages of 

the membrane-type carrier is that its shape is similar to a ship hull and has a large capacity. A 

naturally occurring phenomenon in LNG carriers is sloshing, defined as the movement of fluid 

due to the excitation force in the tank, which is effectively mitigated using a baffle. Sloshing is 

a nonlinear phenomenon that is difficult to be overcome in fluid dynamics. Several preliminary 

studies have been performed, including experimental and numerical analyses, which have been 

made popular by the rapid advancement of computer technology in recent years. This study 

employed a numerical approach to analyze sloshing using smoothed particle hydrodynamics 

(SPH). SPH is a meshless and purely Lagrangian approach used to reproduce large deformation 

and nonlinear phenomena. In this study, weakly compressible SPH (WCSPH) is used to 

reproduce sloshing in the prismatic tank. 
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Initially, SPH was used to solve astrophysical problems [1]. However, Monaghan 

developed SPH for free surface flow for dam-break and water wave cases [2]. Moreover, it is 

widely applied and used for structural interactions between waves with breakwaters [3]. With 

an experimental validation, SPH was applied in a long-distance water propagation that occured 

in a large wave basin [4]. Furthermore, to reduce the reflections in a numerical wave tank 

(NWT), an active wave absorption was developed [5]. This was combined with open boundaries 

and used to conduct a water wave simulation [6]. The implementation of SPH for NWT with 

incompressible SPH (ISPH) was performed using GPU to reduce pressure noise in WCSPH 

scheme [7]. Therefore, SPH is used to solve the water wave  and has good accuracy for free 

surface flow. 

The SPH application in violent flow sloshing, which usually occurs with respect to a low 

filling ratio due to an obstacle in the rectangular tank, was carried out in one-phase SPH [8]. 

Furthermore, one- and two-phase SPH were used in a prismatic tank with a low-pass filter 

technique to reduce pressure oscillation due to the nature of WCSPH [9]. These were studied 

in a three-dimensional (3D) domain [10], and the results showed that the SPH had good 

accuracy and also highly a computational cost. A preliminary study was conducted using elastic 

baffle to reduce sloshing in the rectangular tank [11]. A two-dimensional analysis study was 

also performed using a T-shape baffle to reduce the effect of this phenomenon in a RANS solver 

[12]. SPH coupled with the smoothed finite element method was used to investigate the impact 

of sloshing in a rectangular tank with a flexible vertical and T-shape baffle [13]. The long-

duration simulation of this phenomenon in rectangular-, pill-, spherical- and cylindrical-shaped 

tanks had been studied in a three-dimensional domain [14]. The implementation of δ-SPH and 

particle shifting with flexible baffle and elastic walls of the rectangular tank were used to tackle 

sloshing [15]. A comparison study was performed using volume of fluid (VOF), SPH, and 

arbitrary Lagrangian-Eulerian to analyze the braking and roll responses of partly filled tank 

vehicles [16]. Preliminary research was performed on single and double vertical baffles in 

rectangular tanks [17].  

This study used single-, and double- vertical and T-shape baffles to investigate sloshing 

in a prismatic tank. Its heights were based on previous research [17], and the ratio of the baffles 

to water depth is relatively 0.75 to 0.9. The selected baffle height in this study was 0.9. A 

pressure sensor was used to verify the validity of the SPH simulation based on experimental 

research carried out by Trimulyono et al. [18]. Moreover, two water heights were set to capture 

free surface deformation inside the tank. Its oscillatory motion has 25% and 50% filling ratios. 

DualSPHysics version 5.0, an open-source SPH solver, was used to simulate sloshing in the 

prismatic tank [19]. DualSPHysics was implemented using general purpose computing on 

graphics processing units (GPGPU) [20]. It ensures a million particles are handled using a 

single GPU. Moreover, the advanced visualization was performed using Blender version 2.92. 

Sloshing in the prismatic tank was used in a single-phase SPH, and the results revealed 

that the vertical baffle has a significant effect, such as reducing fluid movements and 

hydrodynamic pressure. Finally, hydrodynamic force and moment decreased. 

 

2. Theoretical background and method 

2.1 Experimental setup of sloshing and SPH simulation. 

Figure 1 shows the experimental setup of sloshing in the prismatic tank, involving three 

pressure sensors [18]. However, only one of them was used to validate the SPH simulation, and 

only two filling ratios, i.e., 25% and 50%, were used (Figure 1). The pressure sensor located in 

the bottom was used to validate the SPH results. As a consequence, the 25% filling ratio was 
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situated near a free surface, whereas that of the 50% was located in the mid-water depth. This 

is one of the reasons why pressure sensors located at the bottom were used to validate the SPH 

result. Reproducing the pressure caused by sloshing was also challenging, especially when the 

25% filling ratio was used. Four cameras were used to capture free surface deformation, which 

was equally installed inside and outside the oscillation machine. The detailed information of 

the sloshing experiment is stated in Ref. [18]. 

Figure 2 shows the geometry of the prismatic tank for the SPH computation, where L, H, 

l, and d are its length, height, width, and water depth, respectively. Table 1 and Figure 3 show 

the tank's dimension and the three types of baffle shapes with the 25% filling ratio. The baffle 

height and water depth ratio were 0.9, and the vertical one was positioned in the middle of the 

tank. Meanwhile, the distance of the double baffle was equivalent to the tank's width, which 

was divided into three sections. The T-shape baffle was set in the middle of the tank, and its 

width is ¼l, where l is also equivalent to width. Its thickness was set as 6.0 mm, and d1 and d2 

are water the depths in the 25% and 50% filling ratios, respectively. 

Figure 4 shows the displacement of the tank in the experiment based on the constant 

oscillatory rolling motion. In this study, its movement was directly imposed from the 

experiment (Figure 4). A roll motion is one of the dangerous movements in the seakeeping area; 

so it was considered in the present study. Sloshing tends to endanger a ship when it is energetic, 

especially when the excitation frequency is near or identical to the natural frequency of the tank.  

The amplitude of the roll motion is 8.660 with sloshing excitation frequencies of 1.04 and 

1.30 Hz for the 25% and 50% filling ratios, respectively. The findings shows that the excitation 

frequency is close to the natural frequency of the prismatic tank [18]. 

 

Table 1:Principal dimensions of prismatic tank 

Dimension (m) 

L 0.38 

L 0.30 

H 0.21 

D 0.0525 (25%) 

0.1050 (50%) 

 

 

 

 

 

 

 

Fig. 1 Experimental condition of the sloshing filling ratio of 25% (a), condition of the water 

depth with filling ratios of 25% (b), and 50% (c) [18]. 
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Fig. 2 Sketch of a prismatic tank with the principal dimension (a) and pressure sensor location 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Sketch of the prismatic tank with a single-vertical baffle (a) double-vertical baffle (b) 

and T-shape baffle (c). 

 

  

Fig. 4 Displacement of the prismatic tank in the SPH computation with filling ratio 25% (a) 

and 50% (b) 
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2.2 Smoothed particle hydrodynamics. 

Smoothed particle hydrodynamics (SPH) was initially used in the astrophysical field 

developed by Monaghan [1] and Lucy [21]. Later on, It was applied to the free surface flow for 

dam breaks and water waves on the beach [2]. SPH is a meshless and pure Lagrangian approach 

that involves using an interpolation scheme to approximate the physical values and derivatives 

of a continuous field using discrete evaluation points. These are identified as smoothed particles 

with mass, velocity, and position. The quantities are obtained as a weighted average from 

adjacent particles within the smoothing length (h) to reduce the range of contribution from the 

neighboring ones. The main features of the SPH method, based on integral interpolants, are 

described in detail in Ref. [22] and [23]. 

Figure 5 shows the radius of particle a in the kernel function, and its contribution is 

weighed using the smoothing length, where rab is the distance between particles a and b and 

Wab is the kernel function. In SPH, the field function A(r) in domain Ω is integrally 

approximated as Eq (1), where W and r are the kernel function and position of the vector, 

respectively.  

Eq (1) is approximated into a discrete form by replacing the integral aspect with a 

summation of the neighboring particles regarding the compact support of particle a at spatial 

position r, thereby leading to particle approximation in Eq (2). In this study, the Wendland 

kernel function was used in all simulations, where αD is equal to 21/164πh3 in 3D, q is the 

nondimensional distance between particles a and b represented as r/h in Eq (3). 

Eq [4] is the continuity equation with the delta-SPH term to reduce spurious pressure in 

SPH [24]. Eq (5) is the momentum equation in the SPH framework, where g is gravity due to 

acceleration, Pa and Pb are pressures in particles a and b. Πab is the artificial viscosity 

term, 𝝁𝒂𝒃 =
𝒉𝒗𝒂𝒃.𝒓𝒂

𝒓𝒂𝒃
𝟐 +𝟎.𝟎𝟏𝒉𝟐, 𝒗𝒂𝒃 = 𝒗𝒂 − 𝒗𝒃 are vector velocities, 𝒄𝒂𝒃 = 𝟎. 𝟓(𝒄𝒂 + 𝒄𝒃) is the mean 

speed of sound, and α is a coefficient that needs to be tuned to acquire proper dissipation. 

DualSPHysics is based on WCSPH, to measure the pressure in WCSPH, an equation of 

state was used based on Eq (6), where co , ρ0, and γ are the speed of sound at the reference 

density, and polytrophic constant, respectively. This equation is stiff, and a slight change in the 

density causes pressure fluctuation. This is one of the reasons why there is a pressure oscillation 

in WCSPH. Eq (7) is used to calculate the time step based on Monaghan’s work, where ∆𝒕𝒇 is 

based on the force per unit mass (|𝒇𝒂|) while Δtcv combines the Courant and the viscous time 

step controls, where CFL is a coefficient within the range of 0.1 ≤ CFL ≤ 0.3. 

 

Fig. 5 Radius of the smoothing length and kernel function in SPH [25]. 
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𝐴(𝒓) = ∫ 𝐴(𝒓)𝑊(𝒓 − 𝒓′, ℎ)
Ω

𝑑𝒓 (1) 

𝐴(𝒓𝑎) ≈ ∑ 𝐴(𝒓𝑏)𝑊(𝒓𝑎 − 𝒓𝑏 , ℎ)
𝑚𝑏

𝜌𝑏
𝑏

 (2) 

𝑊(𝑞) = 𝛼𝐷 (1 −
𝑞

2
)

4

(2𝑞 + 1)   0 ≤ 𝑞 ≤ 2 (3) 

𝑑𝜌𝑎

𝑑𝑡
= ∑ 𝑚𝑏𝒗𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏 + 2𝛿𝛷ℎ𝑐0 ∑(𝜌𝑏−𝜌𝑎)

𝒓𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏

𝒓𝑎𝑏
2

𝑏𝑏

𝑚𝑏

𝜌𝑏
 (4) 

𝑑𝒗𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

(
𝑃𝑎+𝑃𝑏

𝜌𝑎 ⋅ 𝜌𝑏
+ 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝐠 (5) 

𝑤ℎ𝑒𝑟𝑒 𝛱𝑎𝑏 = {
−𝛼𝑐𝑎𝑏𝜇𝑎𝑏 

𝜌𝑎𝑏
          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 < 0

0                          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 > 0

 

 

 

 

𝑃 =
𝑐0

2𝜌0

𝛾
[(

𝜌

𝜌0
)

𝛾

− 1] (6) 

∆𝑡𝑓 = 𝐶𝐹𝐿 ∙ 𝑚𝑖𝑛(∆𝑡𝑓 , ∆𝑡𝑐𝑣) (7) 

  ∆𝑡𝑓 = 𝑚𝑖𝑛 (√
ℎ

|𝒇𝒂|
)  

         Δtcv = min 
ℎ

𝐶𝑠+𝑚𝑎𝑥|
ℎ𝒗𝑎𝑏∙𝒓𝑎𝑏

(𝒓𝑎𝑏
2 +𝜂2)

|

   
 

 

Table 2 shows the parameters setup in SPH computation. In addition, the Wendland 

kernel function was applied in all computations using the symplectic timestep algorithm. The 

artificial viscosity term with α of 0.01 was used to obtain a proper dissipation. According to 

Trimulyono et al. [18], the speed of sound has a significant impact on the magnitude of pressure. 

A coefsound of 60 was used to reproduce similar accuracy on the pressure field. Coefh is the 

coefficient used to calculate smoothing length. In 3D, Coefh was defined as 𝐶𝑜𝑒𝑓ℎ =
𝒉

𝒅𝒑√𝟑
.  CFL 

is the coefficient used to obtain the Courant-Friedrichs-Lewy condition with 0.2 used for all 

computation. Delta-SPH was employed to reduce pressure oscillation, with a default value of 

0.1 used in all computations. Dynamic boundary particles (DBPs) were adopted based on 

Crespo et al. [26]. DBPs are boundary particles that satisfy the same equations as fluid particles, 

but they are not moved by their forces. Instead, they either remain in a fixed position or move 

according to an imposed or assigned motion function. This includes the movement of objects, 

such as gates, wavemakers, or floating objects. When a fluid particle approaches a boundary, 

and the distance between its particles and that of the fluid is smaller than twice the smoothing 

length (h), the density of the affected boundary particles increases, leading to a pressure 

increase. The simulation time was set at 28 s due to the regular motion, which is the same with 

that after reaching a steady-state condition (Figure 4). 

a 

b 
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Table 2. Parameter setup of the SPH computation. 

Parameters 

Kernel function Wendland 

Time step algorithm Symplectic 

Artificial viscosity 

coefficient (α) 
0.01 

Confound 60 

Particle spacing (mm) 1.6 

Coefh 1.2 

CFL 0.2 

Delta-SPH (δφ) 0.1 

Simulation time (s) 28 

 

3. Results and discussion 

3.1 Hydrostatic and hydrodynamic pressures. 

Figure 6 shows the hydrostatic pressure in the 50% filling ratio with and without a T-

shape baffle. Based on Trimulyono research et al. [18],  hydrostatic pressure was properly 

reproduced by SPH with a difference of 3%, as shown in Figure 6. Moreover, the hydrostatic 

pressure gradient is similar to an analytic solution where the pressure is the highest at the bottom 

and lowest on the free surface. Figure 7 depicts the dynamic pressure of sloshing with and 

without baffle configuration at t = 14.0 s. The free surface was violently deformed as compared 

to the use of baffle. The vertical baffle reduces the fluid movement by dampening through this 

instrument. T-shape baffle does the same by separating the fluid on each side, which also affects 

the water depth, thereby reducing the free surface deformation.  

Figure 8 shows the dynamic pressure detected by a pressure sensor at the bottom of the 

tank (see Figure 2). The static pressure was subtracted from the hydrostatic pressure, thereby 

resulting in dynamic pressure. No significant pressure phase existed between SPH and 

experiment, which depicts that they have a similar velocity and displacement. Moreover, timing 

of the sensors used to capture dynamic pressure is similar. Hence certain properties such as 

fluid kinematics has similar tendencies as physics.  

The hydrodynamic pressure consists of static and dynamic pressures. Figure 8(a) shows 

the impact of the hydrodynamic pressure on the 25% filling ratio, with the red and purple lines 

depicting an experiment, and SPH without a baffle, respectively. The green, yellow, and black 

lines are dynamic pressure with single-, double-, and T-shape baffles. Figure 8(b) shows the 

comparison of the average and peak pressures between SPH and experiment. The difference in 

the peak and average pressure is 4.6 % and 4.8 %. The first magnitude is referred to as the 

dynamic pressure, which is gradually reduced, as shown in Figure 7. The second is dynamic 

pressure resulting from the movement of fluid to the top of the tank. Its magnitude is lesser than 

first the dynamic pressure because it is affected by the fluid movement without any sudden 

acceleration. In the sloshing phenomena, dynamic or impact pressure has to be minimized to 

avoid structural damages or explosions from dangerous liquid cargoes such as LNG.  
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One of the effective ways to mitigate sloshing is the use of a vertical baffle. Ma et al. 

reported that the vertical baffles effectively reduce sloshing in a rectangular tank [17]. A similar 

outcome was obtained using a prismatic tank with a T-shape baffle. The results show that fluid 

movements inside the tank were significantly reduced causing a decrease in the pressure 

magnitude. Using one vertical baffle reduced the pressure by 85.80%, whereas the use of two 

vertical baffles effectively decreased the pressure by 88.24%. The T-shape baffle efficiently 

reduced the pressure by 82.60%.  

Figure 9(a) shows the dynamic pressure of the 50% filling ratio and accuracy, which is 

slightly different from those of the 25% filling ratio. Figure 9(b) indicates that the peak pressure 

could not be captured by SPH and made the average pressure accuracy lower than that of the 

25% filling ratio. However, the trend of the dynamic pressure is similar after the peak pressure. 

Although SPH could not capture the peak pressure, the timing accuracy of the pressure sensor 

was similar to those of the experiment and 25% filling ratio. The findings revealed that the 

dynamic pressure was reproduced by SPH, although the accuracy was slightly reduced as 

compared to that of the 25% filling ratio. The single-vertical baffle reduced the pressure by 

94.5%, whereas the double-vertical baffles decreased the pressure by 91.2%. The T-shape baffle 

effectively reduced the pressure by 91.0%. 

 

  

 

Fig. 6 Hydrostatic pressure in the 50% filling ratio without and with T -shaped baffle. 
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Fig. 7 Comparison of dynamic pressure in the 50% filling ratio with t = 14.0 s 
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Fig. 8 Comparison of the dynamic pressure with and without baffles for the 25% filling ratio 

(a) and the difference in the dynamic pressure for the average and peak pressures (b). 

 

 

(a) 

 

 

(b) 

Fig. 9 Comparison of the dynamic pressure with and without baffles for the 50% filling ratio 

(a) and the difference of the dynamic pressure for the average and peak pressures (b). 

 

3.2 Free surface deformation 

An advanced visualization process was conducted using the open-source Blender version 

2.92, which was freely downloaded at https://www.blender.org/. Furthermore, with the present 

technique, the post-processing of SPH became more attractive and similar to physics. Figure 
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10 depicts the comparison of visualized particles and advanced surface texturing using Blender 

[27]. Figure 10 shows that the fluid looks like real fluid and is more attractive as compared with 

the particle form. The post-processing of advanced texturing was performed for all simulations 

using the GPU. 

The free surface deformation in the tank was influenced by the excitation force. The 

existence of energetic sloshing in fluid movements is usually chaotic and complicated. It tends 

to exist when the frequency of the excitation force is close to the natural frequency of the tank. 

To effectively mitigate fluid movements, the use of baffles is recommended. Figures 11 and 12 

show that the fluid run-up reaches the tank top without baffle installation. In contrast, after the 

installation of baffles it became calm.  

The use of a single-vertical baffle suppress the wave height by approximately 86.3%. 

Moreover, it reduces the dynamic pressure, as shown in Figure 11. The fluid becomes calm 

because the dynamic pressure triggered by the fluid-accelerated movement is suppressed. 

Similar results were obtained using double-vertical and T-shape baffles. The double-vertical 

and T-shape baffles suppress the wave height by relatively 91.7% and 95.0%, respectively. 

Based on a visual observation, the use of a vertical baffle caused the fluid to be damped, and it 

also underwent suction after passing through the baffle. The vertical baffle suppressed the 

kinetic energy, thereby causing the fluid movement to become slower than that without its 

installation. The T-shape baffle showed similar phenomena, and the fluid became calm because 

was damped. This condition is based on the fact that the fluid movement was suppressed when 

it passed through the baffle. The fluid became calm due to a sudden change in the water depth, 

especially when it passes the T-shape baffle, thereby suppressing the height. Figure 12 shows 

that it is lesser when compared with that without baffle installation. 

In the 50% filling ratio, the use of a single vertical baffle suppressed the wave height by 

approximately 79.0%. The 25% filling ratio exhibited similar tendency phenomena. The 

vertical baffle dampened the fluid movement because it experienced a suction effect after 

passing through it, thereby reducing the wave height and ensuring calmness. The double-

vertical baffle suppressed the wave height by approximately 95.0%. Therefore, a high result 

was obtained using this equipment because it was suppressed twice. The height near the tank 

was affected by its movement, which is lesser compared with that without a baffle. The dynamic 

pressure was reduced, and the fluid became calm. The T-shape baffle was used to suppress the 

wave height by relatively 79.0%. In the 50% filling ratio, the T-shape baffle produced a lesser 

damped fluid than that in the 25% filling ratio. Therefore, when the fluid was suctioned, the 

water depth closer to the wall increased the wave height, as shown in Figure 12. Future research 

can be performed on the effect of the T–shaped baffle width on sloshing. 

 

   

Fig. 10 Visualizations of the particle, iso-surface, and surface texture. 
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Fig. 11 Comparison of the free surface deformations inside a tank with and without baffles in 

the 25% filling ratio. 

 

    

    

    

Fig. 12 Comparison of the free surface deformations inside a tank with and without baffles in 

the 50% filling ratio. 
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3.3 Hydrodynamic force 

The sloshing experiment was conducted with a forced oscillation machine in 4 degrees of 

freedom [18]. The instrument performed both regular and irregular motions. Coupled motions, 

such as roll and heave, were utilized during the sloshing experiment. This research used only 

regular motions to reproduce the sloshing phenomenon. Because of the baffle effect is evident 

in regular and irregular motions.  

Hydrodynamic force exists because the fluid inside the tank was forced to move by an 

oscillation machine. Figure 13 shows the impact of the hydrodynamic force on the 25% filling 

ratio. The red line represents hydrodynamic force without baffles, and the green, yellow, and 

black lines represent the use of single-, double-, and T-shape baffles, respectively. The 

hydrodynamic force without a baffle is higher than that with the installation with a slight 

difference, unlike the dynamic pressure or wave height. The hydrodynamic force in the tank 

was caused by constant forced oscillation during the sloshing period. As a result, the difference 

tends to be minor compared with the dynamic pressure, assuming the motion is forced 

oscillation. The difference between hydrodynamic force without and with a single- vertical 

baffle is relatively 33%. A similar trend involving double and T-shape baffles shows that the 

difference is 35% and 47%, respectively. The T-shape baffle was effectively used to reduce the 

hydrodynamic force and the force acting in the middle of the tank, which is caused by its shape. 

The 50% filling ratio showed that the hydrodynamic force have a similar trend, as shown 

in Figure 14. The single- and double-vertical baffles effectively reduced the hydrodynamic 

force by 30%, whereas the T-shape reduced it by 49%. Hence, the use of baffles could be an 

alternative to reduce sloshing in the prismatic tanks. Furthermore, sloshing is a forced motion, 

sloshing induced by external force excitation needs to be investigated in the future. 

 

 

 
Fig. 13 Hydrodynamic force due to sloshing in the 25% filling ratio with and without 

baffles. 
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Fig. 14 Hydrodynamics force due to sloshing in filling ratio 50% with and without baffle. 

 

4. Conclusions 

The sloshing simulation in the prismatic tank was successfully conducted in two filling 

ratios. It was reproduced with SPH, one of the promising methods. The results prove that single- 

and double-vertical and T-shape baffles can be effectively used to mitigate sloshing in a 

prismatic tank. The results also reveal that they efficiently reduced the impact pressure caused 

by energetic sloshing. The wave height shows the linear effect as the dynamic pressure, which 

was reduced by the single- and double-vertical, and T-shape baffles. Hydrodynamic force was 

slightly decreased by these baffles, although the excitation force exhibited an oscillatory 

motion. Nonetheless, future research needs to be conducted to determine the effect of sloshing 

on coupled or ship motions. 
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Summary 

The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in 

recent years. One of the most common types of LNG carriers is the membrane type, which is 

often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its 

effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to 

evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was 

conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. 

Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with 

ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with 

the experiment. The results show that SPH has an acceptable accuracy for dynamic and 

hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic 

pressure and hydrodynamic force. 

Keywords: Smoothed particle hydrodynamics; Sloshing; Vertical baffle; T-shape baffle; 

Dynamic Pressure; Wave height; Hydrodynamic force. 

1. Introduction 

The capacity of liquid carriers has increased in recent years, and this is caused by the 

increasing demand for liquefied Natural Gas (LNG). A common type is the membrane type, 

which is often built by a shipyard, and is shaped like a prismatic tank. One of the advantages of 

the membrane-type carrier is that its shape is similar to a ship hull and has a large capacity. A 

naturally occurring phenomenon in LNG carriers is sloshing, defined as the movement of fluid 

due to the excitation force in the tank, which is effectively mitigated using a baffle. Sloshing is 

a nonlinear phenomenon that is difficult to be overcome in fluid dynamics. Several preliminary 

studies have been performed, including experimental and numerical analyses, which have been 

made popular by the rapid advancement of computer technology in recent years. This study 

employed a numerical approach to analyze sloshing using smoothed particle hydrodynamics 

(SPH). SPH is a meshless and purely Lagrangian approach used to reproduce large deformation 

and nonlinear phenomena. In this study, weakly compressible SPH (WCSPH) is used to 

reproduce sloshing in the prismatic tank. 
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Initially, SPH was used to solve astrophysical problems [1]. However, Monaghan 

developed SPH for free surface flow for dam-break and water wave cases [2]. Moreover, it is 

widely applied and used for structural interactions between waves with breakwaters [3]. With 

an experimental validation, SPH was applied in a long-distance water propagation that occured 

in a large wave basin [4]. Furthermore, to reduce the reflections in a numerical wave tank 

(NWT), an active wave absorption was developed [5]. This was combined with open boundaries 

and used to conduct a water wave simulation [6]. The implementation of SPH for NWT with 

incompressible SPH (ISPH) was performed using GPU to reduce pressure noise in WCSPH 

scheme [7]. Therefore, SPH is used to solve the water wave  and has good accuracy for free 

surface flow. 

The SPH application in violent flow sloshing, which usually occurs with respect to a low 

filling ratio due to an obstacle in the rectangular tank, was carried out in one-phase SPH [8]. 

Furthermore, one- and two-phase SPH were used in a prismatic tank with a low-pass filter 

technique to reduce pressure oscillation due to the nature of WCSPH [9]. These were studied 

in a three-dimensional (3D) domain [10], and the results showed that the SPH had good 

accuracy and also highly a computational cost. A preliminary study was conducted using elastic 

baffle to reduce sloshing in the rectangular tank [11]. A two-dimensional analysis study was 

also performed using a T-shape baffle to reduce the effect of this phenomenon in a RANS solver 

[12]. SPH coupled with the smoothed finite element method was used to investigate the impact 

of sloshing in a rectangular tank with a flexible vertical and T-shape baffle [13]. The long-

duration simulation of this phenomenon in rectangular-, pill-, spherical- and cylindrical-shaped 

tanks had been studied in a three-dimensional domain [14]. The implementation of δ-SPH and 

particle shifting with flexible baffle and elastic walls of the rectangular tank were used to tackle 

sloshing [15]. A comparison study was performed using volume of fluid (VOF), SPH, and 

arbitrary Lagrangian-Eulerian to analyze the braking and roll responses of partly filled tank 

vehicles [16]. Preliminary research was performed on single and double vertical baffles in 

rectangular tanks [17].  

This study used single-, and double- vertical and T-shape baffles to investigate sloshing 

in a prismatic tank. Its heights were based on previous research [17], and the ratio of the baffles 

to water depth is relatively 0.75 to 0.9. The selected baffle height in this study was 0.9. A 

pressure sensor was used to verify the validity of the SPH simulation based on experimental 

research carried out by Trimulyono et al. [18]. Moreover, two water heights were set to capture 

free surface deformation inside the tank. Its oscillatory motion has 25% and 50% filling ratios. 

DualSPHysics version 5.0, an open-source SPH solver, was used to simulate sloshing in the 

prismatic tank [19]. DualSPHysics was implemented using general purpose computing on 

graphics processing units (GPGPU) [20]. It ensures a million particles are handled using a 

single GPU. Moreover, the advanced visualization was performed using Blender version 2.92. 

Sloshing in the prismatic tank was used in a single-phase SPH, and the results revealed 

that the vertical baffle has a significant effect, such as reducing fluid movements and 

hydrodynamic pressure. Finally, hydrodynamic force and moment decreased. 

 

2. Theoretical background and method 

2.1 Experimental setup of sloshing and SPH simulation. 

Figure 1 shows the experimental setup of sloshing in the prismatic tank, involving three 

pressure sensors [18]. However, only one of them was used to validate the SPH simulation, and 

only two filling ratios, i.e., 25% and 50%, were used (Figure 1). The pressure sensor located in 

the bottom was used to validate the SPH results. As a consequence, the 25% filling ratio was 
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situated near a free surface, whereas that of the 50% was located in the mid-water depth. This 

is one of the reasons why pressure sensors located at the bottom were used to validate the SPH 

result. Reproducing the pressure caused by sloshing was also challenging, especially when the 

25% filling ratio was used. Four cameras were used to capture free surface deformation, which 

was equally installed inside and outside the oscillation machine. The detailed information of 

the sloshing experiment is stated in Ref. [18]. 

Figure 2 shows the geometry of the prismatic tank for the SPH computation, where L, H, 

l, and d are its length, height, width, and water depth, respectively. Table 1 and Figure 3 show 

the tank's dimension and the three types of baffle shapes with the 25% filling ratio. The baffle 

height and water depth ratio were 0.9, and the vertical one was positioned in the middle of the 

tank. Meanwhile, the distance of the double baffle was equivalent to the tank's width, which 

was divided into three sections. The T-shape baffle was set in the middle of the tank, and its 

width is ¼l, where l is also equivalent to width. Its thickness was set as 6.0 mm, and d1 and d2 

are water the depths in the 25% and 50% filling ratios, respectively. 

Figure 4 shows the displacement of the tank in the experiment based on the constant 

oscillatory rolling motion. In this study, its movement was directly imposed from the 

experiment (Figure 4). A roll motion is one of the dangerous movements in the seakeeping area; 

so it was considered in the present study. Sloshing tends to endanger a ship when it is energetic, 

especially when the excitation frequency is near or identical to the natural frequency of the tank.  

The amplitude of the roll motion is 8.660 with sloshing excitation frequencies of 1.04 and 

1.30 Hz for the 25% and 50% filling ratios, respectively. The findings shows that the excitation 

frequency is close to the natural frequency of the prismatic tank [18]. 

 

Table 1:Principal dimensions of prismatic tank 

Dimension (m) 

L 0.38 

L 0.30 

H 0.21 

D 0.0525 (25%) 

0.1050 (50%) 

 

 

 

 

 

 

 

Fig. 1 Experimental condition of the sloshing filling ratio of 25% (a), condition of the water 

depth with filling ratios of 25% (b), and 50% (c) [18]. 
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Fig. 2 Sketch of a prismatic tank with the principal dimension (a) and pressure sensor location 

(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Sketch of the prismatic tank with a single-vertical baffle (a) double-vertical baffle (b) 

and T-shape baffle (c). 

 

  

Fig. 4 Displacement of the prismatic tank in the SPH computation with filling ratio 25% (a) 

and 50% (b) 

-10

-8

-6

-4

-2

0

2

4

6

8

10

5 10 15 20 25 30(d
e

gr
e

e
)

Time (s)

Displacement

-10

-8

-6

-4

-2

0

2

4

6

8

10

5 10 15 20 25 30(d
e

gr
e

e
)

Time (s)

Displacement

  

 



Andi Trimulyono, Haikal Atthariq, The Investigation Of Sloshing In The Prismatic Tank With Vertical And  

Deddy Chrismianto, Samuel Samuel T-Shape Baffles 

 

5 

 

 

2.2 Smoothed particle hydrodynamics. 

Smoothed particle hydrodynamics (SPH) was initially used in the astrophysical field 

developed by Monaghan [1] and Lucy [21]. Later on, It was applied to the free surface flow for 

dam breaks and water waves on the beach [2]. SPH is a meshless and pure Lagrangian approach 

that involves using an interpolation scheme to approximate the physical values and derivatives 

of a continuous field using discrete evaluation points. These are identified as smoothed particles 

with mass, velocity, and position. The quantities are obtained as a weighted average from 

adjacent particles within the smoothing length (h) to reduce the range of contribution from the 

neighboring ones. The main features of the SPH method, based on integral interpolants, are 

described in detail in Ref. [22] and [23]. 

Figure 5 shows the radius of particle a in the kernel function, and its contribution is 

weighed using the smoothing length, where rab is the distance between particles a and b and 

Wab is the kernel function. In SPH, the field function A(r) in domain Ω is integrally 

approximated as Eq (1), where W and r are the kernel function and position of the vector, 

respectively.  

Eq (1) is approximated into a discrete form by replacing the integral aspect with a 

summation of the neighboring particles regarding the compact support of particle a at spatial 

position r, thereby leading to particle approximation in Eq (2). In this study, the Wendland 

kernel function was used in all simulations, where αD is equal to 21/164πh3 in 3D, q is the 

nondimensional distance between particles a and b represented as r/h in Eq (3). 

Eq [4] is the continuity equation with the delta-SPH term to reduce spurious pressure in 

SPH [24]. Eq (5) is the momentum equation in the SPH framework, where g is gravity due to 

acceleration, Pa and Pb are pressures in particles a and b. Πab is the artificial viscosity 

term, 𝝁𝒂𝒃 =
𝒉𝒗𝒂𝒃.𝒓𝒂

𝒓𝒂𝒃
𝟐 +𝟎.𝟎𝟏𝒉𝟐, 𝒗𝒂𝒃 = 𝒗𝒂 − 𝒗𝒃 are vector velocities, 𝒄𝒂𝒃 = 𝟎. 𝟓(𝒄𝒂 + 𝒄𝒃) is the mean 

speed of sound, and α is a coefficient that needs to be tuned to acquire proper dissipation. 

DualSPHysics is based on WCSPH, to measure the pressure in WCSPH, an equation of 

state was used based on Eq (6), where co , ρ0, and γ are the speed of sound at the reference 

density, and polytrophic constant, respectively. This equation is stiff, and a slight change in the 

density causes pressure fluctuation. This is one of the reasons why there is a pressure oscillation 

in WCSPH. Eq (7) is used to calculate the time step based on Monaghan’s work, where ∆𝒕𝒇 is 

based on the force per unit mass (|𝒇𝒂|) while Δtcv combines the Courant and the viscous time 

step controls, where CFL is a coefficient within the range of 0.1 ≤ CFL ≤ 0.3. 

 

Fig. 5 Radius of the smoothing length and kernel function in SPH [25]. 
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𝐴(𝒓) = ∫ 𝐴(𝒓)𝑊(𝒓 − 𝒓′, ℎ)
Ω

𝑑𝒓 (1) 

𝐴(𝒓𝑎) ≈ ∑ 𝐴(𝒓𝑏)𝑊(𝒓𝑎 − 𝒓𝑏 , ℎ)
𝑚𝑏

𝜌𝑏
𝑏

 (2) 

𝑊(𝑞) = 𝛼𝐷 (1 −
𝑞

2
)

4

(2𝑞 + 1)   0 ≤ 𝑞 ≤ 2 (3) 

𝑑𝜌𝑎

𝑑𝑡
= ∑ 𝑚𝑏𝒗𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏 + 2𝛿𝛷ℎ𝑐0 ∑(𝜌𝑏−𝜌𝑎)

𝒓𝑎𝑏 ⋅ 𝛻𝑎𝑊𝑎𝑏

𝒓𝑎𝑏
2

𝑏𝑏

𝑚𝑏

𝜌𝑏
 (4) 

𝑑𝒗𝑎

𝑑𝑡
= − ∑ 𝑚𝑏

𝑏

(
𝑃𝑎+𝑃𝑏

𝜌𝑎 ⋅ 𝜌𝑏
+ 𝛱𝑎𝑏) 𝛻𝑎𝑊𝑎𝑏 + 𝐠 (5) 

𝑤ℎ𝑒𝑟𝑒 𝛱𝑎𝑏 = {
−𝛼𝑐𝑎𝑏𝜇𝑎𝑏 

𝜌𝑎𝑏
          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 < 0

0                          𝒗𝑎𝑏 ⋅ 𝒓𝑎𝑏 > 0

 

 

 

 

𝑃 =
𝑐0

2𝜌0

𝛾
[(

𝜌

𝜌0
)

𝛾

− 1] (6) 

∆𝑡𝑓 = 𝐶𝐹𝐿 ∙ 𝑚𝑖𝑛(∆𝑡𝑓 , ∆𝑡𝑐𝑣) (7) 

  ∆𝑡𝑓 = 𝑚𝑖𝑛 (√
ℎ

|𝒇𝒂|
)  

         Δtcv = min 
ℎ

𝐶𝑠+𝑚𝑎𝑥|
ℎ𝒗𝑎𝑏∙𝒓𝑎𝑏

(𝒓𝑎𝑏
2 +𝜂2)

|

   
 

 

Table 2 shows the parameters setup in SPH computation. In addition, the Wendland 

kernel function was applied in all computations using the symplectic timestep algorithm. The 

artificial viscosity term with α of 0.01 was used to obtain a proper dissipation. According to 

Trimulyono et al. [18], the speed of sound has a significant impact on the magnitude of pressure. 

A coefsound of 60 was used to reproduce similar accuracy on the pressure field. Coefh is the 

coefficient used to calculate smoothing length. In 3D, Coefh was defined as 𝐶𝑜𝑒𝑓ℎ =
𝒉

𝒅𝒑√𝟑
.  CFL 

is the coefficient used to obtain the Courant-Friedrichs-Lewy condition with 0.2 used for all 

computation. Delta-SPH was employed to reduce pressure oscillation, with a default value of 

0.1 used in all computations. Dynamic boundary particles (DBPs) were adopted based on 

Crespo et al. [26]. DBPs are boundary particles that satisfy the same equations as fluid particles, 

but they are not moved by their forces. Instead, they either remain in a fixed position or move 

according to an imposed or assigned motion function. This includes the movement of objects, 

such as gates, wavemakers, or floating objects. When a fluid particle approaches a boundary, 

and the distance between its particles and that of the fluid is smaller than twice the smoothing 

length (h), the density of the affected boundary particles increases, leading to a pressure 

increase. The simulation time was set at 28 s due to the regular motion, which is the same with 

that after reaching a steady-state condition (Figure 4). 

a 

b 
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Table 2. Parameter setup of the SPH computation. 

Parameters 

Kernel function Wendland 

Time step algorithm Symplectic 

Artificial viscosity 

coefficient (α) 
0.01 

Confound 60 

Particle spacing (mm) 1.6 

Coefh 1.2 

CFL 0.2 

Delta-SPH (δφ) 0.1 

Simulation time (s) 28 

 

3. Results and discussion 

3.1 Hydrostatic and hydrodynamic pressures. 

Figure 6 shows the hydrostatic pressure in the 50% filling ratio with and without a T-

shape baffle. Based on Trimulyono research et al. [18],  hydrostatic pressure was properly 

reproduced by SPH with a difference of 3%, as shown in Figure 6. Moreover, the hydrostatic 

pressure gradient is similar to an analytic solution where the pressure is the highest at the bottom 

and lowest on the free surface. Figure 7 depicts the dynamic pressure of sloshing with and 

without baffle configuration at t = 14.0 s. The free surface was violently deformed as compared 

to the use of baffle. The vertical baffle reduces the fluid movement by dampening through this 

instrument. T-shape baffle does the same by separating the fluid on each side, which also affects 

the water depth, thereby reducing the free surface deformation.  

Figure 8 shows the dynamic pressure detected by a pressure sensor at the bottom of the 

tank (see Figure 2). The static pressure was subtracted from the hydrostatic pressure, thereby 

resulting in dynamic pressure. No significant pressure phase existed between SPH and 

experiment, which depicts that they have a similar velocity and displacement. Moreover, timing 

of the sensors used to capture dynamic pressure is similar. Hence certain properties such as 

fluid kinematics has similar tendencies as physics.  

The hydrodynamic pressure consists of static and dynamic pressures. Figure 8(a) shows 

the impact of the hydrodynamic pressure on the 25% filling ratio, with the red and purple lines 

depicting an experiment, and SPH without a baffle, respectively. The green, yellow, and black 

lines are dynamic pressure with single-, double-, and T-shape baffles. Figure 8(b) shows the 

comparison of the average and peak pressures between SPH and experiment. The difference in 

the peak and average pressure is 4.6 % and 4.8 %. The first magnitude is referred to as the 

dynamic pressure, which is gradually reduced, as shown in Figure 7. The second is dynamic 

pressure resulting from the movement of fluid to the top of the tank. Its magnitude is lesser than 

first the dynamic pressure because it is affected by the fluid movement without any sudden 

acceleration. In the sloshing phenomena, dynamic or impact pressure has to be minimized to 

avoid structural damages or explosions from dangerous liquid cargoes such as LNG.  
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One of the effective ways to mitigate sloshing is the use of a vertical baffle. Ma et al. 

reported that the vertical baffles effectively reduce sloshing in a rectangular tank [17]. A similar 

outcome was obtained using a prismatic tank with a T-shape baffle. The results show that fluid 

movements inside the tank were significantly reduced causing a decrease in the pressure 

magnitude. Using one vertical baffle reduced the pressure by 85.80%, whereas the use of two 

vertical baffles effectively decreased the pressure by 88.24%. The T-shape baffle efficiently 

reduced the pressure by 82.60%.  

Figure 9(a) shows the dynamic pressure of the 50% filling ratio and accuracy, which is 

slightly different from those of the 25% filling ratio. Figure 9(b) indicates that the peak pressure 

could not be captured by SPH and made the average pressure accuracy lower than that of the 

25% filling ratio. However, the trend of the dynamic pressure is similar after the peak pressure. 

Although SPH could not capture the peak pressure, the timing accuracy of the pressure sensor 

was similar to those of the experiment and 25% filling ratio. The findings revealed that the 

dynamic pressure was reproduced by SPH, although the accuracy was slightly reduced as 

compared to that of the 25% filling ratio. The single-vertical baffle reduced the pressure by 

94.5%, whereas the double-vertical baffles decreased the pressure by 91.2%. The T-shape baffle 

effectively reduced the pressure by 91.0%. 

 

  

 

Fig. 6 Hydrostatic pressure in the 50% filling ratio without and with T -shaped baffle. 
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Fig. 7 Comparison of dynamic pressure in the 50% filling ratio with t = 14.0 s 
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Fig. 8 Comparison of the dynamic pressure with and without baffles for the 25% filling ratio 

(a) and the difference in the dynamic pressure for the average and peak pressures (b). 

 

 

(a) 

 

 

(b) 

Fig. 9 Comparison of the dynamic pressure with and without baffles for the 50% filling ratio 

(a) and the difference of the dynamic pressure for the average and peak pressures (b). 

 

3.2 Free surface deformation 

An advanced visualization process was conducted using the open-source Blender version 

2.92, which was freely downloaded at https://www.blender.org/. Furthermore, with the present 

technique, the post-processing of SPH became more attractive and similar to physics. Figure 
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10 depicts the comparison of visualized particles and advanced surface texturing using Blender 

[27]. Figure 10 shows that the fluid looks like real fluid and is more attractive as compared with 

the particle form. The post-processing of advanced texturing was performed for all simulations 

using the GPU. 

The free surface deformation in the tank was influenced by the excitation force. The 

existence of energetic sloshing in fluid movements is usually chaotic and complicated. It tends 

to exist when the frequency of the excitation force is close to the natural frequency of the tank. 

To effectively mitigate fluid movements, the use of baffles is recommended. Figures 11 and 12 

show that the fluid run-up reaches the tank top without baffle installation. In contrast, after the 

installation of baffles it became calm.  

The use of a single-vertical baffle suppress the wave height by approximately 86.3%. 

Moreover, it reduces the dynamic pressure, as shown in Figure 11. The fluid becomes calm 

because the dynamic pressure triggered by the fluid-accelerated movement is suppressed. 

Similar results were obtained using double-vertical and T-shape baffles. The double-vertical 

and T-shape baffles suppress the wave height by relatively 91.7% and 95.0%, respectively. 

Based on a visual observation, the use of a vertical baffle caused the fluid to be damped, and it 

also underwent suction after passing through the baffle. The vertical baffle suppressed the 

kinetic energy, thereby causing the fluid movement to become slower than that without its 

installation. The T-shape baffle showed similar phenomena, and the fluid became calm because 

was damped. This condition is based on the fact that the fluid movement was suppressed when 

it passed through the baffle. The fluid became calm due to a sudden change in the water depth, 

especially when it passes the T-shape baffle, thereby suppressing the height. Figure 12 shows 

that it is lesser when compared with that without baffle installation. 

In the 50% filling ratio, the use of a single vertical baffle suppressed the wave height by 

approximately 79.0%. The 25% filling ratio exhibited similar tendency phenomena. The 

vertical baffle dampened the fluid movement because it experienced a suction effect after 

passing through it, thereby reducing the wave height and ensuring calmness. The double-

vertical baffle suppressed the wave height by approximately 95.0%. Therefore, a high result 

was obtained using this equipment because it was suppressed twice. The height near the tank 

was affected by its movement, which is lesser compared with that without a baffle. The dynamic 

pressure was reduced, and the fluid became calm. The T-shape baffle was used to suppress the 

wave height by relatively 79.0%. In the 50% filling ratio, the T-shape baffle produced a lesser 

damped fluid than that in the 25% filling ratio. Therefore, when the fluid was suctioned, the 

water depth closer to the wall increased the wave height, as shown in Figure 12. Future research 

can be performed on the effect of the T–shaped baffle width on sloshing. 

 

   

Fig. 10 Visualizations of the particle, iso-surface, and surface texture. 
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Fig. 11 Comparison of the free surface deformations inside a tank with and without baffles in 

the 25% filling ratio. 

 

    

    

    

Fig. 12 Comparison of the free surface deformations inside a tank with and without baffles in 

the 50% filling ratio. 
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3.3 Hydrodynamic force 

The sloshing experiment was conducted with a forced oscillation machine in 4 degrees of 

freedom [18]. The instrument performed both regular and irregular motions. Coupled motions, 

such as roll and heave, were utilized during the sloshing experiment. This research used only 

regular motions to reproduce the sloshing phenomenon. Because of the baffle effect is evident 

in regular and irregular motions.  

Hydrodynamic force exists because the fluid inside the tank was forced to move by an 

oscillation machine. Figure 13 shows the impact of the hydrodynamic force on the 25% filling 

ratio. The red line represents hydrodynamic force without baffles, and the green, yellow, and 

black lines represent the use of single-, double-, and T-shape baffles, respectively. The 

hydrodynamic force without a baffle is higher than that with the installation with a slight 

difference, unlike the dynamic pressure or wave height. The hydrodynamic force in the tank 

was caused by constant forced oscillation during the sloshing period. As a result, the difference 

tends to be minor compared with the dynamic pressure, assuming the motion is forced 

oscillation. The difference between hydrodynamic force without and with a single- vertical 

baffle is relatively 33%. A similar trend involving double and T-shape baffles shows that the 

difference is 35% and 47%, respectively. The T-shape baffle was effectively used to reduce the 

hydrodynamic force and the force acting in the middle of the tank, which is caused by its shape. 

The 50% filling ratio showed that the hydrodynamic force have a similar trend, as shown 

in Figure 14. The single- and double-vertical baffles effectively reduced the hydrodynamic 

force by 30%, whereas the T-shape reduced it by 49%. Hence, the use of baffles could be an 

alternative to reduce sloshing in the prismatic tanks. Furthermore, sloshing is a forced motion, 

sloshing induced by external force excitation needs to be investigated in the future. 

 

 

 
Fig. 13 Hydrodynamic force due to sloshing in the 25% filling ratio with and without 

baffles. 
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Fig. 14 Hydrodynamics force due to sloshing in filling ratio 50% with and without baffle. 

 

4. Conclusions 

The sloshing simulation in the prismatic tank was successfully conducted in two filling 

ratios. It was reproduced with SPH, one of the promising methods. The results prove that single- 

and double-vertical and T-shape baffles can be effectively used to mitigate sloshing in a 

prismatic tank. The results also reveal that they efficiently reduced the impact pressure caused 

by energetic sloshing. The wave height shows the linear effect as the dynamic pressure, which 

was reduced by the single- and double-vertical, and T-shape baffles. Hydrodynamic force was 

slightly decreased by these baffles, although the excitation force exhibited an oscillatory 

motion. Nonetheless, future research needs to be conducted to determine the effect of sloshing 

on coupled or ship motions. 
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