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Accurate skin lesion segmentation (SLS) is an important step in computer-aided diagnosis of melanoma. Auto-
matic detection of skin lesions in dermoscopy images is challenging because of the presence of artifacts and as
lesions can have heterogeneous texture, color, and shape with fuzzy or indistinet boundaries. In this study,

E‘Ii:ltlmet automatic SLS was performed using a lightweight encoder-decoder, MobileNetV3-UNet, which can achieve high

Ra - accuracy with low resources. A comprehensive analysis was performed to improve the accuracy of the method in
ndom augmentation ) A ! ' ¢

Stochastic weight averaging SLS. The semantic segmentation method consists of an encoder-decoder architecture, data augmentation,

learning schemes, and post-processing methods. To enhance the SLS, we modified the decoder with the bidi-
rectional ConvLSTM layer from the BCDU-Net and separable blocks from the separable-UNet architecture.
Random augmentation was used to improve image diversity in the training dataset to avoid overfitting.
Furthermore, a learning scheme based on stochastic weight averaging (SWA) was used to obtain better gener-
alization by averaging multiple local optima. Our method was evaluated using three publicly available datasets,
such as ISIC-2017, ISIC-2018, and PH2. We obtained dice coefficient and Jaccard index of 87.74%, 80.25%;
91.01%, 83.44%; and 95.18%, 91.08% for [SIC-2017, ISIC-2018, and PH2, respectively. The experimental results

proved that the modified MobileNetV3-UNet method can outperform several state-of-the-art methods.

1. Introduction

Melanoma, a type of skin cancer, has a high mortality rate due to its
highly metastatic nature [1]. Although it accounts for ~1% of skin
cancer cases, most skin cancer deaths are from melanoma. It was ex-
pected that by 2021, 106 110 new melanoma cases will be diagnosed in
the United States resulting in 7180 deaths [2]. The estimated five-year
survival rate for melanoma is over 99% when diagnosed early, and
~14% when detected at an advanced stage [3]. Therefore, early
detection is essential for treatment and prevention of metastasis, which
improves prognosis.

Experts widely use dermoscopy to detect melanoma at an early stage.
Dermoscopy is a noninvasive imaging technique that helps clinicians
perform direct microscopy to observe diagnostic features in pigmented
skin lesions [4]. This technique uses optical magnification, fluid im-
mersion, and cross-polarized lighting to translate the epidermal layer,
which improves diagnostic accuracy of melanoma, in comparison to
conventional methods like asymmetry border color diameter (ABCD)
technique [5]. However, diagnosis made by human vision requires

* Corresponding author.

considerable time, complex screening, and could be erroneous [6].

The development of computer-aided diagnosis (CAD) systems has
aided early detection and analysis of pigmented skin lesions from der-
moscopy images [6-9], while reducing time, cost, and subjectivity.
Further, automatic segmentation of skin lesions using dermoscopy im-
ages can improve skin disease classification [10]. Using this approach,
dermatologists can examine pigmented skin lesions and accurately
localize cancerous areas. Because lesions can have fuzzy and indistinet
boundaries, heterogeneous texture, color, shape, and other artifacts
(Fig. 1), automatic segmentation remains challenging [11-13].

Recently, deep learning based on convolutional neural networks
(CNNs) has gained prominence in machine learming and computer
vision, particularly in semantic image segmentation [14]. The model
adopts an encoder-decoder structure predicts pixel-to-pixel segmenta-
tion [15]. In the encoder, the input spatial resolution is reduced by
downsampling, and low-resolution feature mappings (computationally
efficient) that increase pixel-level discrimination are generated. Subse-
quently, the feature representations are upsampled to retrieve the
full-resolution segmentation map in the decoder.
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Table 1
ISIC-2017, ISIC-2018, and PH2 dataset specifications.
Dataset ISIC-2017 ISIC-2018 FH2
Source ISIC ISIC Hospital Pedro Hispano,
Portugal
Total number of 2750 2594 200
images
Size (Training/ 2000/150 1815/259 160,40
Validation)
Size (Test) 600 520 Averaged from the 5-
fold cross validation
Image size (pixel) 556 « 679 to 556 « 679 m 577 = 769
4499 « 6748 4499 « 6748
Table 2
Random ion par
Line  Operation Parameter Type of Probability
Augmentation
1 Horizontal Flip - Spatial 0.5
2 shift, Scale, Scale limit = 0.5, Spatial 1.0
Rotate rotate limit = 0, shift
limit = 0.1
3 PadifNeeded Border mode = 4 Spatial 0.5
4 Random Crop - Spatial 1.0
5 CLAHE Clip limit = 4.0, tile Pixel 0.9
grid size = (8, 8) limit
=02
(Random Gamma limit = (80,
Brightness, 120)
Gamma)
[} Sharpen Alpha = (0.2, 0.5), Pixel 09
lighmess = (0.5, 1.0)
Blur Blur limit = 3
Motion Blur Blur limit = 3
7 Random Hue limit = 0.2 Pixel 0.9
Contrast
Hue, Hue limit = 20,
Saturation, saturation limit = 30,
Value value limit = 20

U-Net [16] leverages data augmentation and is specially designed for
medical imaging tasks with small datasets. Here, skip connections in the
deep network architecture accelerate convergence and are essential for
addressing vanishing gradient problems. The long skip connections can
accurately capture the context to determine localized lesions in a sym-
metric expanding path. In a comparative study on real-time semantic
segmentation [17 ], MobileNet was found to be more accurate than other
encoders like ShuffleNet and ResNet 18. MobileNetV3 [18] is an
improvement over MobileNetV2, and, with a lightweight architecture, is
often the choice for segmentation. Additionally, short skip connections
associated with the inverted residual bottleneck in the encoder effec-
tively accelerate convergence of the leaming process, specifically in
deep network architectures with minimal parameters [19]. Due to the
flexibility of the encoder-decoder concept, the deep network architec-
ture can be efficiently used for biomedical image segmentation. Further,
deep learning models for feature extraction from images may include
transfer learning from pre-trained ImageNet weights [20]. Multiple
studies on skin lesion segmentation (SLS) [21-23] have shown that
network performance improves when pre-trained ImageNet weights are
used as initial network weights.

The main objectives of this study are listed as follows:

(1) To utilize a lightweight encoder-decoder based on MobileNetV3
and U-Net for automatic SLS and improve the performance of the
network architecture.

(2) To introduce modifications into the encoder and decoder and
compare them with the standard U-Net architecture.
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(3) To treat the variability in the visual appearance of skin lesions by
combining several augmentation methods in SLS [24].

(4) To improve the segmentation map during testing using tech-
niques like stochastic weight averaging (SWA) leamning schema
and filling in the hole (FITH) post-processing method.

2. Material and methods
2.1. Dataset

The publicly available datasets, International Skin Imaging Collab-
oration (ISIC) 2017 [25], 2018 [26], and the PH2 database [27] were
used to evaluate the proposed SLS method. These datasets contain der-
moscopy images with ground truth masks annotated by expert derma-
tologists. Description about the ISIC-2017, ISIC-2018, and PH2 datasets
are provided in Table 1. The ISIC-2017 skin lesion challenge dataset
contained training (2000), validation (150), and test (600) images. The
image size varied from 556 = 679 pixels to 4499 = 6748 pixels. The
ISIC-2018 skin lesion challenge dataset comprised 2594 images for
training. This dataset was sequentially (not randomly) separated into
training (1815), validation (259), and test sets [28]. The image size
varied from 556 = 679 pixels to 4499 = 6748 pixels. The PH2 dataset
had 200 dermoscopy images with 40 unique images in each fold for
tive-fold cross validation. Training was performed with four-folds of the
data, while the rest was used for testing and validation. All images had
an approximate size of 577 = 769 pixels.

2.2, Pre-processing and post-processing

2.2.1. Image resizing

To adjust variations in image size within the data sets (ISIC-2017,
PH2), the images and their corresponding ground truths were resized to
192 = 256 pixels (height = width). Generally, a 3:4 (height: width) ratio
is preferred for images [10,21]. For ISIC-2018, the images were resized
to 256 = 256 pixels [28,29].

2.2.2. Image augmentation

The augmentation method is applied to images using the Albu-
mentation library [30]. Two types of augmentation: pixel-level, which
transforms images at the pixel-level (e.g., color), and spatial level, which
transforms images at the spatial level (e.g., rotation), can be utilized.
During segmentation, pixel transformation was applied to images, and
spatial transformation was performed on images and ground truth
masks. Variations in ambient conditions during dermoscopic screening
or sampling can result in background illumination, or other extrinsic
differences. Augmentation methods that normalize images, such as color
constancy [24], can be applied before training, but overfitting can occur
during deep leaming. Here, variations in images were enlarged by
random augmentation, and parameters were fine-tuned during training
to obtain a more robust model. Pixel-level augmentations, such as
random brightness, gamma, blur, sharpen, contrast, hue, saturation,
value, and contrast limited adaptive histogram equalization (CLAHE),
were utilized. The spatial-level augmentations, such as horizontal flip-
ping, random crop, shifting, scaling, and rotation, were used randomly
to create spatial variability. We have defined a sequence of operations
that are executed based on a probability, as shown in Table 2. Some
example images and masks before and after the random augmentation
procedure are shown in Fig. 2.

2.2.3. Image normalization

The images and ground truth masks have a pixel size of 8-bit, and
each pixel has a value between 0 and 255. Normalization was applied to
each pixel in the images by dividing the input image by 255, and the
normal pixel value range changed to 0-1. Specifically, the ground truth
mask becomes binary (0 for background and 1 for foreground) by
rounding up or ceiling.
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Fig. 2. Example images and ground truth masks before and after the random augmentation procedure.
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Table 3
Pre- and post-processing performed on the ISIC-2017, ISIC-2018, and PH2
datasets.
Dataset Methods ISIC-2017 ISIC-2018 PH2
Pre-processing Resizing 192x256x3  256x256x3 192x256x3
(training) Augmentation  Yes Yes Yes
Normalization  0-1 0-1 0-1
Pre-processing Resizing 192x256x3  256x256x3 192x256x3
(validation or Augmentation No No No
testing) Normalization  0-1 0-1 -1
Fost-processing FITH No No No
(training)
Fost-processing FITH No No No
(validation)
Fost-processing FITH Yes No No
(testing)
Input Image Segmentation Map
| Conv K3 | Upscale 5 ‘
; A
| Stage 1 ‘
Upscale 4
Y
A
Stage 2

Fig. 3. Proposed decoupled encoder and decoder modules in an end-to-end
semantic segmentation architecture.

2.2.4. Post-processing

A commonly used post-processing algorithm for segmentation is
FITH. We used the FITH method described in Ref. [21] to improve
segmentation. FITH processes holes in the segmentation output to
properly define the lesion boundary. The pre- and post-processing de-
tails for ISIC-2017, ISIC-2018, and PH2 datasets are listed in Table 3.

2.3. Network structure

The proposed model consists of a decoupled encoder and decoder
module, which were combined in an end-to-end semantic segmentation
architecture based on U-Net. The U-Net architecture that utilizes skip
connections can make the model more robust. The encoder was modified
using the lightweight MobileNetV3 feature extraction model. Subse-
quently, we studied the effect of the short skip connection (inverted
residual bottleneck) and the NAS module on the encoder. In the pro-
posed architecture, the skip connection connects the encoder and
decoder at four stages, and in the last stage, the encoder and decoder are
directly connected (Fig. 3).
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Bottleneck Block with SE
MoblleNet V3

T

BN. Linear

T Conv 1x1 (Project)

Conv 1x1 (Project)

BN, Linear

[ conv 1x1 (Project) |

[ conv 1x1 (Project) |

BN, RelLU6 BN, ReLU6 BN, Activation BN, Activation
| Dwise 3x3 | | Dwise 3=3 | | Dwise KxK | | Dwise K=K |
BN, ReLU6 BN. ReLU6 BN, Activation BN, Activation

l Conv 1x1 (Expand) |

| Conv 1x1 (Expand) |

l Conv 1x1 (Expand) |

| Conv 1x1 (Expand) ]

(b)

Squeeze-and-Excite (SE)

(c)

Fig. 5. (a) MobileNetV2 bottleneck block (Inverted Residual Bottleneck), (b) MobileNetV3 bottleneck block, and (¢) squeeze-and-excite module in MobileNetV3. The
left unit of the bottleneck is used for short skip connection, and the right unit is used before downsampling, which are without the short skip connection.
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Fig. 6. Blocks used at each stage in the decoder. (a) Standard U-Net, (b) UNet-LSTM, (c) BCDU, (d) Separable-UNet.
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Fig. 8. (a) Learning schema for ISIC-2017 and PH2 dataset and (b) ISIC-2018 dataset.
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Table 4
Parameters for training and testing using the ISIC-2017, ISIC-2018, and PH2
datasets.
Dataset ISIC-2017 ISIC-2018 PHZ
Batch size 8 8 8
Epochs 200 100 200
Learning rate 0.001 0.0001 0.001
Learning SWA & best SWA & best SWA & best
scheme validation validation validation
SWA epochs 181-200 G1-100 181-200
SWA learning 0.0001 0.00001 0.0001
rate
Pre-trained ImageNet ImageNet ImageNet
weights
Loss function Jaccard loss Jaccard loss Jaceard loss

2.3.1. Encoder

To obtain semantic information from the original image, the pro-
posed encoder uses the MobileNet architecture for feature extraction.
The MabileNetV1, MobileNetV2, and MobileNetV3 architectures have
been outlined in Fig. 4. Thus, the encoder serves as a feature extractor in
semantic segmentation architecture. High accuracy and lightness are
essential characteristics for extractor. The skip connections that connect
the encoder and decoder are standard when the network stages reduce
the spatial dimension (Fig. 4). We compared the effects of several
modules available in each MobileNet version. MobileNetV1 architecture
[31] uses depthwise separable (orange block in Fig. 4) and pointwise
convolution instead of the standard convolution (yellow block in Fig. 4).
Depthwise and pointwise convolution, respectively, were followed by
batch normalization and rectified linear unit (ReLU6) activation
function.

MobileNetV2 [32] uses depthwise separable convolution, residual
connections with linear bottlenecks (green block in Fig. 4), and an
inverted residual structure. Here, the layer structure is more efficient
owing to its low-level problem properties (Fig. 5a).

MobileNetV3 [15] is composed of MobileNetV2 structure, MnasNet's
inverted residual bottleneck layer [33], and light network architecture
search modules based on squeeze-and-excitation (SE) in the bottleneck
structure. SE can improve accuracy by increasing the number of pa-
rameters and reducing visible latency. The bottleneck of MobileNetV3
(kemel size of 5 = 5) along with an SE module is depicted in Fig. 4 (blue
block), Fig. 5b, and Fig. Sc. The SE layer was enhanced with a modified
swish nonlinearity (purple border in Fig. 4). Further, SE and swish
nonlinearity that use a sigmoid were replaced with a hard-sigmoid
(H_a). Because the sigmoid function is computationally heavy
compared to ReLU6, hard-sigmoid, as shown below, was utilized.

ReLU6(x+3)

H_a{x) = p

1)

2.3.2. Decoder

In the decoder, we used the U-Net-based architecture. The decoder
produced segmentation maps at full resolution. With the skip connection
feature at each stage, a decoder can be modified with several extension
modules or modifying blocks to improve its performance. Extensions
and modifications were explored to determine the advantages of each
module. We utilized multiple decoders (Fig. 6), including standard U-
Net (no additions or modifications), UNet-LSTM (BCDU-Net's [28]
decoder with batch normalization in each convolution), BCDU
(BCDU-Net's [28] decoder), and separable-UNet (Separable-UNet's
[21] decoder).

2.3.2.1. Standard U-Net. The block is shown in Fig. 6a. The concate-
nation layer restored image features that were lost when passing
through various convolutional layers until they are sufficiently deep.
The next layer is twice the 3 = 3 convolution layer, followed by an
upsampling operation to be processed in the next block. Each layer was
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Table 5

Comparison of different encoder networks using the ISIC-2017 test dataset.

Informatics in Medicine Unlocked 25 (2021) 100640

Model Convolution layer ACC DIC JAI SEN SPE Computation time (s) Model parameters
VGG16-UNet Standard convolution 0.9248 0.8409 0.7595 0.7664 0.9716 0.0277 2.38 « 107
ResNet50-UNet Residual network 0.9304 0.B608 0.7816 0.8200 0.9700 0.0230 3.26 » 107
MobileNetV1-UNet Depthwise separable 09352 0.8690 0.75929 0.8509 0.9637 0.0157 834 x 10°
MobileNetV2-UNet Inverted residual 0.9366 0.8714 0.75941 0.8506 0.9657 0.0197 8.05 » 10°
MobileNetV3-UNet Inverted residual +SE 0.9381 0.8774 0.8025 0.8624 0.9636 0.0159 8.27 « 10°

Table 6

Comparison of different decoder networks using the ISIC-2017 test dataset.
Model ACC DIC JAI SEN SPE Computation time (s) Model parameters
MobileNetV3-BCDU 0.9314 08612 0.779 0.8429 059613 0.0274 2.16 » 107
MobileNetV3-UNet-LSTM 0.9336 0.B618 0.7638 08195 0.9722 0.0272 1.81 x 107
MobileNetV3-Separable-UNet 0.9385 08753 0.7961 0.8523 0.9678 0.0243 6.29 « 10°
MobileNetV3-UNet 0.9381 0.8774 0.8025 0.8624 0.9636 0.0199 8.27 « 10°

Table 7

Comparison b different ion str: using the ISIC-2017 test dataset and MobileNetV3-UNet.
Augmentation strategy Spatial augmentation Pixel augmentation JAIL

Distortion only Without distortion Color jitter CLAHE Blur Sharpen with gamma

None - - - - - - 07770
Spatial only - s - - - 0.7691
Spatial augmentation with distortion [21] s s - - - 0.7420
Spatial augmentation without distortion [57] - s - - - 0.7782
CLAHE only - - - v - - 07689
Blur only - - - - s - 0.7742
Sharpen with gamma - - - - - s 0.7805
Proposed - v v v v v 0.8025
bl supplemented with batch and ReLU normalization to accelerate network

Table 8

Comparison of different decoder networks with and without augmentation of
images in the ISIC-2017 test dataset.

Model JAI

None Augmentation
MobileNetV3-BCDU 07121 0.779
MobileNetV3-UNet-LSTM 0.7436 0.7638
MobileNetV3-Separable-UNet 0.7682 0.7961
MobileNetV3-UNet 0.7770 0.8025

Table 9
Comparison of test results with training schemes for each model for ISIC-2017
dataset.

Training Schema Model JAI

Standard leaming with best validation MobileNetV3-BCDU 0.7806
MobileNetV3-UNet-LSTM 0.7824
MobileNetV3-Separable-UNet 0.7834
MobileNetV3-UNet 0.7923

SWA (constant, last 20 epochs) MobileNetV3-BCDU 0.7796
MobileNetV3-UNet-LSTM 0.7638
MobileNetV3-Separable-UNet  0.7961
MobileNetV3-UNet 0.8025

Table 10

Model (MobileNetV3-UNet) performance with and without post-processing.
Post-processing ACC DIC JAIL SEN SFE
MNone 0.9381 0.8751 0.8023 0.B588 0.9648
FITH 0.9381 0.8774 0.8025 0.8624 0.9636

convergence, training, and nonlinearity. Batch normalization values
were calculated using the following equation:

A

Y=y —
Vop+e

i +# (2)

2.3.2.2. UNet-LSTM. Based on the BCDU-Net architecture [28], the
bidirectional ConvLSTM module was implemented. Here, the decoder
was combined with the feature map extracted from the encoder via the
skip connection and the previous decoder block. We used the bidirec-
tional ConvLSTM layer as the standard U-Net decoder extension, namely
UNet-LSTM (Fig. 6b). We wanted to determine the effect of the bidi-
rectional ConvLSTM layer on the segmentation capacity. To equalize the
number of feature map channels processed by the bidirectional
ConvLSTM layer, the upsampling layer was replaced with a transpose
convolution. Bidirectional ConvLSTM uses two ConvLSTMs to process
the input data from the skip connection and upsamples the decoding
path into two-way forward and reverse paths. Then, it makes decisions
for those inputs by handling the dependency of the data in both di-
rections. In the standard ConvISTM, only the forward-direction de-
pendencies are processed. However, all the information in a sequence
should be considered, and accounting for backward dependencies is
effective. Further, analyzing both forward and backward dependencies
from a temporal perspective improves predictive performance [34]. The
final output considered bidirectional spatio-temporal information in the
presence of a hyperbolic tangent, which was used to combine the out-
puts from the forward and reverse states in a non-linear manner.

2.3.2.3. BCDU. The entire block of the original BCDU with four skip
connections (Fig. 6¢) was utilized in the proposed architecture (Fig. 3).
In contrast to UNet-LSTM, batch normalization was performed after
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Table 11

Comparison of model performances using the ISIC-2017 dataset.
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Method ACC DIC JAI SEN SPE Computation Model Parameters
Time
Res-UNet [2Z] - 0.B580 0.7720 - - - -
DCL-FSI [52] 0.9408 0.8566 07773 0.8620 09671 - -
SU-SWA [21] 0.9431 08693 0.7926 0.8953 0.9632 0.0440-5 1.94 % 107
Ensemble-A [52] 0.9410 0.8710 0.7930 0.8990 0.9500 - -
DAGAN [11] 0.935 0.859 0771 0.835 0.976 - -
ASCU-Net [12] 0.926 0830 0.742 0.825 0.953 - -
DL-Auxiliary Task [12] 0.9432 08713 0.7946 0.BE876 09651 - - )
MobileNetV2-UNet (Proposed) 0.9366 08714 0.7941 0.8506 0.9657 0.0197-s 805 = 107
MobileNetV3-Separable-UNet (Proposed) 0.9385 08753 0.7961 0.8523 0.9678 0.0243-5 629 » 10°
MobileNetV3-UNet {Proposed) 0.9381 0.8774 0.8025 0.8624 0.9636 0.0199-5 827 « 10°
Table 12
Comparison of model performances using the ISIC-2018 dataset.
Method ACC DIC JAL SEN SPE Computation time Model parameters
U-Net [16] 0.890 0.647 0.549 0708 0.964 - -
Attention U-Net [54] 0.897 0.665 0.566 0717 0.967 - -
RZU-Net [54] 0.880 0.679 0.581 0792 0.928 - -
Attention R2U-Net [54] 0.904 0.691 0.592 0726 0571 - -
BCDU-Net (d = 3) [28] 0.937 0.851 - 0785 0.982 0.0328-5 2,07 « 107
Double-UNet [23] . 0.8962 0.8212 . . . .
MobileNetV3-BCDU (Proposed) 0.9466 0.9060 0.B281 08903 0.9695 0.0274-5 216 x 107
MobileNetV3-UNet-LSTM (Proposed) 0.9456 0.9050 0.8265 0.8970 0.9654 0.0272-5 1.81 % 107
MobileNetV3-Separable-UNet (Proposed) 0.9485 0.9073 0.8315 09011 0.9643 0.0243-5 6.29 « 10°
MobileNetV3-UNet {Proposed) 0.9479 0.9098 0.8344 0.9089 0.9638 0.0199 B.27 x 10°
Table 13
Comparison of model performances using the PH2 dataset.
Method ACC DIC JAL SEN SPE Computation time Model parameters
Res-UNet [22] . 0.924 0.854 . . . .
Ensemble-§ [57] 0.938 0.907 0839 0932 0,929 - -
DCL-FSI [52] 0.9661 09413 08605 09711 09585 - -
SU-SWA [21] 0.9669 09413 0.8940 09651 0.9526 0.0440-5 1.94 » 107
ASCU-Net [12] 0.943 0.909 0.800 0.926 0.945 . .
MobileNetV3-UNet {Proposed) 0.9870 0.9518 0.9108 0.9892 0.9789 0.0199-5 8.27 « 10°

transpose convolution. Additionally, a convolutional layer with three
channel outputs was implemented before the final convolution layer.
The original BCDU block was utilized to determine the effect of batch
normalization in each convolution and an additional convolution layer.

2.3.2.4. Separable-UNet. Separable convolutional blocks are used as
base blocks in the Xception architecture [35]. Xception performs
depthwise separable convolution, which involves depthwise convolu-
tion followed by a pointwise convolution, namely separable convolution
(Fig. 7). Separable-UNet [21] is a U-Net-based network architecture. The
standard convolution layer was replaced by a separable convolutional
block (SCB) layer based on Xception. We used the SCB of separable-UNet
in our decoder block, as shown in Fig. 6d. A separable convolutional
block can improve discrimination between pixel-level representations
and reduce the computational complexity of the decoder.

2.4. Stochastic weight averaging

The use of model weights during validation is a common training
scheme. However, if the training dataset is unbalanced, ambiguous, and
small, models can be overfitted with solutions on the local surface. SWA
[36] incorporates weights in the training scheme for the last few epochs
by calculating average values for the weights. This method addresses the
optimal local problem by averaging several weights (ensemble of points

10

in the weight space) in stable conditions, which is an improvement over
the traditional ensemble. The global optimum solution is obtained by
widening the local surface point, and the midpoint is considered as the
global optimum. This improves SWA and the leaming rate. In this
method, training can be performed at a cyclic learning rate with a cosine
annealing scheduler, wherein several weight points are averaged at the
end of cycles as optima. Additionally, when training is performed with a
small constant learning rate, the terminal weight points from a constant
learning rate scheduler are averaged. Here, we implemented SWA with a
constant learning rate, as shown in previous studies on SLS [21].

2.5. Training and testing

Initially, a dataset is used for training, and a second dataset is used
for validation. The first approach monitored the validation data scores,
and the highest scores were stored as the model weights during training.
However, SWA does not monitor the validation score; the average model
weights determined in the terminal epochs are used as the final weights.
Thus, the standard method of learning was combined with SWA vali-
dation method during training, and the results were evaluated. The
learning schema for all the datasets is shown in Fig. 8.

All the models were implemented using the Keras framework [37].
Training was performed on an i7 processor with NVIDIA RTX 2060.
Details about the training and testing procedure performed details using
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the ISIC-2017, ISIC-2018, and PH2 datasets are shown in Table 4. The
total epochs for [SIC-2017 and PH2 were 200, while for ISIC-2018 it was
100. The training process used adaptive moment estimation (Adam)
[38] to optimize the model with a learning rate of 1e-3 for [SIC-2017 and
PH2, and 1e-4 for ISIC-2018. The batch size value was 8. Image sizes for
ISIC-2017 and PH2 were 192 x 256 x 3, while for ISIC-2018 it was 256
x 256 x 3. Further, pre-trained model weights on ImageNet were uti-
lized. For the loss function, the Jaccard loss Ljg gy [10], which is a
complement of the Jaccard index (JAL), was utilized. If G is the ground
truth and P is the segmentation result of the model, then Ljg.qa is
determined by:

s
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2.6. Performance evaluation

100
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(b)

Five common evaluation metrics [21-23] were used to evaluate the
proposed segmentation method: accuracy (ACC), sensitivity (SEN),
specificity (SPE), Dice coefficient (DIC), and Jaccard index (JAI). The
evaluation metrics were formulated as follows:
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where TP, TN, FN, and FP denote true positive, true negative, false
negative, and false positive, respectively. TP represents the number of
correctly segmented lesion pixels, while FN represents unsegmented
lesions. TN represents the number of unsegmented non-lesion pixels,
while segmented non-lesion pixels were FP.
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3. Theory

50

Several traditional unsupervised and supervised methods for seg-
menting skin lesions using dermoscopy images are available. The un-
supervised methods include thresholding [39,40] region-merging [9,
41], energy functions [42,43], and clustering [44,45]. Unsupervised
methods are advantageous because data labelling is not required;
however, large and distinct datasets are difficult to handle. It is chal-
lenging to deal with fuzzy pigment boundaries and complicated skin
conditions with the unsupervised methods. Moreover, these methods
involve many intermediate steps that depend on the data [13]. Super-
vised methods focus on pixel feature or region extraction and classifi-
cation of lesions and normal tissues. Xie et al. [46] extracted RGB color
2 features using a self-generating neural network classifier and a genetic
algorithm. He et al. [47] determined texture features with Gabor and
gray level co-occurrence matrix (GLCM) features and an SVM classifier.
However, this traditional supervised method relies on low-level fea-
tures, such as color and texture, and cannot capture semantic informa-
tion from a high-level image. Further, its performance is based on
multiple parameters and data pre-processing steps, which makes it
highly complex [21,48], and limits its generalization ability. However,
complex pre-processing and semantic segmentation can be handled with
the deep learning CNNs.

In the deep learning methods, which involve pre-processing and
semantic segmentation in a series, the encoder-decoder architecture that

Ep‘;:h
(a)

Fig. 9. Training and validation Jaccard index (JAI) of MobileNetV3-UNet without augmentation (a) and with augmentation (b).
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Fig. 10. Segmentation obtained from MobileNetV3-UNet model training. From left to right, input images, ground truth masks, augmentation, and normal or without

augmentation (all were without post-processing) are shown.

predicts pixel segmentation has shown considerable success. An encoder
extracts the feature map (downsampling), which is similar to an image
classification mechanism without flattening. A decoder adjusts the res-
olution (upsampling) of the feature map to obtain an image of the
original size. The fully convolutional network (FCN) was the first
encoder-decoder architecture model that solves the SLS problem
developed with a very deep residual 50-layer [49]. Then, the FCN was
updated with a new loss function based on Jaccard distance [10],
multi-scale [50], and multi-stage [51]. However, their studies produced
inconsistent segmentation issues on different types of skin lesions that
overfit the dominant non-melanoma studies with a low result on mela-
noma segmentation. This problem was addressed using a stepwise
integration method with an ensemble of three FCN models [52]. How-
ever, this method still has challenges in dealing with complex lesion
images and increasing computational complexity during training. Goyal
et al. [53] used non-FCN models with an ensemble of mask R-CNN and
DeeplabV3+. However, this method requires high complexity. Another
non-FCN is the pyramid pooling network method with a multi-task
learmning approach [13]. This architecture consists of a feature
extractor and a pyramid pooling module (PPM) connected to a parallel
cross-connection layer (CCL) architecture. This method uses two
multi-scale feature aggregation (MSFA) modules to aggregate informa-
tion from feature maps of different scales. In addition, it edged predic-
tion as an auxiliary task to help in the segmentation task. However,
segmentation and edge detection results are slightly blurred at the lesion
boundary, which can reduce the segmentation performance. To solve
the problems in biomedical image segmentation, such as a limited
dataset and a high level of image difficulty, U-Net is quite robust in
studying the features at each depth level.

Several U-Net improvement methods for SLS have focused on
improving efficiency and feature discrimination, that is, modifying the
encoder-decoder block part and adding modules. In the modification
encoder-decoder, Tang et al. [21] used Xception as an encoder and
replaced the decoder block using a separable convolutional block layer.
Zafar et al. [22] used ResNet50 as an encoder to produce a deeper ar-
chitecture. The adding module mechanism in the U-Net involved
sequential modules to combine spatial-temporal information and
attention modules to increase important information. Alom et al. [54]
used a recurrent convolutional neural network and recurrent residual
convolutional neural network as sequential modules in U-Net. To cap-
ture important spatial and temporal features from the upscaling and skip
connection layer, Azad et al. [28] proposed a bidirectional convolu-
tional LSTM module and added three densely connected convolutions to
mitigate the problem of learning redundant features in successive con-
volutions for the encoder. Tong et al. [12] proposed the attention gate
spatial and channel attention U-Net (ASCU-Net) that uses triple

attention mechanism to capture the contextual information, spatial
correlation between features, and a more relevant field of view of the
target. A combination of the modification encoder-decoder block and
adding module was proposed by Lei et al. [11], which integrated the
dense convolution U-Net (UNet-SCDC) and the dual discrimination
module in the generative adversarial network (GAN) mechanism. The
optimization has been performed without considering computational
efficiency, and it is challenging to perform on mobile or real-time de-
vices. An interesting approach is MobileNet, which supports mobile
computer-aided devices [55].

MobileNet for a semantic segmentation model was performed for the
first time by Siam et al. [17]. The results show that MobileNetV1 can
obtain the highest performance with minimum computational
complexity as an encoder. MobileNetV1 introduced depthwise convo-
lution to reduce the number of parameters, followed by 1 = 1 pointwise
convolution to aggregate the feature information of each channel in
each pixel; this is called depthwise separable convolution. The evolution
of MobileNet is quite notable; MobileNetV2 modifies the idea of the
classic bottleneck structure from the ResNet architecture and connects
shortcuts between linear bottlenecks. The inverted residual bottleneck
mainly improves the accuracy and optimizes the complexity model. The
latest MobileNetV3 [18] was enhanced through the network architec-
ture search, and the sigmoid activation function was optimized to be
hard-sigmoid to reduce computational complexity and increase accu-
racy. MobileNetV3 has different channel expansion levels at each
bottleneck block.

Inspired by the encoder-decoder architecture on U-Net and the effi-
ciency of the MobileNetV3 model, we propose an automatic SLS archi-
tecture by combining MobileNetV3 as an encoder with U-Net as a
decoder to increase the efficiency of an SLS. MobileNetV3 is a solution
for efficient architecture. BCDU and Separable-UNet also inspired us to
explore modifications to the decoder by adding some temporal modules,
such as the BCDU, and applying block modifications, such as the one in
Separable-UNet. From this exploration, the MobileNetV3-UNet, Mobi-
leNetV 3-Separable-UNet, MobileNetV3-BCDU, and MobileNetV3-LSTM-
UNet architectures were obtained.

4. Results
4.1. Experimental results

We compared the critical component effect in the proposed SLS
method, which comprised the encoder and decoder network, random
augmentation, learming scheme, and post-processing method. A
comparative experiment was performed using the [SIC-2017 dataset,
which is a challenging SLS dataset with a training, validation, and test
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Fig. 12. Example segmentation masks with MobileNetV3-UNet for analyzing challenging images in SLS. The cyan line denotes the segmentation masks, and the
yellow line represents the ground truth masks. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
set.

4.1.1. Encoder network comparison

Different encoders were compared in the U-Net architecture, such as
VGG16, ResNet50, and MobileNet (multiple versions). Further, a com-
bination of random augmentation and the SWA learning scheme were
utilized. The VGG16 architecture consists of several standard convolu-
tional blocks that resemble the vanilla U-Net encoder, and the ResNet50
architecture consists of state-of-the-art residual bottleneck [56]. How-
ever, MobileNet uses deep separable convolution layers to reduce the
number of parameters. Table 5 shows that MobileNet performs better
than VGG16 and ResNet50. Here, VGG16 and ResNet50 had JAI values
of 75.95% and 78.16%, respectively. However, MobileNetV3, Mobile-
NetV2, and MobileNetV1 obtained JAI values of 80.25%, 79.41%, and
79.29%, respectively. Based on the SEN and SPE data, we believe that
the VGG16 encoder provides high dominance in the background than in
the foreground (segmentation mask). However, MobileNet focusses on
the foreground and produces better segmentation results, as reflected in
the obtained ACC, DIC, and JAI values. Considering the number of pa-
rameters, MobileNetV1 utilizes less parameters than MobileNetV3 or
MobileNetV2. Further, VGG16 and ResNet50 utilize higher number of
parameters than all the MobileNet versions.

4.1.2. Decoder network comparison

We modified the U-Net-based decoder using other decoders, such as
BCDU, UNet-LSTM, and separable-UNet. Here, MobileNetV3 was paired
with the decoder, and its performance in image analysis was deter-
mined. The models for comparison were prepared with different de-
coders, random augmentation, and SWA. The MobileNetV3 with
standard U-Net decoder outperformed other decoders with DIC, JAL, and
SEN values of 87.74%, 80.25%, and 86.24%, respectively (Table 6).
Moreover, MobileNetV3-Separable-UNet had ACC of 93.85% and
MobileNetV3-UNet-LSTM had SPE of 97.22%. Thus, SEN values sug-
gested that MobileNetV3-UNet was better at segmenting the skin lesion
area. MobileNetV3-LSTM-UNet and MobileNetV3-BCDU utilized more
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parameters than MobileNetV3-UNet. Although MobileNetV3-Separable-
UNet utilizes less parameters than the one with standard U-Net, the
complex operation results in a large latency in computation time.

4.1.3. Random augmentation and model performance

We implemented spatial- and pixel-level augmentation methods to
improve image variability. Spatial augmentation with distortion [21],
augmentation using color jitter (brightness, contrast, hue, and satura-
tion), and spatial augmentation without distortion [57] were used for
comparison. The augmentation procedures were performed using the
default parameters in the Albumentation library. Augmentation pro-
cedure evaluations are shown in Table 7. The use of distortion in
Ref. [14] reduced the performance of MobileNetV3-UNet (JAI =
74.20%). Methods such as spatial augmentation, CLAHE, blur, and
sharpening with gamma did not improve model performance. However,
the proposed augmentation method enhanced model performance, and
JAI of 80.25% was obtained.

The modified decoder with the proposed augmentation and without
augmentation were evaluated (Table 8). Augmentation significantly
improves in the performance of all methods as the JAI scores increased
by —~2.55%6.75%. The lowest improvement was recorded in the JAI
score of the standard U-Net decoder, while the highest was for the BCDU
decoder.

4.1.4. Learning schemes by different decoder networks

The two standard learning schemes and SWA learning with constant
learning rates were compared (Table 9). SWA learning uses a constant
learning rate of le-4 (10% of the initial learning rate) after the 180th
epoch (last 20 epochs). Herein, random augmentation along with
MobileNetV3 encoder and different decoders were used. The SWA
learning scheme with a constant learning rate improves the scores for
several decoders, except BCDU. This increase indicated that the average
weights for the last 20 epochs were more generalized than the best
weights from the validation data.
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4.1.5. Post-processing

In this experiment, we evaluated whether FITH post-processing im-
proves model performance. Results obtained with FITH post-processing
and without post-processing (none) were compared (Table 10). The
performance of MobileNetV3-UNet trained with random augmentation
and SWA decreased (JAI and DIC were slightly lower by 0.02% and
0.23%, respectively) in the absence of FITH post-processing. The filled
segmentation marginally improved the overall scores with the exception
of SEN.

4.2. Performance comparison with other state-of-the-art methods

Among the evaluated models, MobileNetV3-UNet, comprising
random augmentation, SWA, and FITH post-processing, was the best-
performing encoder-decoder. We compared the performance of the
proposed models with state-of-the-art models using the ISIC-2017
(Table 11), ISIC-2018 (Table 12), and PH2 (Table 13) datasets. The
models were trained and tested using the training, validation, and test
data from each benchmark dataset. Our proposed method,
MobileNetV3-UNet, outperformed the state-of-the-art models using the
ISIC-2017, ISIC-2018, and PH2 dataset.

Res-UNet [22] combines the ResNet50 encoder with U-Net, which is
similar to our proposed encoder-decoder concept. However, augmen-
tation involves multiplying the training data with a balanced binary
class to prevent overfitting. SU-SWA [21] is a U-Net architecture with
Xception as an encoder, but it uses separable block for all parts. How-
ever, when the separable-UNet decoder that contains separable blocks
(light in parameters but complex in operation) was paired with Mobi-
leNetV3, it could not outperform the standard U-Net decoder.
Ensemble-A [53] (in ISIC-2017), Ensemble-S [53] (in PH2), DCL-PSI
[52] use an ensemble method. Although these models are highly com-
plex, the method utilized is quite robust. DL with auxiliary task [13] uses
multi-task learning efficiently without an encoder-decoder architecture;
however, compared to the previous ensemble methods, their perfor-
mance is comparable in SLS. ASCU-Net [12] relies on attention modules.
Quantitatively, its performance was lower than that of other models.
DAGAN [11], a form of generative adversarial network (GAN)-based
method, uses encoders to form segmentation. Lie et al. (2020) had uti-
lized skip connection and dense convolution U-Net (UNet-SCDC), which
was heavy, but suitable for SLS. The proposed MobileNetV3-UNet out-
performed the state-of-the-art models when evaluated using the
ISIC-2017 and PH2 datasets. Here, we observed DIC and JAI values of
87.74%, 80.25% and 95.18%, 91.08% for the ISIC-2017 and PH2
datasets, respectively.

The attention module, recurrent layer [54], and bidirectional con-
volutional LSTM based [28] modifications of the UNet-based architec-
ture are used for medical image segmentation. Double-UNet [23]
combining two architectures into one possessed considerable parame-
ters. The proposed MobileNetV3 with BCDU, UNet-LSTM, separa-
ble-UNet, and standard U-Net decoders outperformed the
state-of-the-art models when evaluations were performed using the
ISIC-2018 dataset. MobileNetV3-Separable-UNet had the best ACC of
94.85%, while MobileNetV3-UNet had the best-performing DIC, JAI,
and SEN values of 90.98%, 83.44%, and 90.89%, respectively. Further,
our proposed method, which used efficient and lightweight models,
outperformed the state-of-the-art models in all the datasets (ISIC-2017,
ISIC-2018, and PH2) considered. MobileNetV3 can reduce millions of
parameters and improve model performance. The proposed model out-
performed the state-of-the-art models in terms of segmentation perfor-
mance and computational efficiency. Moreover, the proposed
MobileNetV3-UNet model obtained low ACC and SEN wvalues,
compared to the other methods. Therefore, the proposed model
segmented skin cancer areas efficiently with better margins than the
other methods. We obtained DIC and JAI values of 87.74%, 80.25% and
95.18%, 91.08% for ISIC-2017 and PH2 datasets, respectively. Thus,
although the ACC value was low, it outperformed the existing methods
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in terms of DIC and JAIL In addition, the model still utilized a relatively
small number of parameters and had a computation time of approxi-
mately 8 million in 0.0199 s per image.

5. Discussion

Based on our analysis, MobileNetV3 (encoder) significantly
improved segmentation performance and computational efficiency.
However, for capturing stage to stage features, the standard U-Net
decoder was more robust than other decoders. The encoder plays an
essential role in feature extraction; thus, the information obtained de-
pends on it. Using the depthwise separable convolution block reduced
the number of parameters, while the inverted residual bottleneck and
NAS module improved the performance of the deep leaming network.
However, with a complex decoder layer, the model might lose gener-
alizability. The LSTM-UNet and BCDU models utilized more parameters
than the standard U-Net (Table 6). However, the separable-UNet had
fewer parameters than the standard U-Net, but had a large latency owing
to the large operation. The lightweight architecture performed better for
SLS.

Using augmentation, the model leamns a higher diversity within the
data more robustly without overfitting. For SLS, augmentation is
important due to the small data size and the presence of challenging
images. Representative training and validation JAI of MobileNetV3-
UNet without and with augmentation are shown in Fig. 9. The valida-
tion score may not be as high as the training score. Overfitting occurs
when validation statistics decline, while training increases, as shown in
Fig. 9a. As shown in Fig. 9b, augmentation can address this problem,
where the validation and training scores are closer. Further, there is a
wide local optimum that we effectively overcame using SWA.
Augmentation affects the model training process. Without augmenta-
tion, JAI between the training and validation data do not align along the
epochs, which results in model overfitting. Fig. 10 shows that
augmentation significantly affected the robustness of the developed
model. Models trained without augmentation detect healthy skin as le-
sions, or vice versa. Without augmentation, the training dataset tend to
be similar, and the level of ambiguity remains high.

The use of SWA also affects the training process, which is difficult to
determine towards the global optimum, so that the model with the SWA
scheme can be more robust by averaging the local optimum. Post-
processing only fills the hole by cleaning the messy segmentation re-
sults. With FITH post-processing, the performance of the segmentation
results slightly improved.

Fig. 11 shows that the ability of MobileNetV3 is better than VGG16 in
obtaining important features, as shown by class activation mapping
(CAM) in one of the images. The performance of the Standard U-Net
decoder is slightly improved from the other proposed decoders. Fig. 11
demonstrates an activation mapping plot of several challenging images
for each model in final convolution after the sigmoid function. Several
models have been represented in class activation mapping (CAM) for
images of difficult lesions. These results indicate that the scores obtained
in the experiment are representative of CAM. In addition, each model
has its characteristics in obtaining map features. MobileNetV3-UNet can
handle challenging cases of SLS, as shown in Fig. 12. Challenges that
emerged in previous studies [21], such as difficult lesion images, were
all well segmented by MobileNetV3-UNet. This result indicates that the
segmentation capability of the MobileNetV3-UNet model is both light-
weight and accurate.

6. Conclusions

In this study, lightweight encoder-decoder model based on
MobileNetV3-UNet was developed for automatic SLS. Here, we
comprehensively studied encoder-decoder utilization, data augmenta-
tion, SWA learning schemes, and post-processing methods to determine
the best-performing model. MobileNetV3 encoder performed best for
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SLS in terms of both accuracy and computational complexity. This ar-
chitecture outperformed previous versions of MobileNet, ResNet50, and
VGG16. Based on our analysis, the lightweight architecture works well
in SLS. A standard convolution block instead of a depthwise separable
convolution block can reduce the number of parameters. In addition, an
inverted residual bottleneck and NAS module improved deep learning
performance. This architecture could be beneficial for implementing
deep leamning in CAD systems, specifically for real-time image semantic
segmentation. In the decoder, standard U-Net can rebuild features from
stage to stage to obtain important information from the context and
global information from MobileNetV3. Additionally, the proposed
method outperformed the state-of-the-art models and several modified
decoders (UNet-LSTM, BCDU, and Separable-UNet). The noise and
challenges in SLS data were addressed using an enhanced extraction
feature, random augmentation without distortion, which allowed the
model to be more robust. In addition, the constant learning rate of SWA
can improve model generalizability. Further, FITH post-processing
improved segmentation results marginally. In the future, a compre-
hensive study on segmentation using MobileNetV3-UNet for other fields
can be performed. The effect of decoder modifications can also be
evaluated. Moreover, applications of the developed model in CAD sys-
tems should be studied to improve their performance in SLS.

Funding

Ministry of Research Technology and Higher Education of the Re-
public of Indonesia under scheme Fundamental Research Grant
numbers: 257-22/UN7.6.1/PP/2020, and Ministry of Research and
Technology National Research and Innovation Agency under scheme
Fundamental Research Grant numbers: 257-22/UN7.6.1/PP,/2021.

Research data

Source code for the developed models is available at http
com/bowoadi/lightweight _sls.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by Ministry of Research Technology and
Higher Education of the Republic of Indonesia under scheme Funda-
mental Research Grant numbers: 257-22/UN7.6.1/PP/2020, and Min-
istry of Research and Technology National Research and Innovation
Agency under scheme Fundamental Research Grant numbers: 257-22/
UN7.6.1/PP/2021.

References

[1] Capdehourat G, Corez A, Bazzano A, Alonso R, Musé P. Toward a combined tool to
assist dermatologists in melanoma detection from dermoscopic images of
pigmented skin les[ons. Pattern Recogn Lett 2011;32(16):2187-96. hitps:/

0.1016/j.patrec.201 106,015,

el RL, Mlllerl(]) Fucl’s HI: Jemal A Cancer statistics, 2021. CA. Cancer J. Clin.
1,71(1):7-33. https: /10 21654,

Esteva A, Kuprel B, Novoa RA, Ko.] Swetter SM, Blau HM, Thurn S. Dermatologist-

level classifigation of skin cancer with deep neural networks. Nature 2017542

(7639)11 https: //dol.org/10.1038/nature21 056.

Binder M. Epiluminescence microscopy. A useful tool for the diagnosis of
ented skin lesions for formally trained dermatologists. Arch Dermatol 1995;
(3328691, hitps: 10.1001,/ rm.131.3.286,

Vestergaard ME, Macaskill P, Halt FE, Merrztes SW. Dermoscopy compared wtﬂ'l

naked eye ion for the diag of primary a meta-anal of

studies performed in a clinical setting. Br J Dermatol 2008;159(3):669-76. hrrps:/

doi.org/10.1111/j.1365-2133.2008.0871 3.5

[2]

2

4

[5]

16

[6]

7

&

[9]

[1o]

1]

1z

13]

[14]

[15]

[16]

17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27] Me

(28] Az
[29] /

30) i

[31]

[32]

[33]

Informatics in Medicine Unlocked 25 (2021) 100640

Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan A, Stoecker WA, et al.

A methodological approach o the classification of dermoscopy images. Comput

Med Imag Graph 2007;31(6):362-73. htps: a/10.1016/].

£ 12. 2007.01.003,

Celebi ME, Iyatomi H, Schaefer G, Stoecker WV, Lesion border detection [n

dermoscopy images. Comput Med Imag Graph 2009;33(2):148-53. https:/
/1 Y 2

¥ ¥ 2008.11.002,
SllveLraM Jacinto CN, Marques JS, AndrE RSM, Mendoca T, Yamauchi §, et al.
Comparison of ation methods for mel di; isin dermosmpy
images. IEEE J. Sel. Top. Signal Process 2009;3(1): 3545, https
10.1109/JSTSP.2008.2011115.

Wong A, Scharcanski J, Fieguth P. Automatic skin lesion segmentation via iterative
stochastic region merging. IEEE Trans Inf Technol Biomed 2011;15(6):929-36.
https://doi.org/10.1 109, TITB. 2011, 21 57828,
Yuan ¥, Chao M, Lo YC. Automatic skin lesion segmentation using deep fully
convolutional networks with Jaccard distance. IEEE Trans Med Imag 2017;36(9):
1876-86. hitps: 0.1109/TMIL.2017 2695227,
Lei B, Xia Z, Jiang F, Jiang X, Ge Z, Xu Y, et al. Skin lesion segmentation via
generative adversarial networks with dual discriminators. Med Image Anal 2020;
64:101716. hitps: rg/10.1016/j.1 2020.101716.
Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P. ASCU-net: attention gate, spatial and
channel attention U-net for skin lesion segmentation. Diagnostics 2021;11(3):501.
https org/10.3390/ ystics 11030501,
i L, Tsui YY, Mandal M. Skin lesion segmentation using deep learning with
|l|.ary task. J. Imaging 2021;7(4). hirps:/ £/10.3390/ji 167,
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F Ghafoorian M, et al A survey
on deep learning in medical image analysis. Med Image Anal 2017;42:60-88.
https://doi.org/10.1016/j. media. 2017.07.005.
Xing Y, Zhong L, Zhong X. An encoder-decoder network based FCN architecture for
ntic ation. Wireless C: Mobile Comput 2020: 2020, https: L
/10.1155/2020,/B86 1686,
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical
image segmentation. Lect Notes Comput Sei (including Subser Lect Notes Artif
Intell Lect Notes Bioinformatics) 2015;9351:234-41, https:/ /doi.org/10.1007/
978-3-319-24574-4 28,
Siam M, Gamal M, Abdel-Razek M, Yogamani §, Jagersand M, Zhang H.
A comparative study of real-time ation for driving.
II:I:I:Comput Soc. Conf, Comput. Vis. Pattemn Recognit. Worl. 2018, hitps: L
1/ 10.1109/CVPREW. 2018.00101. 2018-June:700-10.
Howard A, Sandler M, Chen B, Wang W, Chen LC, Tan M, et al. Searching for
mobileNetV3. Proc. IEEE Int Conf. Comput Vis. 2019, hiips:/ /10,1109,
ICCV.2019.00140, 2019-Octob: 1314-24,
Drozdzal M, Vorontsov E, Chartrand G, Kadour Pal C. The importance of skip
connections in biomedical image ation. Lect Notes Comput Sci (including
Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2016;10008. hitps://dol
org/10.1007/978-3-319-46976-8_19. LNCS:179-87.
Deng J, Fei-Fei L, ImageNet Li K. Constructing a Izrge scale image database. J Vis
2010;9(B)1037. hrrps:/ 1/10.1167,/9.8.1037.
Tang P, Liang Q, Yan X, Xiang S, Sun W, Zhang D et al. Efficient skin lesion
segmentation using separable-Unet with stochastic welght averaging. Comput
Methods Progr Biomed 2019;178:289-301. hitps: 10.1016..
cmpb. 2019.07.005.
Zafar K, Gilani S0, Waris A, Ahmed A, Jamil M, Khan MN, et al. Skin lesion
segmentation from dermoscopic images using convolutional neural network.
Sensors 2020;2006). hitps://d rg/10.3390,/520061601.
Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD, DoubleU-Net . A deep
convolutional neural network for medical image segmentation. Proc. - IEEE Symp.
Comput. Med. Syst. 2020, hrrps:/ org/10.1109,/CBMS549503.2020.00111.
2020- July 558-64.
Ga 1A
analysis. v 7
Codella NCF Gutman D Celebi ME, Helba B, Marchetti MA, Dusza SW, et al. Skin
lesion analysis toward melanoma detection: a challenge at the 2017 International
symposium on biomedical imaging (ISBI), hosted by the mtematlonalskm lmagmg
collzboratlon (ISIC) Proc Int. Symp Blomed Imagmg 2018, hrrps:/

lor aug

etworks for mobile

Sandler M, Howard A, Zhu M, thoglmv A, Chen LC. MobileNetV2: inverted
residuals and linear bottlenecks. [EEE Comput Soc Conf Comput Vis Pattern Recogn
2018:4510-20. hrtps: 0.1109/CVFR.2018.00474.

Tan M, Chen B, Pang R, Vasudevan V, Le QV. Mnasnet: platform-aware neural
architecture search for mobile. IEEE Comput Soc Conf Comput Vis Pattern Recogn
2019, https:/ 0.1109/CVPR.2015.00293. 2019-June:2815-23.




A. Wibowo er al.

[34]

[35]

[36

[37]
[38]

[39

140

[41]

[42]

[43]

[44

[45]

Song H, Wang W, Zhao §, She Lam KM. Pyramid dilated deeper ConvLSTM for
video salient object detection. Lect Notes Comput Sci (including Subser Lect Notes
Artif Intell Lect Notes Bioinformatics) 2018;11215. https: //doLorg/10.1007 /97 8-
3-030-01252-6 44, LNCS:744-760.

ith separable arXivlelo

convolutions. arXiv Prepr.

Wilson AG. Ave
UAT 2018 34th Conf. U

fetrov D

' optima alization.
Inte 18;2:876 20

et Francois, Keras ~, GitHub ™ [Online]. Available: Lty
Kingma DF, Ba JL, ;\dam . A method for stochastic optimization,
Learn. Represent. ICLR 2015 - Conf Track Proc. 2015:1-15.
Humayun J, Malik AS, Kamel N. “Multilevel thresholding for segmentation of
pigmented skin lesums, 2011. IEEE Int. Conf. Imaging Syst. Tech. IST 2011 - Proc.
2011:310-4. https://doi.org/10.1109,/15T.2011.5962214,

Gamavi R, Aldeen M, Celebi ME, Varigos, Finch S. Border detection in dermoscopy
images using hybrid thresholding on apthlzed color channels. Comput Med Imag
Graph 2011;35@R105-15. hirps .org/10.1016.j.

COMpPITH EY0.08.001.

Emre C i M, Kingravi HA, Iyatomi H, Alp Aslandogan ¥, Stoecker WV, Moss RH,
et al. Border detection in dermoscopy images using statistical region merging. Skin
Res Technol 2008;14(3):347-53.

Tang J. A multi-direction GVF snake for the segmentation of skin cancer images.
Pattern Recogn 2000;42(6):1172-9. hitps://doi.org/ 10,1016/,

patcog. 2008.09.007.

Abbas Q, Fondon 1, Sarmiento A, Emre Celebi M. An improved se tion
methoed for non-melanoma skin lesions using active contour model. Lect Notes
Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
2014;8815:193-200. https://doLorg/10.1007 /978-3-319-11755-3 22,

Ganster H, Pinz A, Rihrer R, Wildling E, Binder M, Kittler H. Automated melanoma
recognition. IEEE Trans Med Imag 2001;20{3):233-9. hirps: 0.1109/
42918473,

Ali AR, Couceiro MS, Hassenian AE. Melanoma detection using fuzzy C-means
clustering coupled with mathematical mmphology, 2014 14th. Int. Conf. Hybrid
Intell. Syst. HIS 2014:73-8. hirps:/, .org/10.1109,/HI5.2014. 70861 75.

eras.ioj 2015,
3rd. Int. Conf,

17

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Informatics in Medicine Unlocked 25 (2021) 100640

Xie ik AC. Automatic segmentation of dermoscopy images using self-
am; neural networks seeded by genetic algorithm. Pattern Recogn 2013;46

(3):1012-9. hif i 0rg/10.1016/j.patcog. 201 2.08.012.

He ¥, Xie F. Autom§lil¥ skin lesion segmentation based on texture analysis and

supervised learning. Lect Notes Comput Sei (including Subser Lect Notes Artif Intell
t Notes Bioinformatics) 2013;7725. https://doi.org/10.1007,/978-3-642-374 44
6. LNCS:330-41.

Bi L, Kim J, Ahn E, Kumar Feng D, Fulham M. Step-wise integration of deep class-

specific learning for dermoscopic image segmentation. Pattern Recogn 2019;85:

i /10.1016/].patcog. 2018.08.00 1.

Yu L, Chen H Do Q Qin J, Heng PA. Automated melanoma recognition in

dermoscopy images via very deep restdual networks ]EL[‘. Trans Med Imag 2017;

36(4):994-1004. hitps:

Bi L, Kim J,

moscopy im 2

Bi L, Kim J, Ahn Kumar A, Fulham M, Feng D. Dermasmplc image segmentation
multistage fully convolutional networks. IEEE Trans Biomed Eng 2017:64(9):
5-74. https://doi.org/10.1109/TBEME 2017 .27 1277 1.

Bi L, Kim J, Ahn E, Kumar A, Feng D, Fulham M. Step-wise integration of deep

class-specific learmng for dermoscopic image segmentation. Pattern Recogn 2019;

B5:78-B9. https://doi.org/10.1016/). patcog . 2018.08.001.

Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin lesion segmentation in

dermoscopic images with ensemble deep learning methods. IEEE Access 2019;8:

4171-81. https://doi.org/10.1109/ACCESS.2019.2960504.

Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK. Recurrent residual U Net for

medical image segmentation. J Med Imaging 20196(1):1. hiips:

10.1117/1 jmi.6.1.014006.

Hartanto CA, Wibowo A “Development of mobile skin cancer detection using

faster B-CNN and MobileNet v2Z model,” 7th. Int. Conf. Inf. Technol. Comput.

Electr. Eng. ICITACEE 2020 - Proc. 2020:58-63. hiips:, org/10.1108/

ICITACEES0144 . 2020.9239157.

He K, Zhang X, Ren S, Sun J. Deep residual leaming for image recognition. IEEE

Comput Soc Conf Comput Vis Pattern Recogn 2016, hiips:, 0.1109/

CVPR.2016.90. 2016-Decem:770-8.

Wei Z, Song H, Chen L, Li Q, Han G. Attention-based denseunet network with

adversarial training for skin lesion segmentation. IEEE Access 2019;7:136616-29.

http i.org/10.1109/ACCESS.2019.29407 94,

org.’




C2

ORIGINALITY REPORT

4., A, A, o}

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

personalpages.manchester.ac.uk

Internet Source

T

ahmedhosny.com

Internet Source

(K

Lokesh Singh, Rekh Ram Janghel, Satya
Prakash Sahu. "A hybrid feature fusion
strategy for early fusion and majority voting
for late fusion towards melanocytic skin lesion
detection", International Journal of Imaging
Systems and Technology, 2021

Publication

T

-~

www.cfp.ca

Internet Source

(K

o

journals.sums.ac.ir

Internet Source

T

eprints.soton.ac.uk

Internet Source

T




Exclude quotes Off Exclude matches <1%
Exclude bibliography Off



