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Abstract 

Small scale helicopters have been used as unmanned aerial vehicle (UAV) because they have 

agility and maneuverability that make them as an ideal option for various missions ranging 

from weather research, agriculture, aerial surveillance to power line inspection. Small scale 

helicopter posses a higher bandwidth of dynamics and a greater sensitivity to control inputs 

which make them more difficult to control. This paper deals with the control system design 

using Linear Quadratic Regulator (LQR) for an autonomous small scale helicopter in hover 

flight condition. A nonlinear dynamics model of the small scale helicopter is derived from the 

Euler-Newton equations of motion. Linear model at hover flight condition is numerically 

extracted using MATLAB/Simulink. Linear control system is then designed for the small scale 

helicopter with the following predefined hover position and external disturbances such as 

longitudinal doublet input and gust. The Virtual Reality model in Matlab/Simulink is used to 

show the 3 D view of the simulation results.  

Kata kunci: LQR, hover, small scale helicopter,  

 

1. INTRODUCTION 

Small scale helicopter posses higher bandwidth, high order nonlinear, hybrid modes, non-

holonomic, under-actuation, multi-input-multi-output, and non-minimum phase  which make it 

more challenging to  control. The ability of small scale helicopter to fly autonomously is the key 

factor. This report uses LQR control technique to control small scale helicopter in hover flight 

condition using X-cell 60 SE helicopter model as shown in figure 1. The LQR is chosen as the 

design standard due to its proven robustness for autonomous control of aerobatic maneuvers 

previously demonstrated by team at MIT [3]. X cell 60 SE helicopter model is characterized by 

hinge-less rotor with a diameter of 0.775 m and mass of 8 kg. The X-Cell blades both for main and 

tail rotors use symmetric airfoils.  

 

 
Figure 1: Instrumented X-Cell 60 helicopter [2] 

 

2. NONLINEAR MODEL OF SMALL SCALE HELICOPTER  

The X cell 60 SE model helicopter parameters that are used for simulation in this paper and 

technical explanation of these parameters can be seen in references [2, 3]. The helicopter moving 

with 6 DOFs requires six nonlinear differential equations to represent its translational motions and 

angular motions in respect to 3 axes of references on  the helicopter body coordinate. In the 

equations u, v, w  are the linear velocities of the fuselage while p, q, r are the  angular rates of body 

coordinate system. In this X-cell 60 SE helicopter, the value of Ixz is negligible [2] 
                                                             mXgwqvru /sin  (1) 

                                                        mYgurwpv /sincos  (2) 

                                                        mZgvpuqw /coscos   (3) 
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External forces and moments have an effect on helicopter components: main rotor, tail rotor, 

fuselage, horizontal fin, vertical fin, and  gravitational force. For further development of these 

forces and moment is found  in [2,3] 
X = Xmr + Xfus 

Y =  Ymr + Yfus + Ytr + Yvf 

Z = Zmr + Zfus + Zhf 

L = Lmr + Lvf + Ltr 

M = Mmr + Mhf  

                                                                              N = -Qe+ Lvf + Ntr (7) 

Transformation of speed and orientation into a fixed coordinate on earth is performed in [1] as 

follows. 
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For external forces computation that come from main rotor, tail rotor, fuselage, vertical fin, and 

horizontal fin more detail at reference [2]  and [3]. 

 

3. LINEAR MODEL IN HOVER FLIGHT CONDITION 

Small scale helicopter in hover flight condition can be characterized as followed: 
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Linear model of nonlinear model is numerically extracted using MATLAB/Simulink at 

operating point in hover. For detail developing of operating point in hover flight condition 

can be seen at reference [2]. The results of A and B matrices are: 

 

A matrices 
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B matrices 

 
 

4. LQR CONTROL 

The state space  equation for a linear time invariant system. 

                                                            
)()()(

)()()(

tDutCxty

tButAxtx
 (11) 

can be evaluated using the cost function 

                                                           

0

)(),( dRuuQxxtxJ TT  (12) 

to find its optimal control using LQR method, where Q=Q
T
 ≥ 0 is symmetric and positif semi 

definite matrix, R=R
T
  >0 is also is symmetric and positif semi definite matrix. Assuming all states 

area available, C is then set to an identity matrix. The LQR method is solved by the Riccati 

Equation      

                                               ))()()()(()( 1 tSBBRtSQtSAAtStS TT  (13) 

The value of k matrix for the LQR control can be calculated using 

                                                                 xtSBRu T )(* 1  (14) 

The state x and input u below are used, 

x = [ u w q  sa1 v p r  sb1  x y  z ] 
T 

T
latpedlongcolu ][  

 

Table 1: Closed loop eigen value, damping and frequency at hover 

 

Eigenvalue Damping Freq. (rad/s) 

   

-1.53e+002 1.00e+000 1.53e+002 

-4.17e+001 + 3.70e+001i 7.48e-001 5.57e+001 

-4.17e+001 - 3.70e+001i 7.48e-001 5.57e+001 

-5.44e+001 1.00e+000 5.57e+001 

-2.59e+001 + 2.31e+001i 7.46e-001 3.48e+001 

-2.59e+001 - 2.31e+001i 7.46e-001 3.48e+001 

-3.61e+001 1.00e+000 3.61e+001 

-2.02e+000 + 2.77e+000i 5.90e-001 3.43e+000 

-2.02e+000 - 2.77e+000i 5.90e-001 3.43e+000 

-2.01e+000 + 2.72e+000i 5.90e-001 3.38e+000 

-2.01e+000 - 2.72e+000i 5.90e-001 3.38e+000 

-2.66e+000 1.00e+000 2.66e+000 

-2.65e+000 1.00e+000 2.65e+000 

-3.17e+000 1.00e+000 3.17e+000 
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After several trials and errors, the matrix Q and R are chosen 

Q=diag([0.1 0.1 0.1 0.1 1 0.1 0.1 0.00000001 0.1 0.1 0.1 1 1 1]); 

R=diag([1 1 1 1]); 

Klqr=lqr(A,B,Q,R); 

 

Table 1 shows that the highest eigenvalue is -153 at frequency 153 rad/sec, and the lowest 

eigenvalue is -2.01- 2.72i at frequency 3.17 rad/sec. The minimum time time constan is about 

0.0065 second and the maximum time constan is about 0.377 second. 

The result of Klqr  is applied at nonlinear model to maintain hover position.  The simulation results 

are shown in figures 2 through  7. 

 

 

 
Figure 2: Translational velocities during full state feedback controlled hover 

 

 
Figure 3: Altitude angles during full state feedback controlled hover 

 

The closed loop response  as shown in figures 2, 3, and 4  reveals that translational velocity, 

alltitude angle and angular rate responses maintain around operating points in hover flight 

condition so the closed loop is stable. 
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Figure 4: Angular rates during full state feedback controlled hover 

 

 
Figure 5: small scale helicopter trajectory during full state feedback controlled hover 

 

It can be seen in Figures 5 that the closed loop system is stable. However, some drift occur 

on the translational X-Y-Z position. 

 
Figure 6: Longitudinal cyclic doublet input 
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To evaluate  robustness of proposed LQR control, doublet input as shown in Figure 6 is used in 

simulation. The doublet input is actuated on the longitudinal deflection of the main rotor.  

 

 
Figure 7:  u, q, , x responses do to doublet input 

 

Figure 7 show the response of the states: u, q, , x to the doublet input given. The simulation 

results reveal that the closed loop control system based on the LQR method designed at  hover  trim 

condition is quite robust to maintain at hover position.  

. 

 

5. CONCLUSIONS 

The feedback gain from design method has been simulated to be robust at hover flight condition.  

The minimum and maximum time constan are about 0.0065 second 0.377 second. Simulation 

results show the robustness of  the closed-loop control system being disturbed by the doublet  input 

on the longitudinal deflection of the main rotor, is stable although some drift occur on the 

translational X-Y-Z position. In the real implementation, limits in actuator dynamics should be 

carefully considered. 
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