

1 of 1

➡ Download 🖶 Print 🗑 Save to PDF 🔥 Add to List 🛛 Create bibliography

Engineering Reports • Volume 4, Issue 6 • June 2022 • Article number e12510

Document type Article Source type Journal ISSN 25778196 DOI 10.1002/eng2.12510

View more 🗸

Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation

<mark>Syaiful</mark> a 🖾 ;	Wicaksono, Taufan Anindhito ^a ;	Tony S. U. M.S.K. ^a ;	Suprihanto, Agus ^a ;	Soetanto, Maria F. ^b
뒄 Save all to a	author list			

^a Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia ^b Department of Mechanical and Aviation Engineering, Bandung State Polytechnic, Bandung, Indonesia

2 79th percentile Citations in Scopus

]] Views count ⑦ ↗	View all metrics	>
--	-----------------------	------------------	---

1.32

FWCI 🕜

View PDF Full text options 🗸 Export 🗸

Abstract

Author keywords

Reaxys Chemistry database information

Indexed keywords

SciVal Topics

Metrics

Funding details

Abstract

Improvement of heat transfer using surface protrusion (convex strip) has been effective recently. Surface protrusion is able to improve flow mixing which increases the rate of heat transfer . Therefore, this study aims to improve the heat transfer in a fin-and-tube heat exchanger by fitting convex strips around the tubes . Three-dimensional modeling was carried out by placing four and eight convex strips around the staggered tubes at a constant temperature of 106°C. The turbulent k- ϵ model was applied at a Reynolds number range of 3438-15,926. The results of the study indicate that tubes with eight convex strips demonstrated a heat transfer improvement of 40.46%, compared to that with four convex strips. In this case, the TEF is 6.27% higher than the four convex strips. In

Q

Cited by 2 documents

Thermal-hydraulic characteristics of FLiBe in annuli with helical wire

Yang, Y. (2023) International Journal of Mechanical Sciences

Numerical Investigation of Heat Transfer Enhancement in Circular Channel with Variation in Angle of Delta-Winglet Vortex Generator

Iqbal Farhan Putra Arya, M., Syaiful, Muchammad (2023) CFD Letters

View all 2 citing documents

Inform me when this document is cited in Scopus:

Set citation alert >

Related documents

Heat Transfer Intensification by Means of Convex-Strip Around Tube in Fin and Tube Heat Exchanger with Field Synergy Principle

Syaiful , Yoel, H. , Sinaga, N. (2022) International Journal of Heat and Technology

Air side heat transfer enhancement using radiantly arranged winglets in fin-andtube heat exchanger

Li, M., Qu, J., Zhang, J. (2020) International Journal of Thermal Sciences

Numerical simulation of heat transfer enhancement from tubes surface to airflow using concave delta winglet vortex generators

Syaiful, Nabilah, H., Suryo Utomo, M.S.K.T. (2022) Results in Engineering

View all related documents based on references

Find more related documents in Scopus based on:

Authors > Keywords >

Brought to you by Universitas Diponegoro

Source details

()
-
Ū
×

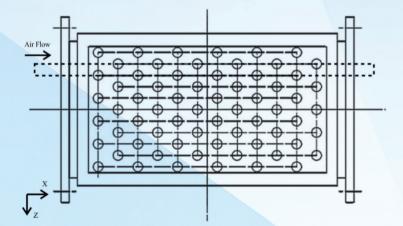
Q

CiteScoreTracker 2022 ^①

 $3.9 = \frac{1,814 \text{ Citations to date}}{4/2 \text{ Decomposite to date}}$

462 Documents to date

Last updated on 05 April, 2023 • Updated monthly


View CiteScore methodology > CiteScore FAQ >

Volume 4, Number 6

Jun<u>e 2022</u>

Engineering Reports

Open Access

WILEY

Airflow

Front Cover: Syaiful *et al.* Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation

Engineering Reports

Open Access

Editorial Board

Managing Editor

Dr. Shaoying Cui, John Wiley & Sons, Inc., Shanghai, China

Publisher

Dr. Hanyi Xie, John Wiley & Sons, Inc., Beijing, China

Consultant Editors

Prof. Iunio Iervolino , University of Naples Federico II, Italy
Prof. Chongqing Kang, Tsinghua Universityy, Beijing, China
Dr. Ali Khademhosseini, Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
Prof. Xiaoting Rui , Nanjing University of Science and Technology, Nanjing, China

Associate Editors

C• Prof. Alpaslan Atmanli, National Defense University, Istanbul, Turkey
Prof. Young-Jin Cha, The University of Manitoba, Winnipeg, Canada
Dr. Lin Gan, <i>Tsinghua University</i> , Beijing, <mark>China</mark>
Prof. Honghao Gao, Shanghai University, Shanghai, China
Dr. Shiqi Ji, Tsinghua University, Beijing, China
Dr. Qiuming Ma, John Wiley & Sons, Inc., Shanghai, China
Prof. Wee-Jun Ong, Xiamen University Malaysia, Sepang, Malaysia
Dr. Fangwei Qi , Jiangxi University of Science and Technology, Nanchang, China
Dr. Mubashir Husain Rehmani , Munster Technological University (MTU), Cork, <mark>Ireland</mark>
Prof. Xuan Song , Southern University of Science and Technology, Shenzhen, China
Dr. Haoran Zhang, The University of Tokyo Kashiwa Campus, Chiba, Japan
Prof. Shun-Peng Zhu, University of Electronic Science and Technology of China, Chengdu, China

Advisory Editors

Prof. Rajendra Udyavara Acharya, Ngee Ann Polytechnic, Singapore, Singapore Prof. Fadi Al-Turjman, Antalya Bilim University, Mersin, Turkey
Prof. Emilio Arnieri , <i>Università della Calabria</i> , Rende, Italy
Dr. Fernando Alfredo Auat Cheein , Universidad Técnica Federico Santa María, Valparaíso, Chile
Prof. Filippo Berto, Sapienza Università di Roma, Rome, Italy
Dr. Ioannis Brilakis, University of Cambridge, Cambridge, UK
Prof. Jinde Cao, Southeast University, Nanjing, China
Prof. Giovanni Celano, University of Catania, Catania, Italy
Dr. Raymond Chiong , The University of Newcastle, Newcastle, Australia
Prof. Giovanni Crupi, University of Messina, Messina, Italy
Dr. Nikolaos Dervilis, University of Sheffield, Sheffield, UK
Prof. Shuiguang Deng, Zhejiang University, Hangzhou, China
Dr. Valeria Di Sarli , Institute for Research on Combustion (IRC), CNR, Napoli, Italy
Prof. Mario Fargnoli, Universitas Mercatorum, Rome, Italy
Prof. Jason Ingham, The University of Auckland, Auckland, New Zealand
Prof. Diana Inkpen, University of Ottawa, Ottawa, Canada
Prof. Chao Jiang, Hunan University, Changsha, China
Prof. Jong Hyuk Park, Seoul National University of Science and Technology, Seoul, Republic of Korea
Prof. Chongqing Kang, Tsinghuα University, Beijing, China
Dr. Saru Kumari , Chaudary Charan Singh University, Meerut, India
Prof. Yuguo Li, The University of Hong Kong, Hong Kong, China
Prof. Xilin Lu, Tongji University, Shanghai, China
Endie Yin Kwee Ng , Nanyang Technological University, Singapore, Singapore

Open Access

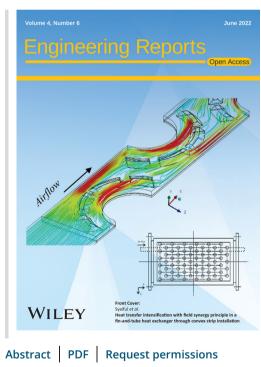
Volume 4, Issue 6

June 2022

< Previous Issue | Next Issue >

I GO TO SECTION

Export Citation(s)


FRONT COVER

🖸 Open Access

Front Cover Image, Volume 4, Number 6, June 2022

Syaiful, Taufan Anindhito Wicaksono, M. S. K. Tony S. U., Agus Suprihanto, Maria F. Soetanto

First Published: June 2022

The cover image is based on the Research Article Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation by **Syai**ful et al. <u>https://doi.org/10.1002/eng2.12510</u>

🖸 Open Access

Issue Information

First Published: June 2022

PDF Request permissions

REVIEW

🔁 Open Access

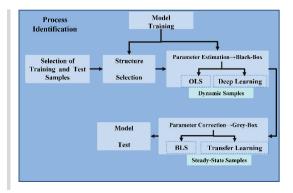
A review of connectors and joining technologies for electronic textiles

Jessica Stanley, John A. Hunt, Phil Kunovski, Yang Wei

First Published: 23 December 2021

Materials and technologies that enable joining of electronic textile circuits are an important step in the development of comfortable and durable smart garments. This article reviews the variety of joining methods used to date, covering both detachable and fixed connections, and highlighting the need for new joining technologies designed to meet the specific needs and challenges of electronic textiles.

Abstract | Full text | PDF | References | Request permissions


RESEARCH ARTICLES

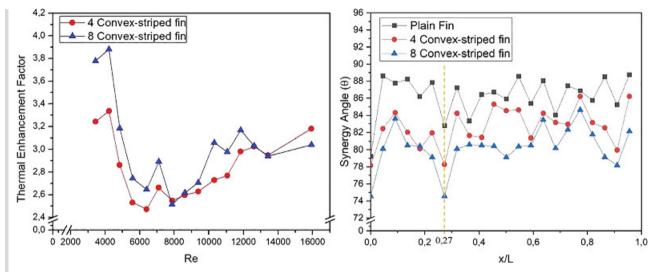
🔁 Open Access

Research on data-driven model for soft sensing of natural gas production system

Dan Wang, Qi Kang, Juheng Yang, Jing Gong, Qi Zhang

First Published: 28 March 2022

The data-driven model bank for gas production well proposed in this research is built through a series of process identification procedures, including samples selection, model structure selection, model parameter estimation, model parameter correction and model test. During model parameter estimation, a variety of black-box models are built based on dynamic samples, where orthogonal least square regression and deep learning technique are introduced to determine the parameters. During model parameter correction, parameters of black-box models are corrected by bi-objective least square algorithm and transfer learning technique with the help of steady-state samples to get corresponding grey-box models.


Abstract Full text PDF References Request permissions

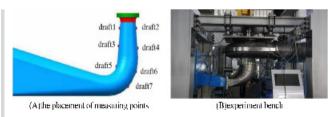
🖯 Open Access

Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation

Syaiful, Taufan Anindhito Wicaksono, M. S. K. Tony S. U., Agus Suprihanto, Maria F. Soetanto

First Published: 15 March 2022

Improvement of heat transfer using surface protrusion (convex strip) has been effective recently. Surface protrusion is able to improve flow mixing which increases the rate of heat transfer. Therefore, this study aims to improve the heat transfer in a fin-and-tube heat exchanger by fitting convex strips around the tubes. Three-dimensional modeling was carried out by placing four and eight convex strips around the staggered tubes at a constant temperature of 106°C. The turbulent k– ϵ model was applied at a Reynolds number range of 3438–15,926. The results of the study indicate that tubes with eight convex strips demonstrated a heat transfer improvement of 40.46%, compared to that with four convex strips. In this case, the TEF is 6.27% higher than the four convex strips. In addition, the synergy angle in the eight convex strips configuration was 0.13% lower than that of the four convex strips configuration. Meanwhile, the flow resistance in the tubes with eight convex strips configurations was 30.96% higher than that of the four convex strips.


Abstract Full text PDF References Request permissions

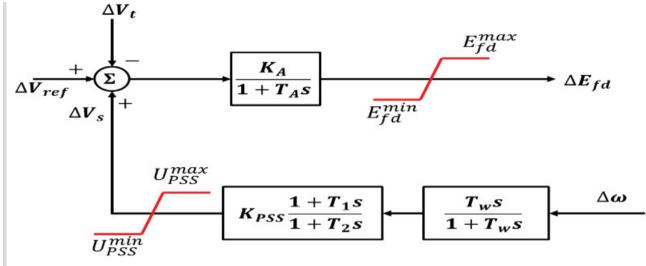
🖸 Open Access

Wavelet and improved Hilbert–Huang transform method are used to study the spectrum distribution and energy of turbine pressure pulsation

Chaofeng Lan, Bowen Song, Shuijing Li, Lei Zhang

First Published: 27 December 2021

In order to reveal the relationship between turbine running state and energy characteristics, wavelet analysis and improved HHT transformation method are used to study the frequency band distribution and energy characteristics of pressure pulsation collected at the tail pipe of the turbine.


Abstract Full text PDF References Request permissions

🔁 Open Access

Optimal tuning of fractional-order proportional, integral, derivative and tilt-integral-derivative based power system stabilizers using Runge Kutta optimizer

Mahmoud Abbas El-Dabah, Salah Kamel, Mohammad Ali Yousef Abido, Baseem Khan

First Published: 19 December 2021

This article aims to the optimal tuning of three types of PSS using a recent optimization algorithm called Runge Kutta.AbstractFull textPDFReferencesRequest permissions

🔁 Open Access

A generation and distribution system of clock signal source for signal acquisition system

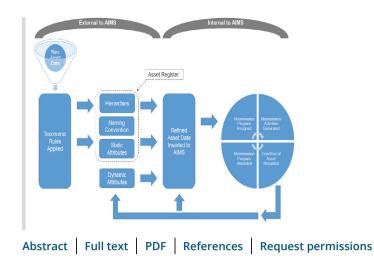
Lei Zhang, Yuanyuan Zhang, Ziqian Shang, Yanrui Su, Fabao Yan, Zhao Wu

First Published: 30 December 2021

	Maximum of	RMS	PLL	Number of	FOM for PLL
	output	jitter	quantity	output channels	
AD9516	2.95GHz	225 fs	One	10 channels	-220dBc/Hz
AD9524	lGHz	200 fs	Two	6 channels	-226dBc/Hz
LMK04808	2.9GHz	111 fs	Two	14 channels	-227dBc/Hz
LMK04828	3.08GHz	88 fs	Two	14 channels	-227dBc/Hz
HMC7044	3.2GHz	44 fs	Two	14 channels	-232dBc/Hz

In this article, a programmable system of clock generator and distribution in microwave frequency band is designed for highspeed acquisition system using dedicated clock chip of HMC7044. Based on the system, a new control program developed by Verilog language, the new configuration method is more concise. Without calling the underlying functions, it can directly control the clock system at the circuit system level.

Abstract Full text PDF References Request permissions


🔂 Open Access

Development of a complementary framework for implementing asset register solutions

Lar English, Akilu Yunusa-Kaltungo, Moray Kidd, Ashraf Labib

First Published: 21 December 2021

The asset register is an important but under-researched aspect of maintenance systems. This article addresses the gaps in the guidance offered in standards to develop an asset register and insert it to an asset information management system.

Tools

Submit an article

Get Content alerts

More from this journal

Special Issues Top Cited Articles Top Downloaded Articles Recruitment of Potential Reviewers

Browse by Subject Category

~

DOI: 10.1002/eng2.12510

Engineering Reports

WILEY

Heat transfer intensification with field synergy principle in a fin-and-tube heat exchanger through convex strip installation

Syaiful¹ | Taufan Anindhito Wicaksono¹ | M. S. K. Tony S. U.¹ | Agus Suprihanto¹ | Maria F. Soetanto²

¹Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia

²Department of Mechanical and Aviation Engineering, Bandung State Polytechnic, Bandung, Indonesia

Correspondence

Syaiful, Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia. Email: syaiful@lecturer.undip.ac.id

Funding information Direktorat Riset Dan Pengabdian Kepada Masyarakat, Grant/Award Number: 225-110/UN7.6.1/PP/2021

Abstract

Improvement of heat transfer using surface protrusion (convex strip) has been effective recently. Surface protrusion is able to improve flow mixing which increases the rate of heat transfer. Therefore, this study aims to improve the heat transfer in a fin-and-tube heat exchanger by fitting convex strips around the tubes. Three-dimensional modeling was carried out by placing four and eight convex strips around the staggered tubes at a constant temperature of 106°C. The turbulent $k-\varepsilon$ model was applied at a Reynolds number range of 3438–15,926. The results of the study indicate that tubes with eight convex strips demonstrated a heat transfer improvement of 40.46%, compared to that with four convex strips. In this case, the TEF is 6.27% higher than the four convex strips. In addition, the synergy angle in the eight convex strips configuration was 0.13% lower than that of the four convex strips configurations was 30.96% higher than that of the four convex strips.

K E Y W O R D S

convection heat transfer coefficient, convex strip, field synergy principle, friction factor, vortex intensity

JEL CLASSIFICATION Mechanical engineering

1 | INTRODUCTION

Fin-and-tube type heat exchangers have been widely used in various manufacturing industries. In most cases, gas is used as the medium for heat exchange in fin-and-tube heat exchangers; however, the high thermal resistance on the gas side causes a low heat transfer rate. Therefore, the heat transfer rate on the gas side should be improved to increase the efficiency of this type of heat exchanger.^{1–3}

Studies have been carried out experimentally and numerically to increase the gas side heat transfer rate in fin-and-tube heat exchangers. One of the methods to increase the heat transfer rate is by manipulating the surface geometry of the fins. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

@ 2022 The Authors. Engineering Reports published by John Wiley & Sons Ltd.

Engineering Reports

WILEY

RESEARCH ARTICLE

Revised: 8 December 2021

Research on data-driven model for soft sensing of natural gas production system

Dan Wang^{1,2} | Qi Kang³ | Juheng Yang⁴ | Jing Gong³ | Qi Zhang¹

¹School of Economics and Management, China University of Petroleum (Beijing), Beijing, China

²CNPC Economics and Technology Research Institute, Beijing, China

³National Engineering Laboratory for Pipeline Safety, China University of Petroleum (Beijing), Beijing, China

⁴PetroChina International Co., Ltd., Beijing, China

Correspondence

Jing Gong, National Engineering Laboratory for Pipeline Safety, China University of Petroleum (Beijing), 18 Fuxue Road, Changping, Beijing 102249, China.

Email: ydgj@cup.edu.cn

Funding information

China University of Petroleum (Beijing) Scientific Research Foundation, Grant/Award Number: 2462020YXZZ045; National Natural Science Foundation of China, Grant/Award Number: 51874323

Abstract

In view of the problems of high cost and low reliability in obtaining operation information such as flow rate and pressure of offshore natural gas production system, research on soft sensing is carried out, and a dynamic data-driven model bank is established, in purpose of estimating single-well flow rate and wellhead pressure, providing convenience tool for online monitoring and system safety analysis. Combining dynamic and steady-state samples, introducing black-box identification techniques including orthogonal least square regression and deep learning along with parameter correction techniques such as bi-objective least square algorithm and transfer learning, a series of nonlinear auto-regressive models with exogenous inputs (NARX) are built, consisting of black-box and gray-box polynomial NARX (Poly-NARX) models as well as deep neural network NARX (DNN-NARX) models, approximately describing the dynamic performance of gas production well. Through realistic operation data, the simulation results of Poly-NARX, DNN-NARX, and multiple-layer-perception-NARX models are compared. It is observed that gray-box DNN-NARX model shows the best performance with advantages of higher global applicability, better approximation ability, and stronger generalization ability. Proposed model bank is of high expansibility and engineering applicability for soft sensing problems in the petroleum industry, laying the ground work for building smart oil and gas field.

KEYWORDS

data-driven soft sensing, deep learning technique, flow management, NARX model, offshore gas production system, process identification, smart oil and gas field

JEL CLASSIFICATION

Industrial engineering

1 | INTRODUCTION

With the development of offshore oil and gas fields, the monitoring of corresponding production systems are faced with severe challenges: complex marine environment, high cost of installation and maintenance for multiphase flow meters, and interference of various errors on the temperature and pressure measurements lead to difficulty in obtaining reliable

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2022 The Authors. *Engineering Reports* published by John Wiley & Sons Ltd.

RESEARCH ARTICLE

Engineering Reports

WILEY

Development of a complementary framework for

implementing asset register solutions

Lar English¹ | Akilu Yunusa-Kaltungo² | Moray Kidd² | Ashraf Labib³

¹Facilities Systems and Assets, Gas Networks Ireland, Cork, Ireland

²Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK

³Faculty of Business and Law, University of Portsmouth, Portsmouth, UK

Correspondence

Lar English, Facilities Systems and Assets, Gas Networks Ireland, P.O. Box 51, Gasworks Road, Cork, Ireland. Email: lar.english@gasnetworks.ie Akilu Yunusa-Kaltungo, Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK.

Email: akilu.kaltungo@manchester.ac.uk

Abstract

A correctly compiled asset register within an asset information management system (AIMS) provides the foundation for a successful asset data solution. The lack of correctly structured asset registers within organizations is acknowledged among research and communities of practice. A case study identified anomalies that emerge when using established standards, after which a comprehensive solution for hierarchies, naming conventions and attributes was offered. While standards such as BS ISO 1007 and ISO 14224 provide overarching solution principles, such provisions are not all-encompassing and exist across several sources, which makes the task of developing asset registers error-prone and laborious. Challenges associated with software applications were highlighted through combining personal industrial experience as well as consultations with the existing body of knowledge. Recommendations that enable successful deployment of AIMS, with emphasis on its accommodation of a reliable asset register were then proffered. Scalability was addressed which enables an asset register to expand. This study describes a novel and simplified approach embodied within a single document. Combining the prescriptions of this article with existing literature will ease the delivery of an asset register.

K E Y W O R D S

asset data, asset hierarchy, asset management, asset register, CMMS, configuration management

JEL CLASSIFICATION

Engineering Education

1 | INTRODUCTION

The creation of asset registers is often overlooked at the project phase by owners and project stakeholders, although they are an essential component of an asset management solution. Data and information handover to the operations phase is left until the completion of the project phase and information is typically handed over in incorrectly structured formats. With this late delivery of unstructured data, it becomes very challenging for owners and asset managers to assess whether the information they need is present and correctly structured. In addition, the transfer of such data and information to the asset information management system (AIMS) is a costly and time consuming process, resulting in extended periods before optimal asset performance can be determined, as optimization decisions (e.g., maintenance, energy, safety) at This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Engineering Reports published by John Wiley & Sons Ltd.