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Eq. (22) indicates that the improvement of heat transfer can
be enhanced by raising the integral of its convective term on
its thermal boundary layer [27]. This Eq. (22) can be written
in vector form as expressed by Eq. (23):

pc, (U VTYdy = ~k g—; 23)

where, the physical properties of p and cp are considered
constant. By defining some dimensionless parameters such as
u VT ._B

L R,
U= "Me@mmom Y =5 T80,

Eq. (23) can be expressed in the dimensionless form as
shown in Eq. (24):

Re,Pr [(U*- VT")dy" = Nu, (24)

By dividing Eq. (24) with Re.Pr, it is found the Stanton
number (St), which is a modification of the Nusselt number,
St = Nu,/Re,.Pr. as can be expressed in Eq. (25):

- vTe)dy” =5t (25)

Increased Stanton number means an increase in heat transfer.
This increase in Stanton number can be performed by
increasing the value U* - VT*. This increase in the value of U* -
VT can be indicated by decreasing the angle between the
velocity and the temperature gradient in the flow referred to as
the synergy angle, as expressed in Eq. (26):

34
U VT = [U°||VT" |cosh or cosf = -T2 (26
= or = 29
where, #is synergy angle.

Figure 10 shows the synergy angle along the surface of the
plate for the case of DW and CDW VGs with variations in the
number of pairs of VGs and the number of holes in VG at the
fluid velocity of 0.4 m/s. In general, the use of vortex
generators can increase the local heat transfer rate due to
mixing flow with the presence of LVs. This can also be
observed with low local synergy angle because the lower the
synergy angle between the velocity vector and the temperature
gradient indicates an increase in heat transfer as formulated in
Eq. (26) [28]. From the results of a numerical analysis, it is
observed that the value of the synergy angle in the wake region
for the case of CDWP VGs is lower than for the case of DWP
VGs. This indicates that CDWP VGs can increase heat transfer
rates better than that of DWP VGs. Figures 10 (a) and (d)
illustrate the synergy angle for one pair of DW and CDW VGs
with/without holes, respectively. By comparing Figures 10 (a)
and (d), it is observed that the lowest synergy angle is found at
x/L> 0.3 for both DW and CDW VGs cases with/without holes.
For the case of one pair of DW VGs, the lowest value of the
synergy angle is found for VG without holes at x/L=0.4. This
is in accordance with the convection heat transfer coefficient
value of the experimental results shown in Figure 8 (a).
Inconsistency is found in the simulation results where DW




VGs without holes have a convection heat transter coefficient
slightly lower than the case with three holes. However, the
prediction of the average convection heat transfer coefficient
value may be valid because the synergy angle predicts an
increase or decrease in heat transfer locally. A similar problem
is found in the case of one pair of CDW VGs revealed in
Figure 10 (d). In this case, the synergy angle value for CDW
VGs without hole has the lowest value compared to the
perforated CDW VGs at several locations. However, the
lowest synergy angle is found in the case of CDWP VGs with
two holes at x/L=0.32 in which this location is located behind
the VGs. The lowest synergy angle at this location reaches

74.9° In the case of one pair of DW VGs, the lowest synergy
angle shifts slightly away from the wake region, ie., at
x/L=0.4. At this location, the lowest synergy angle is observed
at 83.8°. Figures 10 (b) and (e) show synergy angles for two
pairs of DW and CDW VGs with or without holes in VGs for
flow velocity of 0.4 m/s. As observed in these figures, two
valleys are observed in both cases of two pairs of DW and
CDW WGs. These two valleys reveal the lowest value of the
synergy angle found in the wake region of VGs for this case.
The lowest synergy angle for the case of two pairs of DW VGs
is 85.1° and 84.5° at x/L=0.32 and 0.6, respectively. The same
thing is observed in the case of two pairs of CDW.

Synergy angle (degree)

Synergy angle (degree)

0% : : ; ; :
00 0z 04 08 08 10
L
(a) One pair DW VGs
s @
F—roroe =]
&9 [—e— one hole
(—i— two holes
|s— three holeg 64
Ess- = o
Y Em'
1 2
E 2
8 g
§ o5 E-,-s_
&
& ]
85
T4
b T T T T T 0
o 0z 04 08 08 10

HL

(d) One pair CDW VGs

(¢) Two pairs CDW VGs

() Three pairs CDW VGs

Figure 10. Comparison of the value of the synergy angle between cases of DWP [(a), (b), and (¢)] and CDWP VGs [(d), (¢) and
()] at flow velocity of 0.4 m/s without and with one, two and three holes in the VGs

VGs where the lowest synergy angles of 74.7° and 77.3° are
found at locations x/L=0.32 and 0.56, respectively. By
comparing Figures 10 (b) and (e), the lowest synergy angle
achieved in the case of two pairs of CDW VGs is lower than
that achieved in the case of two pairs of DW VGs. This is
caused by stronger longitudinal vortices produced by CDWP
VGs compared to DWP VGs resulting in better mixing of
fluids at these locations [29]. Figures 10 (c) and (f) show the
local synergy angle for the case of three pairs of DW and CDW
VGs with and without holes at a flow velocity of 0.4 m/s.
Three valleys are found in both cases. Three valleys are found
in both of these cases, where all three are located in the wake
region of VGs. In the case of DWP VGs, these three valleys
have the lowest synergy angle values of 85.4°, 84.6°, and 84.8°
at x/L=0.36, 0.56, and 0.84, respectively. While for the CDWP
VGs, the lowest synergy angle located at x/L=0.32, 0.56, and
0.8 are 72.7°, 76.8°, and 76.7°, respectively.

By comparing the value of the synergy angle in these two
cases, it can be concluded that the installation of CDWP VGs

produces a smaller local synergy angle than the installation of
DWP VGs. This indicates that the increase in local heat
transfer is better by using CDWP VGs than DWERY Gs. This
result is consequent with a higher convection heat transfer
coefficient in the use of CDWP VGs than in the use of DWP
VGs at flow rates of 0.4 m/s, as shown in Figures 8(c) and 9(c).

4.6 Pressure distribution

Figure 11 @ows the distribution of pressure along with the
flow across three pairs of DW and CDW VGs at a flow
velocity of 0.4 m/s. The use of VG results in greater flow
resistance in the main flow caused by obstacles in the cross-
section and friction along with the flow. The use of perforated
DWP VGs shows a lower pressure distribution compared to
that of the perforated CDWP VGs. The hole in the VG causes
jet flow, which results in damage to the stagnant fluid behind
the VG and damage to the recirculation area [9]. This proves
that the hole in the vortex generator causes a decrease in flow




resistance, indicating a decrease in pressure drop.
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Figure 11. Pressure distribution of flow through DWP and
CDWP VGs

4.7 Effect of vortex generator on pressure loss penalty

Comparison of pressure drop for cases of delta winglet pair
vortex generators (DWP VGs) with variations of one, two, and
three holes and without holes is shown in Figure 12. The use
of VG is able to enhance heat transfer, but it has an impact on
the increase in pressure drop [ 18, 29]. The results of numerical
calculations and experimental results show a similar tendency.
The deviation between the simulation and experimental results
is observed to be large enough at flow velocities greater than
1.2 m/s. Simulation and experiment results illustrate that
pressure drop increases with increasing fluid velocity. This
increase in pressure drop is caused by an increase in the drag
force formed by increasing flow velocity [18]. Simulation
results indicate that the addition of three holes in one pair of
DW VGs yields a 9.3% reduction in pressure drop at a flow
velocity of 2 m/s, as shown in Figure 12 (a). The highest
decrease in pressure drop with three holes in VG is found in
the case of two pairs of DW VGs (2 DWP VGs) of 42.5% ata
flow velocity of 2 m/s. The results of the current study also
show that pressure drop increases with the increase in the
number of pairs of VGs, as can be seen in Figure 12. The
reason is the flow resistance produced by the friction between
the flow and the surface of the VGs and the backflow caused

by a longitudinal vortex formed from VGs [30]. By comparing
Figures 13 and 12, similar tendencies are shown in the use of
CDWP VGs. Pressure drop increases with the flow velocity.
Pressure drop is reduced by 25.6% by providing three holes
for the installation of one pair of CDW VGs at a flow velocity
of 2 m/s. While for the case of 3 pairs of CDW VGs, the
pressure drop is decreased by 11.6% by giving three holes in
the VGs at a flow velocity of 2 m/s. By comparing the results
of the investigations shown in Figures 12 an@El3, it is
concluded that the use of concave VG, resulting in a higher
pressure drop compared to the use of flat form VG. This is
caused by the stronger backflow generated by the CDWP VGs
because of the stronger longitudinal vortex.
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Figure 12. Pressure drop for DW VGs with different number
of pair and hole in variations of inlet velocities
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Figure 13. Pressure drop for CDW VGs with different
number of pair and hole in variations of inlet velocities

5. CONCLUSION

Numerical analysis of the effects of using perforated DWP
and CDWP VGs on heat transfer and flow resistance has been
carried out. Its effect on heat transfer and pressure drop can be
summarized as follows:

(1) The longitudinal vortex radius generated by CDWP VGs
was greater than that generated by DWP VGs. The common-
flow up (CFU) configuration produces counter-rotating flow
observed in the wake area.

(2) Based on the analysis of the longitudinal vortex intensity,
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the longitudinal vortex intensity produced by CDWP VGs was
higher than that generated by DWP VGs at the same location.
The longitudinal vortex intensity decreased slightly with the
increase in the number of holes in the VGs.

(3) Heat transfer from the flow near the wall to the middle
of the flow for the use of DWP VGs was slower than the
installation of VGs CDWP. Holes in VGs caused interference
with the longitudinal vortex formed.

(4) The use of CDWP VGs increased the heat transfer rate
higher than the use of DWP VGs. The use of holes in VGs had
little impact on the decrease in convection heat transfer
coefficient.

(5) The synergy angle in the use of CDWP VGs was found
to be smaller than the use of DWP VGs. From the concept of
the synergy principle, the smallest synergy angle was observed
for cases of VGs without holes in either DWP or CDWP.

(6) The use of CDWP VGs yielded a higher pressure drop
compared to the use of DWP VGs. Holes in VGs can reduce
pressure drop significantly.
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NOMENCLATURE

A Surface area (m?)

o Specific heat (J/kg.K)

Dy Hydraulic diameter (m)

i Friction factor

G Generation of k (kg/m*.s*)

G, Generation of @ (kg/m*s*)

h Convection coefficient (W/m?K)
I Turbulence intensity (%)

i Colburn factor

k Turbulence kinetic energy (J/kg)
L gth (m)

m Mass flow rate (kg/s)

Nu Nusselt number

P pressure (Pa)

Pr Prandtl number

Convection heat transfer rate (J/s)
Re Reynolds number

St Stanton number

T Temperature (K)

u, v, w X,y zvelocity components (m/s)
Ui velocity in i-direction (m/s)
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velocity in k-direction (m/s)

Cartesian coordinates

Dissipation of k due to turbulence (kg?/m*.s%)
Dissipation of wdue to turbulence (kg?/m*.s%)

Greek letter

p Density (kg/m*)

r Diffusion Coefticient (kg/m.s)

T, Effective of Diffusivities & (kg/m.s)
r, Effective of Diffusivities w (kg/m.s)
Ty Prandtl number of k

Ty Prandtl number of @

AP Pressure drop (Pa)

w Specific dissipation rate (1/s)

g Synergy angle (°)

I Viscosity (kg/m.s)

Q Vortex Intensity

W, Vorticity (1/5)

s Turbulent Viscosity (kg/m.s)

A Thermal conductivity (W/m.K)
Subseript

in inlet

w wall

out outlet
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