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Abstract. In this paper, Dunford integrals and their primitive functions are discussed. We discuss
its properties related to absolutely continuous, strictly absolutely continuous, bounded variation
function, strictly bounded variation function and their generalizations. The result is obtained that
for each function which integrated Dunford, then the primitive function is a continuous,

absolutely continuous, and bounded variation function. Furthermore, its generalized absolutely
continuous and generalized bounded variation function.

1. Introduction

Newton has define the integral of the function f from [a,b] to R through anti-derivatives F on [a,b]

, with F (.\f)=f(x)f0r every x element [a.b]. A function F is called primitive of f on[a.b] and
b
J-j' (x)x=F(b)—-F(a) [1]. While, Riemann has define the integral of function f through a function

constant & >0,i.e. f:[a.b] > Ris said to be Riemann integrable to R,on[a,b]if forevery & >0 there

is constant & >0 such that for any partition P = {.\CU,X, seenn X, } onla,b] we have

if("f)(-‘f -4 I)_RR

Based on properties of Riemann integral, we defined primitive the based F on [a.b] by

<E.

F(x) = (RR )Ij'(a)da and if f is continuous.then F' is anti-derivatives. In addition of Mathematics,

the Riemann integral is used in physics and engineering. The development of the types of function in
physics and engineering gives an impact on the function that is not Riemann integrable.

Lebesgue resolves issues that the Reimann integral has not resolved. Lebesgue has define the integral
of the function f:[a,b]— R through measure [2]. A function f is Lebesgue integrable if and only if

‘f| is Lebesgue integrable. One of the applications of Lebesgue integral is determining the coefficients

of the Fourier formula [3].Space of Lebesgue integrable function is complete normed space. This has
caught attention of researchers.
Based on the Lebesgue integral. the integral of weakly measurable function f is Banach-valued

function like Donford said. A function f :[a,b] — X be Dunford integrable on [a,b]ifforeachx” € X~
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real-valued function X*(f) is Lebesgue integrable [3]. Some properties of Dunford integral has

discussed. Linear space and seminorm space be the space of Dunford integrable functions. Furthermore,
operators which work on space of Dunford integrable function is linear and bounded operators [4]. It is
weakly compact linear operators [4], [5].

From Lebesgue integral and Dunford integral, Dunford integrals and their primitive functions are
discussed. We discuss its properties related to absolutely continuous, strictly absolutely continuous,
bounded variation function, strictly bounded variation function and their generalizations.In this article,
nothing new is found. We collaborate from something that already exists [1], [2]. [4].

2. Absolutely Continuous Functions and Functions of Bounded Variation and their
Generalization

The following discusses among absolutely continuous function, function of bounded variation, and their
generalization. We show their relation.

Definition 2 .1 Let function F:[a,b]l— X with X is Banach space and A — [a,b] . A function F is called

absolutely continuous on A , denote F € AC [A) Jifforevery £>0thereisa & >0 such that {(va."f)}

is sequence of non overlapping intervals on [a,b], Xx,.y, € A and Z(y,. —x,)<d implies

;ZI”F(-‘C; Y )”X = ,-Z”F(y" ) _F(.\‘I.)

<&,
X

Definition 2.2 A function F is called restricly absolutely continuous on A , denote F € AC’ (A) ,if for

every & >0there is a & >0 such that {(x,.,y,.)} is sequence of non overlapping intervals on |a,b],

x,y, €A and 72():,. —x) <8 implies
i=]

0

ZQ)(F;[XI.,_\,JJ)<£

i=l

where o (F3[x,,y,])= sup{HF(x)—F(y)

|X :x,ye[x,,_v,],izl}.

By Definition 2.1 and Definition 2.2 we easily proof, if FEACA(A) then FEAC(A) and
AC" (A)c AC(4).

o

Theorem 2.3 Let A < [a,b] is closed set, (a,b]—AzU(C d ) and F is continuous for every

[t
k=1

x € [a,b]. The following conditions are equivalent:

(i). F is restricly absolutely continuous on A ,
(ii). F is absolutely continuous on A and

> o(F:lc.d,])<w.
i=1
(iii).For every & >0 there is ad >0 such that {(a, b, )} is sequence of non overlapping intervals with

acAorbeA and Z(bffa,.)<§ we have

i=1

[¥]
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SJF(B)-F(a)], <2 .

Definition 2.4 A function F is called bounded variation on A < |a,b], denote F € BV(A) , if there
isa M >0 such that for every sequence of non overlapping intervals {(a. b, )} af.,bf. e A we have

;”P (bf)_F(af)

<M.

X

Definition 2.5 A function F is called restricly bounded variation on A< [a,b], denote F € BV" (A) ,

if there is a M =0 such that for every sequence of non overlapping intervals {(aj,bj )} af.,bj. eA

we have

Zw(]’:[af.,bf.])s M.
j=1
The relation between AC and BV.
Theorem 2.6 If F € AC(A)then F € BV(A).

Proof. by Definition 2.1 and Definition 24. o

Theorem 2.7 If F € AC"(A)then F e BV (A).
Proof.We known F € AC (A) .Its means for every £ >0 (fixg =1)thereisa & > 0 such that for every

{[c, .d,.)} on[a,b], c;.d. € A andi(d,. —¢,)< & wehave

i=l
ifo(F;[c,..df]) <g=1.

i=1

Takes M =sup{iw(!7;[cf.df )<lic.d e A}.
i=l

Then there is a M =0 such that for every {(ar.,b, )} .a..b. e A we have

i(o(F;[a,,iJ,.]) <M.
i=1

So, F EBVa(A) .o

Theorem 2.8 If F € BV (A) then F e BV(A).
Proof. F BVa(A) ie.there is a M =0 such that for every {(ar.,br.)} .a,,b. € A we have

im(F;[a,.,bf])SM )

It is implies

SIFGan ), =XIF0)-F (@),
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< 25up{”F(.\:) — F(y)”x ixyela.bl iz 1}

=im(F;[af b1)
<M.
In other word F € BV (A) . o

Definition 2.9 Let X is Banach space and function F :[a,b] — X . A function F is called generalized

absolutely continuous function on A < [a,b), denote F € ACG (A) , if there exists sequence la } such

n

that

A:Oan and F AC(an),Vn.

n=1
Definition 2.10 A function F is called generalized stricly absolutely continuous function on A C [a,b]

. denote F € ACG” (A) if there exists sequence {a”} such that

A:Oaﬂ danF € AC (a,),Vn.
n=1
Theorem 2.11 IfF € AC(A) then F € ACG(A).
Proof. F € AC(A).

We construct a sequence {a"} such that A:ljar . We known F € AC(A) and A:Oa" then

n=1 n=l1

FEAC(EJa”J.It implies FEAC(a,?), Yn.

ni=1

d

Hence, there exists sequence {a" } such that

A:Oan and F' € AC(an),Vn.

ni=1

So. FEACG(A). o

Theorem 2.12 If F € AC”(A)then F € ACG (A).

Proof.F € ACQ(A). We construct a sequence !a”}such that A:Oan . In fact F € AC’ (A) and

n=l1

A ZOan then F € AC” [Oa”J timplies F € AC’ (an), Vn.

n=1 n=1

Therefore, there exists sequence {aﬂ} such that

A=Oaﬂ andFeAC“(an), Vn.

n=1

So, F e ACG (A). o
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Theorem 2.13 If F € ACG"(A) then F € ACG(A) .
Proof.F € ACG (A) L.e. there exists sequence {an} such that

A:Oan and F € AC"(a,),Vn.

n=1
In fact,if F € AC (a,).VnthenF € AC(a,).Vn.
Hence, there exists sequence la"} such that

Azoan and F' € AC(an),Vn.

n=1

In other word F € ACG( A) . o

Definition2.14 A function F is called generalized bounded variation function on A < [a,b], denote
Fe BVG(A) , if there exists sequence {a"} such that
A :Uan and F € BV (an),Vn i
ni=1
Definition 2.15 A function F is called function of generalized stricly bounded variation on A < [a,b]
. denote F € BVG' (A) , if there exists sequence {a”} such that
A:Uan and F € BV’ (a”),Vrz.
=1
Theorem 2.16 If F € BV (A) then F € BVG(A).
Proof. We know that F e BV(A) , its means there is a M =0 such that for every {(ar .b, )} ]
a.beA,

=M

X

S JF(an)

We construct a sequence {aﬂ } such that A= Dd" .WeknownF € BV(A) and A= Oan then

n=1 ol
F e BV (Oa”J . We obtained F € BV (a, ), Vn .
ni=l
Hence. there exists sequence {a"} such that
A:Oﬂ" and F € BV(a”), Vn.

n=1

So, FEBVG(A). o

Theorem 2.17 Jika F € BV’ (A) maka F € BVG' (A)
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Proof. We known FEBVQ(A) . We construct a sequence la"} such that A:Ua” . In fact

n=l

FeBV' (A) andA:Oan then F EBV’[DQ”} Its imples F € BV (a"), Yn.

n=l1 n=l1

It yields, there exists sequence {a”} such that

A:Oan and F € BV (a,). Vn.

n=l1

Now we have concluded that F € BVG' (A) o

Theorem 2.18 If F € BVG' (A)then F € BVG(A).
Proof.F € BVG' (A)i.e. there exists sequence {a"} such that

A:Oan and F € BV (a,),Vn.

ni=1

By theorems, F e BV’ (an ) .Vnthen ' € BV (a” ), Yn

It means, there exists sequence {a"} such that

A=Oan and F eBV(an),Vn .

n=1

In other side, FEBVG(A). [}

We conclude AC™(A) = ACG (A) = ACG(A) ; ACT (A)c AC(A)= ACG( A)
AC"(A)c BV (A)cBVG (A)=BVG ;or AC™(A)c BV (A)c BV (A)c BVG.

3. Primitive Function of the Dunford integral
Before, we defined primitive function of the Dunford integral and relation among primitive, absolutely
continuous, bounded variation and their generalized. We will define Dunford integral. As following.

Definition 3.1 [5] Let X be Banach space and X~ be dual of X . A function f :[a,b] — X be Dunford
integrable onlab] denote f eD,[a,b], if for eachx e X", x'(f):la.bl—> R is Lebesgue integrable

i

and for each A c|a,b]set of measurable there is ax,, . € X we have

(£ 4)
3 (x) =[x (1),

A
Jor everyx €X".
Denote D, [a.b]is set of all function which it is Dunford integrable.

Theorem 3.2 [5] The function f be Dunford integrable on [a.b]if and only if for eachx" € X" x° (f)
be Lebesgue integrable on [a,b].
Proof. It is obviously by Definition 3.1

Now, we define primitive function of the Dunford integral.
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Definition 3.3 Ler J[a,b] be collection of all closed interval in [a,b], and f:[a,b] > X . If
feD,lapb] then F:Jla,b] > X by

E(A) :x{»_:',d} :(DL)jf
yl

and F (@) =0for every Ae J[a,b]is called primitives Dunford of f on [a,b].

Example 3.4 We defined function f :[a,hb] > X by

fx)=c,
for every x e[a,bh] and some constant c € X , then for any closed intervals A [a,b] primitives
Dunford of f is F(A)=ca(A).

Definition 3.5 A function F : 3[a,b]l — X is called additive, if
F(PUQ)=F(P)+F(Q)
for each P,Q € J[a,b] where P\ UQ € J[a,b] and P NQ is empty set.

Theorem 3.6 If [ € D,[a,b] with the primitive F, then F is additive on [a,b] .
Proof. given Ac[a,b] and B c[a,b] respectively any closed intervals, A\ B < [a,b] and non

overlapping, then for each x" e X~ rj is Lebesgue integrable on[a,b]and there is ax . . € X and

(f.4)
x{’_;‘y} € X" such that
X)) = (L)jx'f and
A
X, (X)) = (L)jx‘f .
Therefore, there is a x{”_;.‘dbg} EH X" such that
3 () 4550 () = (D[ (ND+ D)X () = (@) [ ¥ (f) =] ()
S, 4 F; 4B
x{”_;‘ﬁug} = x{”_;.‘r” +x{'_;.‘b,)0rF(AUB) =F (A) +F (B) . o

Corollary3.7 If f € D, [a,b] with the primitive Fand A, A,,...,A respectively any closed intervals

in [a,b] which non overlapping and U A =la,b), then

i=1
FUM =3 F) =3,
i=1 i=1 =l

Proof:We known f € D,[a,b] and F is primitive of f , UA =la.b] where 11,(ANA)=0for
i1

every i # j wehave

F[u A ] =xj‘: G =X}y T X a) Tt A4 =F(A)+ F(A) +...+ F(A)

\
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:EF(A,.) :g‘\{;ﬁ,] : o

Next, by Definition 3.1, Definition 3.3 and equivalent of Lebesgue integral and McShane integral,
we can define Dunford integral as in the following theorems.

Theorem 3.8 A function f € D,[a.b] iff there exists additive function F on[a,b]such that for every
£>0 andx € X there is a positive function & on [a,bland for any A < [a ,b] closed intervals and

McShane partition D= {(D] X).(Dy,x,),....(D, ,xn)} O —fine on A we have

<&

2% (fx)a(D)~F(D))

ar

> X f(x)a(D)—x"F(A)

i=1

<& .0

Theorem 3.9 (Sack-Henstock Lemma) A function [ € D,[a,b] and F its primitive, i.e. for every
e>0and x" element X thereisa & >0 on [a,b] such that for any A |a,b]closed intervals and
McShane partitions D = {(D,x)} O -fine on A we have

D% f (D)~ X" F(D)| < ¢
Then for any partial sums Z] of fl)z we have
DY X f(Da(D)-xF(D)| <. o

Theorem 3.10 If [ € D, [a.b] with the primitive F , then F be continuous onla,b].
Proof.by Sack-Henstock Lemma and inequality, easy to proof this theorem.

Theorem 3.11 If [ € D,[a.b] and F its primitive, then F € BVGla,b].
Proof.we known f € D,[a.,b] iec. for every £>0and x € X there is a yon[a,b] and for any
Ac]a,b] closed intervals and McShane partition 2 = {(D] ,x]),(Dl,xl),...,(l)n,x")} O —fine on A

we have

<&

2.5 (f)aD)-F (D))

or

<& .

D X' f(x)a(D,)—x F(A)

Given fix £=1, 5(x) < 1with Hr H)‘ <1.

i—1 i . 1 1
We construct set A, issets of all x € [a +——,a +—] " [a,b] with ”f(x)”x <nand— < d&(x) i—l
n n n n—
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We obtained [a,b]=| | A

= ni "
Given arbitrary sets of closed intervals non overlapping ![ak b, ]} ,a,,b, €A forallk.
We nbtained{(ai la, .b, ])} is Perron partition ¢ -fine K — system in[a,b].

Hence, we have

ZF (la,.b,]

<l S a0

<”"‘ ” HZFU““ J)— fla)(b, —a, )+ fla)(b, -

X

<[], HZF (1a, 5,1)- f@) (b —ay)

| . \zfm )

X
<1+n(b—a).

It is shown that FEBV(A,".).

So. F € BVGla,b]. o

Corollary 3.12 If f € D,[a,b] and F its primitive, then there exists {Am.} is sequence of sets such

that [a,b) UA and Fe BV (A,).Vni. o

ni

=2

Theorem 3.13 If f € D|a,b] with the primitive F , then F € BV|a,b].
Proof. We known f € D, [a,b]with the primitive F , by Corollary 3.12 there exists sequence of sets

o

{A".} such that OAN. =la,b] and F EBV(A,"),VH,E . F EBV(AM),VHJ and [a,b]:UA. s

i
i=1
n=2 n=2

implies F € BV|[a,b]. o

Theorem 3.14 If [ € D,[a,b] and F its primitive, then F € ACG|a,b].
Proof. we know f € D, [a,b]. Its means for every £>0 andx’ € X "there is a § >0 on[a,b]and for
any Ac[a,b] closed interval and McShane partitions D= {(D] X ).(D5,%,),..0,(D, L, )} O —fine

on A we have

ix’(f(xr.)a(q)—F(Df)) <=

or

£
<.
2

Suppose &(x) <1and ”er <1.
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i —1 ] .

We construct sets A, is sets of all pointxe|a+l—,a+1—]ﬁ|a,b] such that ||f(x)||x <n and
n n

1 1

—<o(x)s—.

n n—1

We obtain[a.,b] = U A, .
i=1
Given arbitrary sets of closed intervals non overlapping {[ai,bi]} with a}.,b; € A, forall j.
We have {(aj,[aj,bj])} is Perron partitions & -fine K — system in [a,h] , which implies
{(aj,[aj,bf,])} is McShane partitions & -fine K —system in [a.b].

Therefore,

iF([awa])

g"x*Hx ‘iF([aj,bf]]

X

<L, S P01 (5,0 105, -a)
j=1 .
<P LS 10,0 (o) b1, [ 700 (6,0

<

ix‘F([aj.,b,.])—x*f(aj)(bf—af.)

< %+n2(b;—a;).

LS raie-a)

X

Choosen] Sm andg(bi—a;)< 17, we obtained
Zf’([ak,bk]) < §+n(b—a)q
k=1

<E.

Its means ' € AC(A,". )

Hence, there exists sequence of sets {Am} such that [a,b] = U A,andF e AC(A,”) , Vi

i=1
n=2

In other word F € ACGJa,b]. o

i

Corollary 3.15If f € D,[a,b] and Fits primitive, then there exists {A } sequence of sets such that

|a,b]:OAm. andF € AC(A,).Vn,i. o
i=1

Theorem 3.16 If [ € D,[a.b] and F its primitive, then F € AC[a,b].
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Proof. f € D[a.b] and F its primitive, by Corollary 3.15 there exists {A"} is sequence of sets such

that [a,b]=| J A, and F € AC(A, ), Vn.i . So,F € AC[a,b]. ©

i=1
n=2

4. Conclusion

We have concluded that each function which Dunford integrable, then the primitive function be
continuous, absolutely continuous, and bounded variation. Furthermore.the primitive function be
generalized absolutely continuous and generalized bounded variation.
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