JC

by Sriatun Sriatun

Submission date: 31-Jan-2023 02:32PM (UTC+0700)
Submission ID: 2003193860

File name: [JC_Vol_21_No_2_2021.pdf (444.92K)
Word count: 8016

Character count: 42076



ﬂom}s. I. Chem., 2021, 21 (2), 361 - 375 361

ﬁyd rocracking of Coconut Oil on the NiO/Silica-Rich Zeolite Synthesized
Using a Quaternary Ammonium Surfactant

Sriatun'?*, Heru Susanto®, Widayat®, and Adi Darmawan?

!Chemical Engineering Doctoral Programme, Faculty of Engineering, Diponegoro University,
JU. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia

“Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University,
JL. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia

‘Department of Chemical Engineering, Faculty of Engineering, Diponegoro University,
JI. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia

5
* Corresponding author: Abstract: NiO/silica-rich zeolite catalystgayere used for coconut oil hydrocracking. The

%+62-85100127747 catalyst consists of a mixture of Na,Si0;, Al(OH);, Na@H, and quaternary ammonium

B: sriotuno iUETRApGE surfactants. The surfactant was varied of types like as tetrapropylammonium bromide

(TPAB) and cetyltrimethylammonium bromide (CTAB). The acidity of the silica-rich

Received: April 18, 2020 sodalite zeolites emhances with increase in nickel oxide added through a wet
Accepled: August 7, 2020 impregngipan. The hydrocracking process was carried out by a semgsbmtch method. Liquid
DO 10.22146/ijc.55522 products were analyzed using GC-MS. The results showed thﬂhe addition of surfactants

increased the catalyst surface area and acidity. Meanwhile, the presence of nickel oxide

increases the acidity of the catalyst. The hydrocracking results showed an increase in gas
products when the surface area was high, i.e, 23.781% in silica-rich sodalite zeolite
without template (Z), 32.68% in silica-rich sodalite zeolite with tetrapropylammonium
(ZTPA), and 39.673% in silica-rich sodalite zeolite with cetyltrimethylammonium
(ZCTA). The presence of NiO increased the liquid product and the selectivity of the
bioavtur fraction (Cyo-C)s), where the highest percentage of liquid product was 60.07% at
NiO/ZTPA.

Keywords: hydrocracking coconut oil; NiO; silica-rich zeolite; sodalite; quaternary
ammonium surfactant

m INTRODUCTION dodecahedral framework in the zeolite's internal

N . . structure become dominant [2].
The most common zeolite in the zeolite mineral (2]

group is the sodalite mineral (SOD). The chemical
composition of sodalite is Nas(SisAlsO2:)- H20. A sodalite
is a host material (host molecule) that is important in

The study of the synthesis of sodalite zeolites has
been carried out by Dey etal. [3], who synthesized silica-
rich sodalite by adding a trioxane template. The results
indicated that trioxane has a strong structural directing
or templating effect on the SOD structure. At Si/Al ratios
lower than 20, another product was obtained, whereas,

forming simple crystal structures of various synthetic
zeolites. Sodalite zeolite has a cubic crystal structure. The
structure formed by the p-cage framework consists of o
. . N . at very low temperatures or short synthesis times, the
eight six-member rings in mlch alternates between the

$i0, and AlO, tetrahedral, and the a-cage consists of six
four-membered rin?l]. As the Si concentration in the

e

reactant mixture or

resulting product was still amorphous. Another study
has reported zeolite-Y synthesis that successfully used
surfactants as templates with the hydrothermal method
for 72 h [4]. In another study, CTAB as a structural
directive in zeolite synthesis has also been used at

Si/Al ratio increases, the size, and
shape of the crystals change, in which the octahedral and
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various Si/Al ratios with a hydrothermal temp re of
100 °C for three days. The results indicated that the Si/Al
ratio influences the size and shape of =zeolite

granules/crystals. The use of a CTAB surfactant as a
directing agent improves the crystallinity of zeolites and
influences the size and homogeneity of zeolite particles
PEG and cationic
surfactants such as CTAB have an important role in the

[5]. Neutral surfactants such a

formation of zeolite crystals [6]. Other studies have been
reported for LTA type silica-rich zeolitggwith Si/Al ratio =
17 using tetramethylammonium and 1,2-dimethyl-3-(4-
methyl benzyl) imidazolium as templates [7]. Large
amounts of Si in the framework cause more durable
hydrophobic properties, higher acidity, and greater
surface area [8]. These proggyties satisfy the conditions
for this material to be used in reactions that require high
temperatures, such as the hydrocracking process. Also,
principles of “like dissolves like” can be fulfilled when
catalysts with
nonpolar/hydrophobic fgeds and coconut oil. Previous
studies concluded that the Si/Al ratio and the use of
templates were very influential on the zeolite characters
[9-11].

The use of zeolite from bagasse ash as a catalyst in
biodiesel production from used cooking oil through the

hydrophobic materials as interact

transesterification reaction has also been carried out.
Transesterification results showed that at a ratio of
methanol: oil of 1:3 for 60 min, 1383% of Methyl Ester
(MES) products were produced, consisting of methyl
caprylate, methyl caprate, methyl laurate, methyl
myristate, methyl palmitate, methyl linoleate, and methyl
stearate. In thgsmethanol: oil ratio of 6:1, the biodiesel
obtained was 85.51%, with methyl caprate as the main
component [12]. NiO and CoO-supportesy halloysite
nanotubes have also been wused as catalysts Qr
of the

hydrocracking process was carried out at a temperatysg of

hydrocracking heavy oil residues. e
450 °C with varying H; pressures ranging from 1-4 MPa.
The results showed an increase in liquid products
consisting of gasoline and diesel from 52 to 57% when the
pressure rose from 1 to 4 MPa [13]. This information
showed that zeolite has excellent performance as a

catalyst.
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Biofuel can be produced from renewable materials
or biomass through several processes such as catalytic
cracking, hydrocracking or deoxygenation of vegetable
oils containing triglycerides, Fischer-Tropsch process in
the synthesis of bio-origin fuels [14-16], from virgin
coconut oil waste [17], and marine biofuel from
lignocellulose [18]. Castor oil hydroprocessing was
promoted by nickel-based bifunctional catalysts to
produce bio-jet fuels (bioavtur) [19]. Widiyadi et al. [20]
had carried out the hydrocracking process using
NiMo/ALO; catalyst on dirty palm oil to produce

sgkerosene. Besides, the hydrocracking process
carried out using a sulfided NiMo/ALO: catalyst to
produce bio-jet fuel (bioavtur)
triglycerides/coconut oil. The operating conditions of

from natural

process were at temperature of 280-380 °C, the
pressure of 30 bar, liquid hourly space velocity (LHSV)
of 1.0-3.0/h, and feed volume ratio of 600 Nm?*/m’)
[21]. Meanwhile, Al-Muttaqii et al. [22] and Widayat et
al. [23] haw oduced biokerosene and biofuel from
coconut oil using a Ni-Fe/HZSM-5 and Zn/HZSM-5
catalyst through a hydrocracking process.

Coconut oil is a renewable material and can E
used as a raw material for biofuel production. Coconut
plants are easy to grow and suitable for the Indonesian
climate. Therefore, their availability can be maintained.
Coconut oil is easily found on the market at a relatively
low price. Accoping to Boateng et al. [24], the largest
components of coconut oil are lauric acid (49%) and
myristic acid (18%). The most important reason for
using coconut oil for hydrocracking is as coconut oil
contains a high compound of Cy—Cy, thus providing an
opportunity to be converted to hydrocarbons with the
same amount of carbon or cracked into hydrocarbons
with smaller amounts of carbon.

There has been no report on the use of templates
dalite. The use of sodalite, a
simple structure of the zeolite, has not been reported as
a catalyst in the hydrocracking reaction of coconut oil.

to synthesize silica-ric

As the presence of a template of quaternary ammonium
surfactant increases surface area and uniformity [25],
this research studies the effect of quaternary ammonium
surfactant templates on the structure of silica-rich
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sodalite zeolites. The choice of cetyltrimethylammonium
and tetrapropylammonium bromide surfactants is
expected to provide a significant pore size difference. The
research also studies the effect of adding NiO in silica-rich
zeolites. Ni or NiO I dispersion to sodalite-rich
zeolite silica is expected to increase the acidity and surface
area of the material so that the active catalytic site also
rises. All materials were tested for their catalytic ability to
convert coconut oil into biofuels through a hydrocracking
reaction. Catalysts with many active sites are expected to
improve hydrocracking products and selectivity.

m EXPERIMENTAL SECTION
aterials

All chemicals used in this study are analytical grades.
The chemicals from Merck were sodium hydroxide
OH) 98%, sodium silicate (Na,SiOs, 27% SiO;),
cetyltrimethylammonium  bromide (CTAB) 98%,
nickel(IT) nitrate hexahydrate (Ni(NO:)»6H.0) 99%,
hydrofluoric acid (HF) 48%, ammonia (NH,OH) 25%,
hydrochloric acid (HCI) 37%. Meanwhile, the chemicals
from Sigma Aldrich were aluminum hydroxide (Al(OH)s,
50-57% Al:Os), and tetrapropylammonium bromide
(TPAB) 98%. The hydrocracking process used coconut oil
which was purchased from a supermarket in Semarang,
Indonesia.

Instrumentation

The crystallinity ynthesized catalysts was
characterized using an ay diffractometer (XRD)
(Bruker D2 Phaser 2™ Gen) with Cu Ka radiation, the
wavelength of 1.54060 A, and undepthe setting of 30 kV
and 10 mA. Determination of the surface and pore
param&r of the synthesized catalysts was performed
using a Gas Sorpgon Analyzer (GSA) (Quantachrome
NovaWin) with sample weight: 0.1129 g, outgas tigpe:
3.0 h, analysis gas: nitrogen, analysis time: 133.3 min,gl
ID: 4, outgas temp: 300 °C, bath temp: 77.3 °K. The surface
area wasgeltermined by a multi-point Brunauer-Emmett-
Teller (BET). The estimation of total pore volume and the
distribution of pore size was conducted by the desorption
isotherms of the Barret-Joyner-Halenda (BJH) method.
The functional groups of the synthesized catalysts after
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infrared
(PerkinElmer Spectrum Version 10.03.06) wi
method. Meanwhile, the composition of

adsorbing ammonia gas were gdetermined using a
Fourier-transform

IR) Spectrometer
e KBr
e liquid
product from hydrocracking was identified using GCMS
20108 SHIMADZU with column type: Rtx 5 MS, ID:
mm, carrier gas: Helium, Ionizing: EI 70 Ev, Column
temperature: 40 °C, Injection temperature: 310 °C,
Injection mode: split, Column flow: 0.57 mL/min).

Procedure

Synthesis of catalyst

An amount of 5.6 g of NaOH was dissolved in
20.7 mL of H,O and heated until all of the NaOH
dissolved. It was subsequently added with 0.45 g of
Al(OH); until fully dissolved to give a sodium aluminate
cted with 16.33 mL of
Na,Si0; solution and stirred at room temperature until

solution. The solution was

the mixture thickened. The mixture was transferred

a Teflon container for the hydrothermal process and
heated atgg00 °C for 24 h in an autoclave. The product
was then washed wisadistilled water until it reached pH
+ 7, and after that, 1t was dried in an oven at 100 °C for
2 h. This product code was Z.

ZTPA was produceWsing a TPAB surfactant
template, in which 3.328 g of TPAB was dissolved in
25 mL of H,O, then added to sodium aluminate and
stirred until homogeneous. The mixture added with
a 16.33 mL of Na;SiO: solution. They‘?ydrothermal
process was carried outat 200 °C for 24 h in an autoclave.
The resulting product was washed until a neutral pH

ained (+ 7), and after that, it was dried. The solid
product was calcined at 550 °C for 3 h to remove the
template. The same procedure was applied to synthesize
ZCTA using a 4.554 g of CTAB surfactant. Both products
were characterized by XRD and GSA techniques.

The NiO/silica-rich zeolite catalysts were prepared
by incipient wetness impregnatiomSeveral silica-rich
zeolites were impregnated with aqueous solution of
nickel(I) nitrate hexahydrates(Ni(NO;),-6H,0) to
contain 3% (weight) of nickel. mixture was stirred
at 30 °C for 24 h and evaporated at 90 °C until the paste
was formed. Then the paste was dried at 110 °C and
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calcined at 550 °C for 3 h. This process aimed to form NiO
from Ni*" ions. The impregnation products were NiO/Z,
NiQ/ZTPA, and NiQ/ZCTA, each of which refers to a
catalyst without a template, tetrapropylammonium-
templated catalyst and the cetyltrimethylammonium-
templated catalyst, respectively. Afterward, the catalysts
obtained were characterized using GSA.

The catalyst's total acidity was determined using the
sorbed
base. The empty porcelain crucible was heated in an oven

10 °C for 1 h, then cooled and weighed (W}). A sample
010.1 g was putinto a porcelain crucible and then heated
at 110 °C for 1 h and weighed (W3). Samples in heated
porcelain were put into a desiccator and then vacuumed.
Next, ammonia gas was introduced to the desiccator until

gravimetric method with ammonia gas as a

the gas saturated the desiccator. After completion, the
desiccator was opened and allowed to run for about 30
min to remove residual ammonia that was not adsorbed.
Next, the porcelain crucible containing the sample and
absorbing ammonia was weighed (W3). Calculation of
total acidity using Eq. (1).
Acidity = M
(W, - WM
%ere, W, = weight of empty porcelain crucible after
heating (g); W, = weight of porcelain crucible + sample
after heating (g); Ws = weight of porcelain gmicible +
sample after ammonia adsorption (g); M = molecular
weight of NH; (g/mol).

Analysis using FTIR was conducted to verify the

(1)

ammonia adsorbed on the material catalyst.

Catalytic activity test

The hydrocracking process was carried out in a
semi-batch reactor, in which the catalyst and feed were
put into one reactor but not mixed. The reactor was a
stainless-steel column. A total of 10 g coconut oil feed was
put into the column reactor, then 0.2 g of catalyst was
placed in a container and put in the same column reactor.
The catalyst/feed ratio was 2% (weight). The reactor
column was insertegsato a furnace made of stainless-steel
eated to 475 °C ata rate of 10 °C/min
with a reaction time of|

coated ceramic and
ee hours. During the reaction,
hydrogen gas flowed to the reactor at a rate of 10 mL/min.

The product was streamed through a stainless-steel pipe

gdﬂﬂﬁ. I. Chem., 2021, 21 (2), 361 - 375

connected tgea silicone hose and passed through a glass
condenser. %e liquid products were collected in an
Erlenmeyer flask, then weighed (as the mass of the liquid
product). Coke mass was the catalyst’s weight after the
hydrocracking sample subtracted the weight of the initial
catalyst. The residual mass was the weight of residual
feed in the reactor that was not converted. Gas mass was
the weight of the initial feed subtracted by the weight
(residue + coke + liquid). The determination of the
catalytic activity of the catalyst follows Eq. (2) to Eq. (5).

massof theliquid

% Liquid conversion = x100% (2)

mass of feed

%Cokcconvcrsion:ﬂmxlm% (3)

mass of feed

f th
%Gas conversion = s O €8IS 10004 (4)

massof feed
mass of (liquid + gas +ge)

%x100% (5)
mass of feed

% Total conversion=

Furthermore, the ermination of liquid
composition was conducted using Gas Chromatography-
Mass Spectrometer (GC-MS). The percentage of the Cy-
C, fraction was obtained by adding up the total area of
the C,~Cy component in the chromatogram, then
divided by the total chromatogram area of each sample.
Likewise, the calculation of the percentage of the C,,-Cis
fraction (bioavtur) was determined in the same
procedure by changing C,—Cy to C,o—C,s. The percentage
fraction was calculated using Eq. (6) and Eq. (7). The
fraction peak area in the chromatogram was applied to
calculate selectivity using Eq. (8).
%GC area of Cy —Cg fraction
%total GC area
% GC area of C-C 5 fraction y
% total GC area
% GC area bioavtur fraction
% total GC area

m RESULTS AND DISCUSSION

%C 4 —Cg fraction = %100% (6)

% Cp-Cq5 fraction= 100%  (7)

x% conversion of liquid (8)

% selectivity=

Characteristics of Silica-Rich Sodalite Zeolite
Catalysts

Fig. 1 shows the FTIR spectra of the catalysts.
According to Mofrad et al. [26], the typical absorption of
sodalite is at the peak of 436, 467, 669, 711, 736, 867, and
988 cm". In this study, all catalysts showed absorption

Sriatun et al.
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Fig 1. FTIR spectra of the silica-rich sodalite zeolite catalysts (a) without template (Z), (b) with CTAB (Z-CTA) and
(c) with TPAB (Z-TPA) (d) NiO/Z () NiO/ZTPA (f) NiO/ZCTA

bands in the sodalite zeolite fingerprint area, which are
429-434 cm ' as S4R bending vibrations, 459-467 cm ' as
O-T-O bending vibration, 660-664 cm' as T-O
symmemal stretching vibrations, 697, 722, and 978-992
cm ' as T-O-T asymmetric stretching vibrations [27-28].
Asymmetrical T-O-T stretching vibration absorption

was shifted at a higher wavenumber on the ZTPA and
ZCTA catalyst when it was compared to Z. The same thing
happened with NiO/ZTPA and NiO/ZCTA catalysts
compared to NiO/Z. The wavenumber shift occurred
from 978 cm™ on Z to 983 cm™ on ZTPA and 988 cm™ on
ZCTA. Whereas after impregnation with NiO, the
wavenumber shift occurred from 991 cm™ for NiO/Z to
996 cm™! and 997 cm™! for NiQ/ZTPA and NiO/ZCTA,
respectively. The shift of the absorption of the wave
ber in the higher direction indicates the vibration of
1-0O-Al or Si-O-Si towards the lower energy. This is
presumably because of adding TPA and CTA templates
when forming a silica-rich so?te framework causing
longer bond distances. Besides, the asymmetric stretching
vibration absorption band of T-O-T in the area
experienced an increase in absorption intensity and
downsizing of ZTPA, ZCTA, NiO/ZTPA, and NiO/ZCTA
catalysts. According to Eterigho-Tkelegbe et al. [29], high
intensity absorption in the fingerprint area of the main

framework (not a wide peak) is preferred because it
showgshe catalyst has a more crystalline structure.

e XRD patterns of silica-rich zeolites are shown
in Fig. 2. The characteristic peaks of the structures were
determined based on the XRD standard patterns, which
were taken from ICDD (Interpgéional Center of
Diffraction Database) or RUFF ID. The XRD patterns of
the samples in Fig. 2 are relatively similar to the XRD
standard pattern of sodalite zeolite based on RRUFF ID
R040141 or ICDD.

Fig. 2 and Table 1 show that the XRD peaks of
silica-rich sodalite zeolites from this study are like the
previous results reported by Manique et al. [30], who
synthesized sodalite through hydrothermal methods. In
addition, the prominent data 26 peak in the sample also
complies with JCPDS 75-0709 and RRUFF ID R040141.
These results indicate that all synthesis }g)cesses
successfully produced sodalite. This material 1s called
silica-rich sodalite zeolite because of its high Si content
in its structure. These results also show that the addition
of template treatment does not give a significant difference
on the crystal structure of the resulting sodalites.

silicate interact under
1-0-Si or Si-O-Al zeolite
framework is formed, depending on the ratio of silicate

When aluminate
alkaline conditions, the
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Fig 2. The powder XRD patterns of silica-rich sodalite zeolite (a) without template (Z), (b) with CTAB (Z-CTA) and

(c) with TPAB (Z-TPA)

Table 1. Comparison of 20 (°) between silica-rich sodalite zeolite and sodalite reference RRUFF ID No. R040141 and

JCPDS No. 75-0709

Sodalite Reference 26 (°) on

Sample 26 (°)

RRUFFID R040141  JCPDS 75-0709 Z ZTPA ZCTA
14.16 14.1 14.31 14.26 14.11

24.66 245 24.65 2471 24.54

31.99 31.8 31.87 31.79 31.62

35.13 35.0 34.89 34.94 34.79

37.8 37.20 37.93 37.76

43.39 43.2 43.02 43.15 43.02

and aluminate [31]. The higherﬂ Si/Al ratio, the more
Si—0-5i will be formed, resulting in silica-rich sodalite
zeolites. The hydrophobicity of silica-rich zeolite is a
with  organic
compounds  [8]. Hydrophobicit‘a (zeolite-water
interactions) in zeolites is primarily influenced bygthe

favorable character for interactions

chemical composition of zeolites, especially the Si/Al
ratio. Zeolites with a high Si/

hydrophobic character [32-33].
that water molecules interact with the Al site of the zeolite
§—OH species also influence

tio tend to have more
olis et al. [34] proposed

framework. The few
hydrophobicity because S1-OH species can absorb water
by forming stable bonds. Zeolites with the same framework
type, their hydrophobicity increases with decreasing
aluminum content, so zeolites with a higher Si/Al ratio
will be more hydrophobic. This character is suitable for
interacting with the raw material for coconut oil, which is
also hydrophobic. The efficiency of the interaction of

organic substances, in this case, coconut oil by high silica
zeolites, depends on the interaction of organic substances
ith zeolites. And this is influenced by the structure,
surface hydrophobicity, and adsorption sites of high
silica zeolites and the character of organic materials [8].
Fig. 2 also shows that the use of templates slightly
increases crystallinity. These results are in line with
research by [25], who reported that the use of different
templates produced different sodalite crystallinity. The
use of different templates, CTAB and TPAB, from
quater
factor 1n the formation of different silicate species from
dimers to 4-rings (4R) and the ?al sodalite zeolite
structure [35] in basic conditions. A study conducted by
Pavlova et al. [35] showed that the activation barrier of
dimerization increased with "
CTAB and TPAB are surface-active agents that
work to reduce the surface tension of the liquid. Active

ammonium surfactants, is an important

Sriatun et al.




Indones. J. Chem., 2021, 21 (2), 361 - 375

properties are obtained from the dual nature of the
molecules. TPAB and CTAB surfactants were selected as
pore-forming templates. Both have differences in the head
and tail, although the part of heads has the same type of
quaternary ammonium, but different tail shapes give
different results. Several studies report the role of
surfactant-templating that produces different pores in the
zeolite [36], and pore size depending on the type of
surfactants [37]. The effects of using templates and NiO
loading on silica-rich sodalite zeolite pores and surfaces
are given in Fig. 3 and Table 2.

Fig. 3(a) presents the adsorption isoth patterns
for samples Z, ZTPA, and ZCTA, which :n‘:?
type IV according to the IUPAC adsorption isotherm
classification [38]. Type IV isotherms signify mesoporous

assified as

material. All three samples show a similar pattern of
adsorption isotherms, where theggawas small amount of
nitrogen molecular adsorptio
P/Py = 0-0.7. An increase inn@
nitrogen was observed at P/P, > 0.7. An increased volume

the relative pressure
e volume of absorbed

of adsorbed nitrogen molecules indicates mesoporous
filling, where the surface of the solid is covered by
nitrogen molecules to form a single laper. The slope shows
that the first multilayer has formed. The presence of pores
on the surface of solid limits the number of layers on the
adsorbate, resulting in capillary condensation. This
capillary condensation causes hysteresis. The sample
follows an H3 type hysteresis loop where the adsorption
properties are not limited to high P/Po. H3 type loops are
observed because the aggregate of particles such as plates

(a)

Ao ZTPA F
3 20007
S
S "
& 15004
s d 1
® 10004 '
0 -
g £ Ay &
E - A‘..“‘h
bt AT L
04 moamosﬁ-ofolll'.
00 02 04 06 08 10

Partial pressure (P/P:)
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giving rise to pore-shaped slits [39] produces arrow
distribution of pore bodies with a wide neck size
distribution [40]. ZTPA provides high absorption of
nitrogen gas, which indicates that the pore volume in
ZTPA is higher. These results indicate that the use of
TPA has successfully enlarged pores, compared to
zeolite without a template. However, an anomaly
occurred in ZCTA samples, which showed small
adsorption. It is estimated that the low nitrogen gas
absorbed was caused by imperfect calcination, where
many unburned CTA templates were still in the pore.
This, gasturn, caused pore closure.

n the other hand, Fig. 3(b) shows that the three
samples give a similar form of adsorption isotherm with
almost the same volume of nitrogen gas. This indicates
that the NiO impregnation process in Z, ZTPA, and
ZCTA samples produced almost the same pore and
surface characteristics. The increase in the volume of
nitrogen gas absorbed by NiO/ZCTA is due to the
continued calcination process after the impregnation of
Ni*, which burns the remains of the template. In samples
of NiQ/Z, NiO/ZﬁA, and NiO/ZCTA, type H3 loop
hysteresis occurs at amlative pressure of P/Py = 0.7-1.
Hysteresis occurs as, at the same relative pressure P/Py,
the number of desomption of nitrogen adsorbed on the
solid is lower thanﬁ number of adsorbed nitrogen
molecules. This shows that the amount of adsorbate (N3)
remaining in the pore during desorption is high,
indicating the number of mesoporous structures in the
sample.

1400 « (b) " NiOiZ
*  NiO/ZCTA .
1200+ & NIiO/ZTPA -
-
§1uoo- o e
E 800+ g
a 600 -..'
© 4004 o’ 4
5 e
2 f_—m:zﬂ.n““
0.
200

02 04 06 08 10
Partial pressure (P/Ps)

0.0

Fig 3. Isotherm adsorption of silica-rich sodalite zeolite (a) effects of template (b) effects of NiO loading
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The critical micelle concentration (CMC) of CTAB
is 9.2 x 10 M at 25 °C [41], whereas CMC of TPAB is
107 M and theselubility of TPAB at 20 °C > 1000 g/L in
H.O [42]. The addition of surfactant in sodium aluminate
solution caused a decrease in the solution’s surface
tension. After reaching a certain concentration, the
surface tension will be constant even though the
surfactant entration increases [43]. There is a
difference in the length of the alkyl chain (tail), so the size
of micelles will be differpps. Therefore, sodalite zeolites
have different pore sizes. ﬁe length of the alkyl chain on
CTAB is longer than TPAB; the longest CTAB chain
contains 16 carbon, while TPAB only contains three
carbon. Goyal et al. [44] reported that CTA' micelle
diameters range from 130 to 210 A. In contrast, according
to Thapa et al. [45], TPA" micelle diameter about 13 A.
The larger CTA" micelle diameter from TPA" becomes
the rationale for why the volume and surface area of
ZCTA is higher tha PA, as shown in Fig. 4.

Fig. 4 presents the surface area, pore size, and total
pore volume of synthesized silica-rich sodalite zeolites
ites. The data shows that after
impregnation by NiO, the surface area and pore volume

and NiO impregnated

of zeolite are significantly reduced, except Z, whose

o w o
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Fig 4. Surface area, pore diameter, and volume of synthesized silica-rich sodalite zeolites

ZCTA
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11
surface area and pore volume increase. Increased surface

area and pore volume of Z may be caused by NiO
placement on Z, which is more evenly distributed and
does not fe aggregates so that it does not clog pores.
ThereforeE presence of NiO particles present on the
surface of Z increases the surface area. On the other
hand, the decrease in surface area on NiQO/ZTPA and
NiO/ZCTA is easily understood as a result of surface
closure by NiO. The presence of carbon from incomplete
combustion residues might accelerate pore aggregation.
It may also be caused by the dispersion of NiO particles
into the zeolite sodalite pores non-uniformly. This
results in mouth obstruction of the porous channels and
the outer surface of zeolites. For all silica-rich sodalite
zeolite, the pore radius is almost the same and does not
significantly change after NiO’s impregnation. This
indicates that the thickness of the NiO layer is much
lower than the pore radius. All these results indicate that
NiO particles were successfully impregnated on the
surface and pore of silica-rich sodalite [24].
Metalloadingincreases the Bronsted and Lewis acid
sites [46] as total acidity, as given in Table 2. It is hoped
that more acid sites interact with the feed. Adsorption of
ammonia base occurs through interactions with protons,

B Surface area (m¥/g)

r 3.0E-2
m Average pore radius (A)
B Pore volume (mLig)
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o o
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Table 2. Total acidity of the catalyst

Catalyst Code Acidity (mmol/g)
Silica-rich sodalite zeolite without template (Z) 7.9
Silica-rich sodalite zeolite - TPAB (ZTPA) 8.2
Silica-rich sodalite zeolite - CTAB (ZCTA) 11.4
NiO/Z 11.2
NiO/ZTPA 11.5
NiOQ/ZCTA 17.2

which are Brensted acid sites or by receiving electron
pairs from nitrogen atoms in ammonia where the catalyst
acts as Lewis acid. In this data, it is known that an increase
in acidity occurs when the preparation of a silica-rich
zeolite catalyst support was carried out using a surfactant
as a template. Total acidity increased by 3.79 and 44.30%
in ZTPA and ZCT A, respectively.

The higher acidity value in ZCTA may be due to the
greater surface area, as presented in Fig. 4 so that acidic
sites are available on the surface. The addition of NiO
significantly increases acidity. Ni metals from NiO are
spread on the surface and in the pores. Moreover, silica-
rich sodalite zeolite have empty orbitals that can accept
electron pairs from the ammonia base [47]. NiO/Z acidity
increased by 41.77% from Z, NiO/ZTPA increased by
40.24% from ZTP A, and NiO/ZCTA increased by 50.87%
from ZCTA. Meanwhile, when compared to the catalyst
without a template (Z), NiO/ZTPA acidity ingsgased by
45.56%, and NiO/ZCTA increased by 117.7%. There is a

Transmittance (a.u.)

correlation between total acidity and surface area and

pore volume, wherewith increasing surface area and
pore volume in Z, ZCTA, and ZTPA, acidity increases.
This indicates that NiO is evenly distributed in line with
surface area and pore volume.

Amorphous grmed at the
beginning of zeolite preparations have many Lewis acid

aluminosilicates

sites and several Bronsted acid sites. This is because
Bronsted acid sites develop more on the surface of
zeolites when well-defined crystals are formed [48]. The
FTIR spectra in Fig. 5 show some firm absorption peaks
at a wavenumber of 1635-1640 cm™ on almost all
catalysts, which are characteristic for ammonia bonding
with Lewis acid sites [49]. It can be noted that there is
not much difference at the peak of 1636 cm™, which
indicates that the interaction of ammonia with Lewis
acid sites is weak and does not depend on the zeolite
structure and the amount of NiO added. In comparison,
peaks at 1430-1450 cm™' show ammonia interactions with

—Z —ZIPA —ZCTA —NiO/Z ~—NiQ/ZTPA — NiO/ZCTA

(f)
- (e)

(d)
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Fig 5. FTIR spectra of the catalysts after acidity test
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Brensted acid sites [50]. Unfortunately, in this area,
absorption presents a very irregular form and overlaps
with several other sub-bands. According to Barzetti [50],
peaks in this area originate from ammonia decomposition
into NH and NH;. The effect of the addition of
surfact nd NiO on Brensted acid sites is difficult to
expla.inﬂ.-?zan only be concluded that all catalysts have
active Lewis and Brensted acid sites.

Hydrocracking of Coconut Oil

Fig. 6 the effect of the addition of surfactants
and NiO on the total conversion and composition of the
coconut oil hydrocracking results after the hydrocracking
process at 475 °C for 180 min, hydrogen flow rate of
10 mL/min, catalyst concentration of 2% to the feed.

The role of the templates TPA and CTA created
catalyst porosity because, in hydrocracking, the porosity
network was susceptible to the diffusion ofggarestricted
reactants and the resulting product. Besides,gd on the
data in Table 2, the presence of a template could increase
the acidity. This case accorded with the report of Emdadi
et al. [51]. The acidity and porosity of catalysts were
significant; the acid sites of catalysts could effectively
consume intermediates to form aiming products.
Meanwhile, the porosities and cavities of catalysts could
mediate the molecular sizes and structures of products [52].

Fig. 6 shows that the use of CTAB and TPAB
templates in the formation of ZTPA ZCTA silica-rich
sodalite zeolite pores influences the increase in gas
fraction yield. This is due to the specific pore size and
shape asin the data in Fig. 4 where ZTPA and ZCTA have
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smaller pore sizes than Z, so that the catalyst is more
selective than before to produce short-chain gas or
hydrocarbon fractions. On the other hand, impregnation
with NiO on NiO/Z, NiO/ZTPA, and Ni/ZCTA
catalysts significantly rises liquid products. This is in
accordance with Vichaphund et al. [53] report that the
addition of metals is expected to modify the acidic
properties and texture of the supporting material to
promote cracking activity in terms of removing
oxygenated compounds and increasing the number of
hydrocarbons. It can be said that the role of nickel oxide
as an active site is crucial. Fig. 6 also presents a catalytic
activity for converting triglycerides into products
consisting of liquid, gas, and coke. However, there is no
significant difference in residue and coke due to the
addition of surfactant and NiO treatmen

%ected by the

size and shape of the pores caused using templates and

A total conversion is only slightly

the loading of nickel oxide. Total conversions ranged
from 70-86%, which did not show ignificant
difference. So, it can be concluded that the combination
of the acidity of the catalystgand the accessibility of acid
sites is an essential factor in the catalyst activity [54]
towards the conversion of triglycerides in coco il.
Fig. 7(a) shows the catalyst effect on the
composition of liquid product components from the
hydrocracking process. The compounds presented in the
liquid products are grouped into n-paraffin, consisting
of biogasoline (Cs—Cs) and bioavtur hydrocarbon range
(C1—Cis). Both fractions are n-paraffin compounds that
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Fig 6. The effect of templates and NiO on (a) type of hydrocracking products and (b) total conversion
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Fig 7.
selectivity

in the
temperature of 475 °C. According to Liet al. [55], paraffin
is formed through decarboxylation and decarbonylation

are produced hydrocracking reaction at

reactions. Fig. 7(a) also shows that the hydrocracking
process also produces other products such as alkenes,
carboxylic acids, ethers, alcohols, etc. with a percentage of
30-40% except for NiO/ZTPA which is 58.54%. The
percentage of bioavtur fuel fraction increased in the
ZTPA and ZCTA catalysts. This data shows the TPA and
CTA templates are significant in increasing the bioavtur
fraction.

The role of templates in enhancing bioavtur
products is by increasing the ability of the feeds
(triglycerides) to diffuse into the pores and active sites of
the catalyst. Based on Fig. 4, catalysts with TPA and CTA
templates have more pores than without templates. Pores
and cavities produce more active sites. Therefore, more
triglycerides were able to diffuse and interact with active
sites and in cavities of a specific size and shape, thus
producing short and long-chain hydrocarbon products.
The C,;-Cy short-chain hydrocarbon fraction was
produced in smaller quantities than C,,—C;s, probably due
to the lighter fraction being faster. At the same time, the
presence of many pores allows the reaction to be retained
in the cavity to produce a longer carbon chain.

Fig. 7(a) shows the ability of the catalyst to produce
bioavtur fractions after impregnation with NiO seems to
decrease, except Z, which is impregnated into NiO/Z. The
surface area of NiO/Z is relatively higher than NiO/ZTPA
and NiO/ZCTA. Therefore, it has a higher ability to

371
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ect of catalysts on (a) the composition of liquid products (b) The percentage of bioavtur fraction (Ci-Cis)

produce bioavtur. The increase in product selectivity
obtained from catalysts containing NiO can be observed
in Fig. 7(b). It appears that the addition of NiO does not
provide more selective results on biogasoline and
bioavtur products.

The high yield in the liquid products in Fi nd
selectivity performed by catalysts in Fig. 7 .?Lreg?1
their pore size and shape of the catalysts and the easiness

ue to

of NiO loading. The fact indicated the incorporation of
nickel oxide into Z, ZTPA, and ZCTA catalysts depict a
bifunctional character consisting gf acid and metal sites
in agreement with Xu et al. [56]. The acidity properties
of zeolites indicated their catalytic potential for various

hydrocarbon reactions.

m CONCLUSION

T TAB surfactant as a template was able to
increase the surface area of the catalyst from 51.338 m*/g
in silica-rich zeolites without surfactants (Z) to
77.653 m*/g on the CTAB template (ZCTA). However,
it did not occur in the TPAB template (ZTPA). The use
of templates slightly increased the acidity of the catalysts
from 7.9 mmol/g to 8.2 mmol/g on ZTPA and 11.4
mmol/g on ZCTA. The addition of NiO on catalysts also
improved the acidity property. The highest acidity was
17.2 mmol/g in the NiO/ZCTA sample.

NiO/silica-rich the
hydrocracking process resulted in gas products when the

sodalite  zeolites in
surface area was greater, namely 23.781, 32.68, and

39.673% for Z, ZTPA, and ZCTA, respectively. The

Sriatun et al.
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presence of NiO increased liquid products and selectivity
of bioavtur fraction (C,~Cys), where the highest
percentage 60.07% from

NiO/ZTPA.
15
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