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Organic compounds such as dyes and heavy metal ions are common pollutants in waste water that have become a
global problem. Adsorption has proven to be a successful technique in removing organic species such as methylene
blue (MB). Geothermal solid waste has the potential to be used as an adsorbent due to its silica content. The silica
compound in geothermal waste has the potential to be developed as porous material. Aluminium hydroxide and
geothermal solid waste were added to the aqueous alkali (sodium hydroxide (NaOH)) in a continuous stirred-tank
reactor, which resulted in an amorphous mesoporous material of the natrolite phase. The performance of the
geoadsorbent was evaluated through the removal of various concentrations of MB, and isotherm adsorption models
were used to evaluate the data. The adsorption mechanisms of MB removal by the geoadsorbent as shown by
Fourier transform infrared spectra are electrostatic attraction and hydrogen-bond formation. The geoadsorbent can
remove MB up to 84.449%, in which the adsorption is highly dependent on the initial concentration of MB. The
Langmuir isotherm model provides the most accurate representation of MB adsorption as a result of the physical
process, with a correlation coefficient of 0.971.

Keywords: adsorption/methylene blue
Notation
C0 initial methylene blue concentration
Ce methylene blue remaining equilibrium concentration
E methylene blue removal percentage
KF Freundlich constant related to adsorption capacity
KL Langmuir constant related to adsorption capacity
KT Temkin constant related to adsorption capacity
m adsorbent mass
qe equilibrium concentration of the adsorbate
qm practical limiting adsorption capacity
V solution volume

Introduction
The large amount of dye waste water generated in industrial
processes is one of the leading worldwide environmental issues
that must be resolved to ensure sustainable production. Methylene
blue (MB; C16H18ClN3S·H2O) is a cationic dye that has been
widely used in industries (Jawad and Abdulhameed, 2020; Nakhli
et al., 2020; Shindhal et al., 2021). Essential issues of MB
pollution are the harmful effect on human health, aesthetic
damage to waters and aquatic ecosystem disruption. MB is toxic
to humans and (at a certain amount) can cause vomiting,
headache, eye/skin irritation, high blood pressure, shortness of
breath and rapid heartbeat. It is also considered a major threat to
humans because of chromosomal breakage, aneuploidy and
generated micronuclei in human cells due to its carcinogenic and
mutagenic properties (Jalali et al., 2019; Mahamad et al., 2015).
Limited light penetration to water caused by MB pollution
reduces dissolved oxygen levels and photosynthesis rate, which
affect the aquatic ecosystem. The MB compound in water is very
hazardous to soil microorganisms, plant germination and growth
(Lellis et al., 2019; Rehman et al., 2018).

Adsorption is considered the most efficient choice to remove dye
contaminants due to its inexpensiveness, simple operation, high
efficiency and non-generation of toxic materials (Aichour et al.,
2019; Jawad and Abdulhameed, 2020). Adsorption is a separation
process in which the substances in waste water attach to the inner
and outer surfaces of an adsorbent. The adsorbent selectively
adsorbs pollutants throughout the separation process, which is due
to the specific interaction between the adsorbent surface and the
pollutants adsorbed (Crini et al., 2019). Therefore, adsorbents
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must have mesoporous structures that can be penetrated only by
specific molecules, thus producing a molecular sieving effect.

Species are adsorbed on the silica (SiO2)–alumina (Al2O3) surface
as this compound, which has a meso- and microporous structure,
decomposes, and thus, it also becomes applicable as an eco-
friendly and effective adsorbent. Geothermal solid waste is an
essential application for dye adsorption resulting in an adequate
removal capacity due to its amorphous and mesoporous
properties. Amorphous products are extremely important for
eliminating MB dye due to their excellent porosity and efficiency
(Rożek et al., 2019; Siyal et al., 2018). Fluid deposition in a
geothermal power plant system produces geothermal solid waste
that can be used for the synthesis of adsorbent materials as an
economical source of silica. The geothermal fluid, which contains
a high concentration of dissolved minerals and metals, causes the
formation of scales. Silica is frequently found in such a fluid, as it
can precipitate unrestrained at various locations in the power plant
itself or in the reinjection wells, which cause critical damage to
the plant and the reservoir. The geothermal solid waste formed is
proportional to the increase in the use of geothermal power as a
renewable energy resource, whereas the utilisation of much waste
is limited to agricultural and cement materials (Frick et al., 2019;
Pambudi, 2018; Widayat et al., 2020).

A previous study used a mixture of geothermal solid waste and
metakaolin as polymer material through a thermal process. The
addition of geothermal waste produced a porous material due to
its silica content (Gomez-Zamorano et al., 2016). The
silica–alumina phase has been synthesised from a geothermal
solid with a high surface area and molecular sieve characteristics;
thus, geothermal waste is very important for adsorption
technologies (Alnajjar et al., 2019; Munfarida et al., 2020;
Widayat et al., 2019, 2020). To the best of the authors’
knowledge, no research has been published on the production of
an MB adsorbent from geothermal solid waste. A stirred-tank
reactor was utilised to synthesise the adsorbent to produce
silica–alumina mixed-phase alumina clusters and pure silica
zones. Hence, the main objective of this study is to investigate
amorphous adsorbent synthesis from geothermal solid waste. MB
adsorption study was carried out and adsorption isotherm models
were used to validate experimental data.
Materials and methods

Materials
Geothermal solid waste was obtained from the geothermal power
plant of PT. Geo Dipa Energi located in Dieng, Wonosobo,
Indonesia. This waste had 64.23% silica based on X-ray
fluorescence (XRF) characterisation using a Rigaku Supermini
200 XRF spectrometer. Sodium hydroxide (NaOH; 99%) and
aluminium hydroxide (Al(OH)3, 99.63%) were purchased from
Sigma-Aldrich, Germany, and used in preparing the adsorbent.
Aquadest was provided from the membrane research centre of
2
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Center of Research and Services, Diponegoro University. MB was
acquired from Sigma-Aldrich, USA, as the adsorbate in this study.

Synthesis of the geoadsorbent
The geothermal solid waste was washed and dried as part of the
pretreatment process, before being synthesis as an adsorbent. The
waste was then reduced in size by powdering using a pestle and
mortar and then sieved with 125 mesh. Next, a stirred-tank reactor
was used to mix 1000 g of geothermal solid waste and 418 g of
aluminium hydroxide with 4 l of aqueous alkali (sodium
hydroxide, 3M). The process went on for 8 h with stirring of the
solution at 250 rpm at a temperature of 100°C, resulting in
clusters of the silica–alumina mixed phase. The temperature and
time were chosen because they were the most frequent and ideal
conditions for producing good porous material qualities with a
large surface area (Busca, 2014; Sheldon et al., 2007). Then, the
silica-alumina was cooled down to room temperature for 12 h.
The geoadsorbent was then dried in an oven to ensure the
removal of water. The final step was to remove impurities and
carbon (C) by calcining in a Lindberg/Blue M tube furnace
(Asheville, NC, USA) at 550°C for 6 h with nitrogen (N2) flow.

Characterisation of the geoadsorbent
X-ray diffraction (XRD) analysis was performed to investigate the
structure and crystallinity of the geoadsorbent by using a Shimadzu
XRD-7000 diffractometer with copper (Cu) Ka radiation as the
X-ray source at 30 kV and 30mA. A Jeol JSM-6510LA scanning
electron microscope with an accelerating voltage of 20 kV was used
to study the surface morphology of the geoadsorbent. Nitrogen
adsorption–desorption was used to investigate the specific surface
area by using the Brunauer–Emmett–Teller (BET) method and the
pore size distribution by using the Barrett–Joyner–Halenda (BJH)
method. Fourier transform infrared spectroscopy (FTIR) analysis
was done using a PerkinElmer Spectrum Two infrared (IR)
spectrometer to determine the functional group of the adsorbent.

MB adsorption study
Batch experimental MB removal by adsorption technique was
determined by adding 0.5 g of the geoadsorbent into Erlenmeyer
flasks each containing 100 ml of MB solution with different
concentrations (100–200 parts per million (ppm)). The
geoadsorbent performance test for MB removal was carried out at
room temperature (25°C) to be closest to the industrial context.
The solutions were magnetically stirred during the adsorption test
for 24 h. The sample was taken to evaluate the MB concentration
at 0, 30, 60, 90 and 120 min of the adsorption process. After 24 h
(equilibrium condition), the sample was filtered using Whatman
filter paper to separate the liquid and the adsorbent and then
evaluated the final MB concentration. The MB concentration was
evaluated by measuring the absorbance with a Hitachi UH5300
ultraviolet/visible spectrophotometer at a wavelength (lmax) of
665 nm. A calibration curve for MB was performed prior to these
observations. The regression equation obtained was Y = 12.04X +
0.1541 (r2 = 0.975), where Y and X represent the MB
rights reserved.
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concentration and the absorbance, respectively. The geoadsorbent
performance was evaluated by calculating two parameters, the
adsorption capacity at equilibrium (qe) in milligrams/gram of the
adsorbent and the removal percentage (E), using the following
equations:

qe mg=gð Þ ¼ C0 − Ce

m
� V

1.

E %ð Þ ¼ C0 − Ce

C0
� 100

2.

The initial MB concentration (mg/l) is given by C0, the MB
remaining equilibrium concentration (mg/l) by Ce, the solution
volume by V (l) and the adsorbent mass (g) by m.

Adsorption isotherm study
The adsorption isotherm study was carried out by using the
Langmuir, Freundlich and Temkin models under equilibrium
conditions.

Results

Geoadsorbent characterisation
The surface characteristics of the geoadsorbent, such as specific
surface area pore size and volume, affect the MB removal (Siyal
et al., 2018). In this study, the specific surface area was
determined using the BET theory. In contrast, the total pore
volume was calculated from the amount of nitrogen adsorbed at a
relative pressure of 0.99. The BJH method was used to calculate
the pore size distribution. The specific surface area, average pore
size and the total pore volume of the geoadsorbent are
summarised in Table 1. The pore size diameter of the
geoadsorbent is in the range 2–50 nm as seen in Figure 1,
classified as a mesoporous structure according to International
Union of Pure and Applied Chemistry classification, while the
pore volume ranges between 0.03 and 0.23 cm3/g as summarised
in Table 2. Figure 2 presented the type IV adsorption-desoprtion
isotherm graph that confirmed the mesoporous structure of
geoadsorbent (Králik, 2014). The adsorbent pore size is
significant to the MB adsorption capacity because MB is a large
molecule and mesoporous adsorbents show much higher MB
adsorption capacity than microporous adsorbents (Chueachot
et al., 2018; Nguyen et al., 2016; Siyal et al., 2018). The average
molecular size of MB is 1.43 × 0.61 × 0.4 nm, depending on the
Table 1. Specific surface area and pore size and volume of the
geoadsorbent
 [
Specific surface
area: m2/g
 Miss John Yuliyandjaja] 
Average pore
size: nm
on [19/10/22]. Copyrig
Total pore volume:
cm3/g
276.48
 22.73
 0.27
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Figure 1. Pore distribution curve
Table 2. Pore size distribution
 r
Pore diameter: nm
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Figure 2. Nitrogen adsorption–desorption of the geoadsorbent.
STP, standard temperature and pressure
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location of the chloride ion attached to the intermediate sulfur
located in the middle of the molecule or one of the two nitrogen
atoms located at the edges (Dotto et al., 2015; Jia et al., 2018; Li
et al., 2020). Therefore, the molecular size of MB and the surface
properties of the geoadsorbent are considered to provide good
adsorption capability.

XRD analysis was carried out to identify the zeolite catalyst phase
and crystallinity shown through the diffraction peaks. The
geoadsorbent diffractogram is presented in Figure 3. The broad
and low-intensity peaks that appear indicate that the geoadsorbent
is an amorphous material with calculated crystallinity of only
28.16%. The amorphous structure is essential for removing MB
due to the formation of a more porous structure, increasing the
adsorption capacity (Al-Harahsheh et al., 2015; Kara et al., 2018).
The highest peak intensity of the zeolite catalyst was observed at
2q of 67.346°/46.0273°/37.6621°. Based on the analysis using the
Match software, the peaks show characteristics of natrolite (Na2
[Al2Si3O10]·2H2O). Natrolite crystals were indexed as having an
orthorhombic structure (space group: Fdd2), with lattice constants
a = 17.6780 Å, b = 18.5090 Å and c = 6.4880 Å and a density of
2.214 g/cm3. The natrolite framework is arranged into T5O10

tetrahedral units (T = Si, Al), whereas natrolite has a SiO4

tetrahedron as a centre polyhedron surrounded by two SiO4 and
two AlO4 tetrahedra (Lee et al., 2012). The natrolite phase
indicates that the silica contained in the geothermal solid waste
successfully reacted with aluminium hydroxide and sodium
hydroxide. Natrolite has a high specific surface area and
adsorptive affinity for organic ions suitable for MB adsorption
(Noroozifar et al., 2014). The presence of negative charges on
aluminium tetrahedra is another important characteristic that
generates an increase in MB removal because of electrostatic
attraction between positively charged MB and the negatively
charged adsorbent (Pathania et al., 2017; Rożek et al., 2019).

FTIR spectra were obtained in the wave number range from 4000
to 400 cm−1 to identify the functional groups on the surface of the
4
ed by [ Miss John Yuliyandjaja] on [19/10/22]. Copyright © ICE Publishing, all 
geoadsorbent and elucidate the adsorption mechanism. The FTIR
spectra of the geoadsorbent before and after MB adsorption are
shown in Figure 4. The absorption band of –O (T = Si, Al)
bending and Si–O and Al–O tetrahedral vibration at 466 cm−1 in
the IR spectrum of the geoadsorbent was observed at around
500 cm−1 after MB adsorption. The peaks at 800 cm−1 show
symmetric and asymmetric stretching vibrations, which
correspond to the SiO4 or AlO4 structure shifting to 844 cm−1

with a higher intensity due to the C–C bending of MB. IR bands
of the O–Si–O asymmetric stretching of silicon compounds within
the wave number range 1130–1000 cm−1 were detected in all
spectra. The bending vibration of coordinated water is responsible
for the peak at 1635 cm−1.
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Figure 3. X-ray diffractogram of the geoadsorbent
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In contrast, the peak of MB–geoadsorbent in the region of
1700–1640 cm−1 in the spectrum reflects the Chet=N

+(CH3)2
stretching vibrations of MB. The broad absorption peak between
3200 and 3700 cm−1 is ascribed to the O–H stretching of the
silanol group (Si–OH) and physisorbed water. The peak around
3388 cm−1 after MB adsorption caused by O–H stretching
vibration broadened due to the hydrogen-bond formation from the
–CH2 of MB and MB was adsorbed to the geoadsorbent. The
mechanisms of MB adsorption suggest an electrostatic attraction
between carboxylic groups and MB cations as well as hydrogen
bonds between OH groups on the adsorbent surface and the
carbon atoms (Abdelrahman et al., 2019; Khanday et al., 2017; Li
et al., 2020; Ovchinnikov et al., 2016; Pal et al., 2013; Pérez-
Morales et al., 2019). After MB adsorption, the IR spectrum of
the geoadsorbent displays the same bands with some modest
shifting, indicating that the functional groups of the geoadsorbent
were involved in the MB dye adsorption without any reaction
(Jawad and Abdulhameed, 2020).

Scanning electron microscopy (SEM) was used to investigate the
surface structure and morphology of the geoadsorbents. SEM
images of the geoadsorbent and MB–geoadsorbent (geoadsorbent
with adsorbed MB) are presented in Figure 5. Figure 5(a) shows a
morphological image of the geoadsorbent at a magnification of
×10 000, which has a roughly pentagonal structure. The rough
surface of the geoadsorbent gives a larger surface area for the
 [ Miss John Yuliyandjaja] on [19/10/22]. Copyright © ICE Publishing, all rights
adsorption of dye contaminants because of its molecular diffusion
ability (Aichour et al., 2019). As shown in Figures 5(b)–5(f),
small irregularly shaped particles covered almost the entire
surface of the MB–geoadsorbents. This study demonstrated that
MB adsorption changes the surface morphology of geoadsorbents
(Li et al., 2020).

Adsorption study of the geoadsorbent
MB adsorption was studied at various time intervals with initial
concentrations of 100–200 mg/l with an adsorbent dose of 0.5 g/l
at 25°C. From Figure 6, the MB adsorbed increased rapidly in the
first 30 min, becoming slow after that and reaching equilibrium at
210 min at a concentration of 100 mg/l, 240 min at the higher
concentrations (125–175 mg/l) and 270 min at 200 mg/l. The
initial concentration determines the attainment of equilibrium,
where it was possible to identify that the kinetics becomes slower
as the concentration increases. There was no significant change in
the percentage of dye removal with time after attaining the
equilibrium condition. The rate of adsorbate removal from
aqueous solutions is primarily controlled by the transfer of dye
molecules from the surrounding sites to adsorbent particles
(Banerjee and Chattopadhyaya, 2017; Rosset et al., 2020).

A decrease in the number of vacant adsorbent sites causes a
decrease in MB uptake before 180 min, where initially the ratio
between vacant adsorbent sites and MB molecules was very high.
The fluctuating change in MB removal shows that physisorption
occurred as shown by the reversible removal process, as the MB
molecule could be adsorbed and desorbed before the equilibrium
condition (Chen et al., 2021).

It was found in Figure 7 that the adsorption capacity at
equilibrium increased (qe) from 16.899 to 22.849 mg/g as the
(a) (b)

(c) (d)

(e) (f)

Figure 5. SEM images of (a) the geoadsorbent, (b) 100 ppm
MB–geoadsorbent, (c) 125 ppm MB–geoadsorbent, (d) 150 ppm
MB–geoadsorbent, (e) 175 ppm MB–geoadsorbent and
(f) 200 ppm MB–geoadsorbent
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Figure 6. Removal percentage (E) by the geoadsorbent at
different initial MB concentrations
5
 reserved.



Journal of Environmental Engineering
and Science

Amorphous adsorbent from geothermal
solid waste for methylene blue removal
Philia, Widayat and Sulardjaka

Download
initial concentration increased from 100 to 150 ppm and the
removal percentage decreased with the increase in initial MB
concentration in this study. The maximum adsorption capacity at
equilibrium is 84.494% at 150 ppm. In comparison, MB
concentration of more than 150 ppm led to a decreasing MB
adsorbed amount. This means that the adsorption highly depends
on the initial concentration of MB. The decrease in adsorption
capacity that occurs as a result of increasing concentrations raises
the probability that MB monolayers may be forming on the
surface of the adsorbent. Lower concentrations provide high
efficiency of MB molecule adsorption since fewer available
adsorption sites for higher concentrations MB uptake are affected
due to the high ratio of the adsorbent surface area to the total MB
molecules (Khodaie et al., 2013; Kuang et al., 2020; Pathania
et al., 2017).

Isotherm study of MB adsorption
In this work, the adsorption isotherms show an interaction
between MB molecules and the geoadsorbent. Many isotherm
models can accommodate the correlation between qe and Ce. The
experimental data were fitted to the Langmuir, Freundlich and
Temkin isotherm models to study the adsorption isotherms. The
adsorption isotherms were obtained from different MB
concentrations, where the adsorption capacity needs to be found
in equilibrium.

The Langmuir isotherm explains the homogeneous nature of MB
adsorption. This occurrence meant that all sites had been saturated, as
there was no longer any contact with adsorbent molecules. In its
formulation, the empirical model of the Langmuir isotherm assumes
monolayer adsorption onto a surface with a finite number of well-
defined local sites (Rehman et al., 2021; Wang et al., 2018). The
linearised Langmuir model is written mathematically as
6
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Ce

qe
¼ Ce

qm
þ 1

KLqm3.

where Ce is the equilibrium concentration of the adsorbate (mg/l),
qe is the amount adsorbed (adsorbate) at equilibrium per unit mass
of the adsorbent (mg/g), KL is the Langmuir constant related to
adsorption capacity (l/mg) and qm is the practical limiting
adsorption capacity (mg/g).

Figure 8(a) shows that the Langmuir isotherm model in this study
obtained qm = 21.673 as calculated from the slope and KL = 0.310
from the intercept of the plot.

The Freundlich isotherm defines the non-ideal reversible
adsorption process that occurs on heterogeneous surfaces and
pertains to adsorption processes that occur on heterogeneous
surfaces (Rehman et al., 2021; Wang et al., 2018).
Mathematically, the linear form of the Freundlich isotherm model
can be written as the following equation:

log qe ¼ KF þ
1

n
logCe4.

where Ce is the equilibrium concentration of the adsorbate (mg/l),
qe is the amount adsorbed (adsorbate) at equilibrium per unit mass
of the adsorbent (mg/g), KF is the Freundlich constant related to
adsorption capacity (l/mg) and n is the surface heterogeneity or
adsorption intensity factor (mg/g).

The Freundlich isotherm plot in this study resulted in a value of
n = 9.163 calculated from the slope, and KF = 13.170 from the
intercept as can be seen in Figure 8(b).

By neglecting deficient and high concentrations, the Temkin
isotherm model explains the influence of indirect
adsorbate–adsorbent interactions on the adsorption process. This
model implies that as the surface coverage of the layer increases,
the heat of adsorption of all molecules in the layer decreases
linearly (Rehman et al., 2021; Wang et al., 2018). The linearised
Temkin isotherm model can be written as in the equation

qe ¼
RT

b
ln KT þ RT

b
lnCe5.

where Ce is the equilibrium concentration of the adsorbate (mg/l),
qe is the amount adsorbed (adsorbate) at equilibrium per unit mass
of the adsorbent (mg/g), KT is the Temkin isotherm constant (l/g),
R is the universal gas constant (J/(mol K)), T is the absolute
temperature (K) and b is the Temkin constant that is related to
heat (J/mol).
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Figure 7. Maximum MB removal percentage (E) and adsorption
capacity at equilibrium (qe)
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The values of b and KT were respectively 801.282 and 1.407 ×
106, calculated from the slope and intercept of the plot qe against
lnCe shown in Figure 8(c).

Table 3 summarises the parameters of various isotherm models for
MB adsorption by the geoadsorbent. It was observed that the
Langmuir adsorption isotherm model provided the best fit, with a
correlation coefficient of 0.971 being obtained. This suggests that in
this study, MB adsorption by the geoadsorbent can be described
 [ Miss John Yuliyandjaja] on [19/10/22]. Copyright © ICE Publishing, all rights
more accurately by the Langmuir model than by any of the other
isotherm models. This is appropriate to the MB monolayer
formation caused by adsorption at certain homogeneous locations
within the adsorbent (Khodaie et al., 2013).

Conclusions
An amorphous mesoporous geoadsorbent was successfully
synthesised for MB removal from geothermal solid waste. The
peak diffractogram of the geoadsorbent exhibited an amorphous
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Figure 8. MB adsorption isotherms using the (a) Langmuir, (b) Freundlich and (c) Temkin models
Table 3. Isotherm model parameters
T: K

Langmuir
 Freundlich
 reserved.
Temkin
KL
 qm
 R2
 KF
 n
 R2
 KT
 b
 R2
298
 0.3104
 21.673
 0.971
 13.17
 9.1625
 0.4308
 1 407 784.8
 801.28
 0.5974
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phase of natrolite, an important characteristic for MB uptake.
Equilibrium data fitted well the Langmuir isotherm models rather
than the Freundlich and Temkin ones, indicating a homogeneous
adsorption process. The capacity of MB removal by the
geoadsorbent was up to 84.494% at a concentration of 100 mg/l.
Hydrogen bonds between OH groups on the adsorbent surface
and electrostatic interaction between carboxylic groups and MB
cations governed the dye removal. From this study, it can be
concluded that geothermal solid waste offers promise as an
effective and sustainable adsorbent for MB removal. This work
can be extended to optimise the adsorbent synthesis process and
the effect of adsorption operating conditions (pH, temperature,
adsorbent dosage).
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