
Effect of Synthetic Minority Oversampling

Technique (SMOTE), Feature Representation, and

Classification Algorithm on Imbalanced Sentiment

Analysis

Widi Satriaji

Department of Informatics

Universitas Diponegoro

Semarang, Indonesia

satriajiwidi@student.undip.ac.id

Retno Kusumaningrum

Department of Informatics

Universitas Diponegoro

Semarang, Indonesia

retno@live.undip.ac.id

Abstract— The comments received on Internet-based

online hotel reservation services are an important resource

that can be utilised by hotel service providers including hotel

managers’ and hoteliers’ for exercising quality control

measures in their hotel reservation service. Importantly this

contributes towards increased customer satisfaction and hotel

revisits. In this study, Sentiment Analysis (SA) is used to

analyse the comments received from customers. However,

there are several problems associated with SA such as the

unequal number of each class of data (imbalanced datasets),

the classification algorithm and the feature representation.

Using SMOTE (Synthetic Minority Oversampling Technique)

this research aims to investigate how this technique balances

the amount of data from each class employing; the Naïve Bayes

(NB), Logistic Regression (LR), and Support Vector Machine

(SVM) classification algorithms. And also using; term presence

(TO), term occurrence (TO), and Term Frequency-Inverse

Document Frequency (TF-IDF) feature representations to

gauge the effect on the performance of sentiment analysis. The

findings from the study found that the use of SMOTE was

effective in improving the model’s classification performance

when data is imbalanced, as evidenced by the average model

performance improvement of approximately 12 %.

Furthermore, feature representation of TO resulted in an

average of 81.68 % of the G-mean Score, followed by TP of

79.89 %, and TF-IDF 79.31 %. As for the classification

algorithm, LR resulted in an average score of 81.65 % of the g-

mean score, followed by SVM 81.55 %, and NB of 77.68 %.

Keywords— Sentiment analysis, hotel, imbalanced datasets,

SMOTE, g-mean score.

I. INTRODUCTION

The online hotel booking industry globally has become
recognised thanks to the proliferation of Internet-based
devices, especially in Indonesia. In fact, many of these
services are evident in both web-based and smartphone
application development. Most service providers in this
industry provide comment or note fields for users to express
their feedback (i.e. impressions and criticisms) regarding the
quality they receive from hotels in which they register and
make a booking. These comments are an important resource
which is used to provide feedback to respective hotels, and
particularly for hotel managers and hoteliers to exercise
quality control measures for hotel booking services resulting
in increased customer satisfaction and revisits.

Sentiment Analysis (SA) is a tool that can be utilised to
analyse hotel booking comments. SA is a research area that
is used to analyse the expression of opinions, e.g. from the

World Wide Web (WWW), also called the web [1]. Cambria
et al. [2] classify SA techniques into four main categories,
namely; keyword-spotting, lexical affinity, concept-based, as
well as statistic and machine learning. The machine learning
(ML) technique is the method employed in this research.

Some of the ML algorithms that are often used and have
been proven optimal for SA are Naive Bayes, Logistic
Regression, and Support Vector Machine. However, no
single research has provided extensive generalisation claims
for either. Therefore, in this research the performance of the
three algorithms will be compared mentioned previously
solve one problem, namely performing SA on the comments
on a hotel booking website.

However, the problem that arises later is that most of
these comments tend to be rather imbalanced regarding the
number of each class or incline to one of the poles, for
example, to the negative or vice versa. In general, ML
algorithms for classification will result in a model with
minimal sensitivity to minority classes when receiving
imbalanced datasets [3]. Furthermore, it has proven to be
quite a challenging problem for the ML research community
[4] as it will undoubtedly lead to bad performance regarding
the SA to be performed.

Some of the approaches proposed to address the problem
of distribution imbalances in the dataset include re-sampling
[5], one-class classification [6], and cost-sensitive learning
[7]. The approach adopted in this research is the re-sampling
technique.

SMOTE (Synthetic Minority Over-sampling Technique)
is one of the most commonly used over-sampling techniques
used to handle imbalanced datasets by creating synthetic data
in minority data classes. This is so that the data becomes
balanced [5] and is expected to aid in better classification
performance [8].

The third problem that often arises in SA is about
choosing the type of feature vector representation. The
representation of features to be used in this case are term
presence, term occurrence, and term frequency-inverse
document frequency (TF-IDF).

The performance metrics that are proposed to use in this
research are G-mean score/geometric mean score [4][9]. This
metric represents a good performance balance for both the
major and minor classes, which therefore means that poor
performance in minority classes will result in poor G-mean

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)

978-1-5386-7440-6/18/$31.00 ©2018 IEEE

values even though the performance of the majority class is
excellent [10].

The rest of this paper is organized as follows. Section 2
describes the implemented methodology. The experimental
scenarios and results are described in Section 3.
Subsequently, conclusions are drawn in Section 4.

II. METHODOLOGY

This section will discuss the research methodology
conducted. Fig. 1 describes the methodology that is used in
this study.

Fig. 1. Overview of this Research

TABLE I. EXAMPLES DATASET.

Text Class

Pelayanan yang ramah dan keadaaan hotel yang bersih pos

Banyak jentik nyamuk, sempat pindah kamar, ternyata setelah

pindah kamar, sama saja banyak jentik nyamuk
neg

A. Data Acquisition

Data collection in this research uses hotel comment data
obtained from the Traveloka website using manual scraping

without using an application programming interface (API).
From the scraping process, approximately 13,000 comments
[data] are collected from all locations/cities available from
the site. Next, 1,500 comments (data) are taken at random
which are categorised/grouped manually into two distinct
classes (ground truth); whether the comments are positive or
negative. A ratio is then formulated of the number of positive
and negative data with a value of 1058:442. The data will
then be used as training data to form the SA classification
model.

B. Pre-processing

Pre-processing is performed with the aim to prepare raw
data obtained from the acquisition process with scraping into
data in preparation for the next process. Pre-processing
consists of several sub-processes, namely: tokenisation,
stopwords removal, stemming, and normalisation. The
tokenisation is performed in order to form comment data that
is initially, a sentence or paragraph, into separate words [11].
The words are then stored into arrays after normalisation
using the Jaro-Winkler Distance algorithm to correct any
typographical errors (typos) [12]. From the array of words,
the words that are then considered less representative are
omitted or commonly referred to as stopwords [13]. This
process is called stopwords removal. After that, the next
process that follows is the stemming process; namely
simplification of the word to be the basic word to eliminate
dimension space of the data [14].

Fig. 2. Preprocessing Steps

TABLE II. EXAMPLES OF PRE-PROCESSED DATASET.

Text Class

['layan', 'ramah', 'ada', 'hotel', 'bersih'] pos

['banyak', 'jentik', 'nyamuk', 'pindah', 'kamar', 'pindah', 'kamar',
'sama', 'banyak', 'jentik', 'nyamuk']

neg

C. Data Split

The process of split data is undertaken with the aim to
separate the data, in order to obtain the training data and
testing data. From the 1,500 data, having a ratio of 1058:442

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)

for the data with positive and negative labels, 158 positive
data and 142 negative data were collected for the testing
data. This results in 300 test data and the remaining 1,200 as
training data. Before splitting the data, random data
sequencing/shuffle is conducted so that the results of the
training and testing data are random in sequence.
Accordingly, this is undertaken to minimise the bias on the
performance measurement of the classification model that
will be undertaken later.

D. Feature Extraction

The feature extraction process is divided into 2 sub-
processes; sub-process of vocabulary formation and sub-
process of document vectorisation into a feature vector.
Vocabulary formation is performed as a prerequisite for
vectorisation, in which the vector dimension is equal to the
length of the vocabulary. In this case, the order of values in
each vector is the value of the word in the corresponding
document. Accordingly, there are 3 types of representation of
the feature vector to be formed, namely:

 Term presence: the presence or absence of each
word in the vocabulary for each word of each
comment;

extracted features example:

[1, 0, 1, 1, 0, 1, 1, 0]

 Term occurrence: how often each word appears in
the vocabulary for each word of each comment; and

extracted features example:

[2, 0, 2, 2, 0, 2, 2, 0]

 TF-IDF: re-weighting results at corpus level to term
occurrence [15]. Referred to as ‘TF’.

extracted features example:

[0.03, 0.00, 0.07, 0.04, 0.00, 0.08, 0.01, 0.00]

E. SMOTE

SMOTE is an algorithm for the oversample of minor
class data [5]. Simply put, SMOTE performs oversampling
by taking k data from k-NN for each data in the minor class.
Then for N/100 number of magnifications, generate new data
for each minor class data by retrieving "in line" data with one
of the randomly selected k-NN data results.

The (simplified) steps of the SMOTE algorithm are as
follows:

1. Select k number of nearest neighbours to use and how

many times l = N / 100 oversamples will be performed.

2. For each of the minority class x data points, do:

3. Select randomly l data from the nearest neighbour's

data k.

4. For each of these data, form synthetic data by

taking the random data points that are aligned with

the present x points with each observed l.

5. The return of the SMOTE algorithm is the initial data

plus the oversampling results that have been performed.

The magnification undertaken at SMOTE in this research
is at 200 %, which means to enlarge the data of the minor
class into 3-fold the original amount or to increase the result
of generating oversampling data by 2-fold the initial size.

The ratio of the original training data amount before the
oversampling of the positive and negative classes is 900:300,
which following the oversampling of SMOTE becomes
balanced by a ratio of 900:900 for each class.

F. Classification Algorithms

Some of the classification algorithms used in this
research are; Naïve Bayes (NB), Logistic Regression (LR),
and Support Vector Machine (SVM).

 Naïve Bayes is renowned for being fast, inexpensive
computing, accurate, and reliable. In addition to
being successful in many cases, this algorithm is also
known to work optimally and popularly in the field
of Natural Language Processing especially in text
classification [16].

 Logistic regression algorithm is an actual
classification algorithm derived from a linear
regression algorithm, but with a non-linear function
applied to the output outcome. Non-linear functions
are a logistic function or sigmoid function. The
sigmoid function itself is a function that produces a
curve with a character set such as the letter S (S-
shaped curve) [17].

 The idea behind the Support Vector Machine is to
find the best hyperplane that separates the datasets
into each class. In a two-dimensional space, a
hyperplane is a line that divides the dataset into its
own class. That means the hyperplane is a separator
between dataset classes with n-1 dimensions of the
dataset dimension [18].

G. Evaluation

Performance metrics are used to perform the performance
measurement results from the model that have been formed.
Moreover, the performance metric to be used in this research
is g-mean which is calculated as the product of prediction
accuracy for both classes. Even though a model classifies
most data correctly, poor performance in predicting minority
instances will result in a low average g-mean. Therefore, this
performance metric is suitable for use in studies with
imbalanced datasets. In fact, g-mean is important enough to
measure overfitting for the majority class and the extent to
which minority classes are ignored [10].

In this research, where the amount of positives data are
more dominant compared to the negatives, TP/true positives
score will be high and TN/true negatives will be the other
way around. With SMOTE, better score of TN (true negative
rate) of the model is expected.

III. EXPERIMENTAL RESULT

A. Training Evaluation

In the first scenario we will see the performance based on
the g-mean score on the training process of each combination
which is a total of 18 combinations obtained from the
combination of 3 classification algorithms: NB, SVM, and
LR, 3 feature representations: term presence (TP), term
occurrence (TO), TF-IDF (TF), and whether (Y) or not (T)

(1)

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)

oversampling (SMOTE) is applied. The value of the g-mean
score in this scenario is the average of the result of the g-
mean score of the training process of the 10-fold on the 10-
fold cross validation that has been performed.

The table above shows a very distinct pattern indicating
an increase in model performance on all combinations of the
training process after oversampling (SMOTE) in minority
class data. Accordingly, an average performance increase of
approximately 16 % occurs after oversampling. This
indicates that the oversampling process with SMOTE is quite
effective in improving model performance in the case of the
classification with imbalanced data.

TABLE III. THE RESULT OF SCENARIO I OF 18 COMBINATIONS.

Combination Algorithm Feature Sampling
G-mean Score

(%)

K1 NB TP T 78.59

K2 NB TO T 80.17

K3 NB TF T 61.92

K4 SVM TP T 76.90

K5 SVM TO T 79.48

K6 SVM TF T 78.61

K7 LR TP T 76.97

K8 LR TO T 76.64

K9 LR TF T 68.79

K10 NB TP Y 89.64

K11 NB TO Y 89.65

K12 NB TF Y 90.28

K13 SVM TP Y 92.38

K14 SVM TO Y 93.03

K15 SVM TF Y 93.44

K16 LR TP Y 91.94

K17 LR TO Y 92.42

K18 LR TF Y 91.25

In the NB classification algorithm, there is an increase in

performance when the oversampling is undertaken because
the minority oversampling process improves the individual
likelihood of the words (features) that should be more
suitable or stronger into the minority class. Whereas, on the
LR classification algorithm, oversampling improves the cost
function calculation, which increases the frequency of errors
when minor class data is classified. Lastly, the SVM
classification algorithm in which the oversampling improves
performance by updating the support vectors used in forming
the dividing hyperplane that ultimately shifts the hyperplane
away from the minority class region.

In the comparison of training performance based on the
representation of features used, it is generally seen from the
average that the best performance resulted from the
representation of the TO type feature with the value of 85.23
%, followed by the TP of 84.40 % and finally, TF of 80.72
%. Indeed, the performance generated by TO and TP is
relatively similar to most cases, and TO is better than TP
because TP loses information regarding how often a term
appears in the document. Although, in the comment data
with a relatively short length, the difference from the same
word occurrence frequency tends to be minimal.

Notwithstanding, the performance gaps may be more
significant in longer-term data types. As for TF, especially
on the NB algorithm before oversampling, the performance
difference compared to the other types of features is
relatively far away. This is due to the distribution/continuous
value of the TF features being relatively broader.

B. Testing Evaluation
In the second scenario the performance of the

classification model is seen based on the g-mean score on the
testing process of each combination of 18 combinations
obtained from the combination of 3 classification algorithms:
NB, SVM and LR, 3 representation features: TP, TO, TF,
and whether (Y) or not (T) oversampling (SMOTE) is
applied.

In this scenario, there is an average increase of
approximately 12 % after oversampling. The difference in
the magnitude of the increase in the testing process compared
to the training process (12 % versus 16 %) is due to some
unseen data on the comment dataset in the testing process
resulting from the data splitting process.

In the comparison of training performance based on the
representation of features used, it is generally seen from the
average that the best performance resulted from the
representation of the feature type TO with an average value
of 81.68 %, followed by the TP of 79.89 % and lastly, TF of
79.31 %. The pattern is like the first scenario outlined
previously. Therefore, this shows that the TO feature is best
suited for SA based on the average performance of the
training and testing process in both the first and seconds
scenario undertaken before.

TABLE IV. THE RESULT OF SCENARIO II OF 18 COMBINATIONS.

Combination Algorithm Feature Sampling
G-mean

Score (%)

K1 NB TP T 69.81

K2 NB TO T 70.53

K3 NB TF T 62.40

K4 SVM TP T 76.70

K5 SVM TO T 79.38

K6 SVM TF T 78.43

K7 LR TP T 76.88

K8 LR TO T 79.99

K9 LR TF T 72.46

K10 NB TP Y 86.96

K11 NB TO Y 88.43

K12 NB TF Y 87.92

K13 SVM TP Y 82.71

K14 SVM TO Y 85.47

K15 SVM TF Y 86.63

K16 LR TP Y 86.29

K17 LR TO Y 86.29

K18 LR TF Y 88.00

The results of TO and TP are relatively compareable in
several cases, but TO is mostly better than TP because TP
lost the information about how frequent a term appears in a

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)

document, despite the fact that in comments-formed dataset
with count of words that relatively small, the appearance
frequency from the same term is quite minimal. Performance
gap maybe broader in the type of data that has more words.

The best classification algorithm performance seen from
the average is LR with an average value equal to 81.65 %,
SVM equal to 81.5 5%, and NB equal to 77.68 %. Notably,
in this case, it is interesting to note that in the testing process
LR is the best, replacing SVM. The average is obtained
because LR produces an average increase in performance
which is greater than SVM after the oversampling process.

The further interesting point is that although the average
NB is the most unfavourable compared to the other two, the
NB produces the best unit performance on the combination
with the TO feature after oversampling with a value of 88.43
%. NB also generates the largest average for performance
after oversampling.

C. Training vs. Testing

In the third scenario a performance comparison will be
seen based on the g-mean score between the training and the
testing process of each combination of 18 combinations
obtained from the combination of 3 classification algorithms:
NB, SVM and LR, 3 representation features: TP, TO, TF,
and whether (Y) or not (T) oversampling (SMOTE) is
applied

The average training performance is 83.4 %, while the
average performance of testing is 80.2 %. From the average,
it can be seen that the difference in performance of about 3
% is due to model overfitting in the training process. Indeed,
this may be justified, given that the performance
measurement of training (validation) is carried out using the
same data with the data used in forming the model, in which
all data (vocabulary feature) have been seen. While in the
testing process, in order to be as close as possible to imitate
the real-world situation, not all the features have been
seen/represented in the previous training process. So, the
words that should probably be important are discarded
because they do not belong to the vocabulary that has been
formed.

Before oversampling, the performance of each model and
combination with features is relatively balanced in the
training and testing process, or sometimes it improves in the
testing process as in the case of K8 and K9. In the case of the
NB algorithm, there is a considerable decline in testing
performance, especially for the TP and TO features.
However, after oversampling, the NB displays its strength by
generating the least difference in the performance of training
to testing, compared to the two other algorithms. Even
though the training performance in NB is not better
compared to the others, its testing performance is the best.
Therefore, this concludes that NB has the best generalisation
ability among the three.

IV. CONCLUSIONS

Based on the analysis and testing results in this research,
several conclusions are presented as follows:

1. The use of SMOTE is quite effective (based on the g-
mean score) towards improving model performance in
the case of the classification with imbalanced dataset, as

evidenced by the average model performance
improvement of approximately 12 %.

2. Feature representations that produce the best
classification performance of the model, based on the
average value, are TO with G-mean score of 81.68 %,
followed by the TP of 79.89 %, and TF of 79.31 %.

3. The classification algorithms that produce the best
classification performance of the model, based on the
average value are LR with the G-mean score equal to
81.65 %, followed by SVM equal to 81.55 %, and NB
equal to 77.68 %.

REFERENCES

[1] A. Mountassir, H. Benbrahim and I. Berrada, "An empirical study to

address the problem of Unbalanced Data Sets in Sentiment
Classification," Seoul, 2012.

[2] E. Cambria, B. Schuller, Y. Xia and C. Havasi, "New avenues in

opinion mining and sentiment analysis," IEEE Intell Syst, 2013.

[3] H. He and Y. Ma, Imbalanced Learning: Foundations, Algorithms,

and Applications, Wiley-IEEE Press, 2013.

[4] M. Kubat and S. Matwin, "Addressing the Curse of Imbalanced
Training Sets: One-Sided Selection," Department of Computer

Science University of Ottawa, 1997.

[5] N. Chawla, K. Bowyer, L. Hall and W. Kegelmeyer, "SMOTE:
Synthetic Minority Over-Sampling Technique," Journal of Artificial

Intelligence Research, vol. 16, p. 321–357, 2002.

[6] P. Juszczak and R. Duin, "Uncertainty Sampling Methods for One-
Class Classifiers," Washington DC, 2003.

[7] Z. Zhou and X. Liu, "Training cost-sensitive neural networks with

methods addressing the class imbalance problem," IEEE Transaction
on Knowledge and Data Engineering, vol. 18, no. 1, pp. 63-77, 2006.

[8] J. Ah-Pine and E. P. S. Morales, "A Study of Synthetic Oversampling

for Twitter Imbalanced Sentiment Analysis," DMNLP, 2016.

[9] M. Bekkar, H. K. Djemaa and T. A. Alitouche, "Evaluation Measures

for Models Assessment over Imbalanced Data Sets," Information

Engineering and Applications, vol. 3, no. 10, p. 27, 2013.

[10] H. Shohei, K. Hisashi and T. Yutaka, "Roughly Balanced Bagging for

Imbalanced Data," Statistical Analysis and Data Mining, vol. 2, no.

5-6, pp. 412-426, 2009.

[11] D. S. Kannan and V. Gurusamy, "Preprocessing Techniques for Text

Mining," International Journal of Computer Science &

Communication Networks, vol. 5(1), pp. 7-16, 2014.

[12] Y. Rochmawati and R. Kusumaningrum, "Comparison Study of

String Searching Algorithms in Approximate String Matching
Method for Identifying Text Typing Errors," Jurnal Buana

Informatika, vol. 7, no. 2, pp. 125-134, 2016.

[13] M. F. Porter, "An Algorithm for Suffix Stripping," Program, vol. 14,
no. 3, pp. 130-137, 1980.

[14] C. Ramasubramanian and R. Ramya, "Effective Pre-Processing

Activities in Text Mining using Improved Porter‟s Stemming
Algorithm," International Journal of Advanced Research in

Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-

4538, 2013.

[15] V. John, "A Survey of Neural Network Techniques for Feature

Extraction from Text," arXiv, 2017.

[16] A. McCallum and K. Nigam, "A Comparison of Event Models for
Naive Bayes Text Classification," AAAI Workshop, pp. 41-48, 1998.

[17] C.-Y. J. Peng, K. L. Lee and G. M. Ingersoll, "An Introduction to

Logistic Regression Analysis and Reporting," The Journal of
Educational Research, vol. 96(No. 1), pp. 3-14, 2002.

[18] S. R. Gunn, Support Vector Machines for Classification and

Regression, Southampton: University of Southampton, 1998.

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)

