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Abstract— The comments received on Internet-based 

online hotel reservation services are an important resource 

that can be utilised by hotel service providers including hotel 

managers’ and hoteliers’ for exercising quality control 

measures in their hotel reservation service. Importantly this 

contributes towards increased customer satisfaction and hotel 

revisits. In this study, Sentiment Analysis (SA) is used to 

analyse the comments received from customers. However, 

there are several problems associated with SA such as the 

unequal number of each class of data (imbalanced datasets), 

the classification algorithm and the feature representation. 

Using SMOTE (Synthetic Minority Oversampling Technique) 

this research aims to investigate how this technique balances 

the amount of data from each class employing; the Naïve Bayes 

(NB), Logistic Regression (LR), and Support Vector Machine 

(SVM) classification algorithms. And also using; term presence 

(TO), term occurrence (TO), and Term Frequency-Inverse 

Document Frequency (TF-IDF) feature representations to 

gauge the effect on the performance of sentiment analysis. The 

findings from the study found that the use of SMOTE was 

effective in improving the model’s classification performance 

when data is imbalanced, as evidenced by the average model 

performance improvement of approximately 12 %. 

Furthermore, feature representation of TO resulted in an 

average of 81.68 % of the G-mean Score, followed by TP of 

79.89 %, and TF-IDF 79.31 %. As for the classification 

algorithm, LR resulted in an average score of 81.65 % of the g-

mean score, followed by SVM 81.55 %, and NB of 77.68 %. 

Keywords— Sentiment analysis, hotel, imbalanced datasets, 

SMOTE, g-mean score. 

I.  INTRODUCTION 

The online hotel booking industry globally has become 
recognised thanks to the proliferation of Internet-based 
devices, especially in Indonesia. In fact, many of these 
services are evident in both web-based and smartphone 
application development. Most service providers in this 
industry provide comment or note fields for users to express 
their feedback (i.e. impressions and criticisms) regarding the 
quality they receive from hotels in which they register and 
make a booking. These comments are an important resource 
which is used to provide feedback to respective hotels, and 
particularly for hotel managers and hoteliers to exercise 
quality control measures for hotel booking services resulting 
in increased customer satisfaction and revisits. 

Sentiment Analysis (SA) is a tool that can be utilised to 
analyse hotel booking comments. SA is a research area that 
is used to analyse the expression of opinions, e.g. from the 

World Wide Web (WWW), also called the web [1]. Cambria 
et al. [2] classify SA techniques into four main categories, 
namely; keyword-spotting, lexical affinity, concept-based, as 
well as statistic and machine learning. The machine learning 
(ML) technique is the method employed in this research. 

Some of the ML algorithms that are often used and have 
been proven optimal for SA are Naive Bayes, Logistic 
Regression, and Support Vector Machine. However, no 
single research has provided extensive generalisation claims 
for either. Therefore, in this research the performance of the 
three algorithms will be compared mentioned previously 
solve one problem, namely performing SA on the comments 
on a hotel booking website. 

However, the problem that arises later is that most of 
these comments tend to be rather imbalanced regarding the 
number of each class or incline to one of the poles, for 
example, to the negative or vice versa. In general, ML 
algorithms for classification will result in a model with 
minimal sensitivity to minority classes when receiving 
imbalanced datasets [3]. Furthermore, it has proven to be 
quite a challenging problem for the ML research community 
[4] as it will undoubtedly lead to bad performance regarding 
the SA to be performed. 

Some of the approaches proposed to address the problem 
of distribution imbalances in the dataset include re-sampling 
[5], one-class classification [6], and cost-sensitive learning 
[7]. The approach adopted in this research is the re-sampling 
technique. 

SMOTE (Synthetic Minority Over-sampling Technique) 
is one of the most commonly used over-sampling techniques 
used to handle imbalanced datasets by creating synthetic data 
in minority data classes. This is so that the data becomes 
balanced [5] and is expected to aid in better classification 
performance [8]. 

The third problem that often arises in SA is about 
choosing the type of feature vector representation. The 
representation of features to be used in this case are term 
presence, term occurrence, and term frequency-inverse 
document frequency (TF-IDF). 

The performance metrics that are proposed to use in this 
research are G-mean score/geometric mean score [4][9]. This 
metric represents a good performance balance for both the 
major and minor classes, which therefore means that poor 
performance in minority classes will result in poor G-mean 
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values even though the performance of the majority class is 
excellent [10].   

The rest of this paper is organized as follows. Section 2 
describes the implemented methodology.  The experimental 
scenarios and results are described in Section 3.  
Subsequently, conclusions are drawn in Section 4. 

II. METHODOLOGY 

This section will discuss the research methodology 
conducted. Fig. 1 describes the methodology that is used in 
this study. 

 
 

Fig. 1. Overview of this Research 

TABLE I. EXAMPLES DATASET. 

Text Class 

Pelayanan yang ramah dan keadaaan hotel yang bersih pos 

Banyak jentik nyamuk, sempat pindah kamar, ternyata setelah 

pindah kamar, sama saja banyak jentik nyamuk 
neg 

A. Data Acquisition 

Data collection in this research uses hotel comment data 
obtained from the Traveloka website using manual scraping 

without using an application programming interface (API). 
From the scraping process, approximately 13,000 comments 
[data] are collected from all locations/cities available from 
the site. Next, 1,500 comments (data) are taken at random 
which are categorised/grouped manually into two distinct 
classes (ground truth); whether the comments are positive or 
negative. A ratio is then formulated of the number of positive 
and negative data with a value of 1058:442. The data will 
then be used as training data to form the SA classification 
model. 

B. Pre-processing 

Pre-processing is performed with the aim to prepare raw 
data obtained from the acquisition process with scraping into 
data in preparation for the next process. Pre-processing 
consists of several sub-processes, namely: tokenisation, 
stopwords removal, stemming, and normalisation. The 
tokenisation is performed in order to form comment data that 
is initially, a sentence or paragraph, into separate words [11]. 
The words are then stored into arrays after normalisation 
using the Jaro-Winkler Distance algorithm to correct any 
typographical errors (typos) [12]. From the array of words, 
the words that are then considered less representative are 
omitted or commonly referred to as stopwords [13]. This 
process is called stopwords removal. After that, the next 
process that follows is the stemming process; namely 
simplification of the word to be the basic word to eliminate 
dimension space of the data [14]. 

 

Fig. 2. Preprocessing Steps 

TABLE II. EXAMPLES OF PRE-PROCESSED DATASET. 

Text Class 

['layan', 'ramah', 'ada', 'hotel', 'bersih'] pos 

['banyak', 'jentik', 'nyamuk', 'pindah', 'kamar', 'pindah', 'kamar', 
'sama', 'banyak', 'jentik', 'nyamuk'] 

neg 

C. Data Split 

The process of split data is undertaken with the aim to 
separate the data, in order to obtain the training data and 
testing data. From the 1,500 data, having a ratio of 1058:442 
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for the data with positive and negative labels, 158 positive 
data and 142 negative data were collected for the testing 
data. This results in 300 test data and the remaining 1,200 as 
training data. Before splitting the data, random data 
sequencing/shuffle is conducted so that the results of the 
training and testing data are random in sequence. 
Accordingly, this is undertaken to minimise the bias on the 
performance measurement of the classification model that 
will be undertaken later. 

D. Feature Extraction 

The feature extraction process is divided into 2 sub-
processes; sub-process of vocabulary formation and sub-
process of document vectorisation into a feature vector. 
Vocabulary formation is performed as a prerequisite for 
vectorisation, in which the vector dimension is equal to the 
length of the vocabulary. In this case, the order of values in 
each vector is the value of the word in the corresponding 
document. Accordingly, there are 3 types of representation of 
the feature vector to be formed, namely: 

 Term presence: the presence or absence of each 
word in the vocabulary for each word of each 
comment; 

extracted features example: 

[1, 0, 1, 1, 0, 1, 1, 0] 

 Term occurrence: how often each word appears in 
the vocabulary for each word of each comment; and 

extracted features example: 

[2, 0, 2, 2, 0, 2, 2, 0] 

 TF-IDF: re-weighting results at corpus level to term 
occurrence [15]. Referred to as ‘TF’. 

extracted features example: 

[0.03, 0.00, 0.07, 0.04, 0.00, 0.08, 0.01, 0.00] 

E. SMOTE 

SMOTE is an algorithm for the oversample of minor 
class data [5]. Simply put, SMOTE performs oversampling 
by taking k data from k-NN for each data in the minor class. 
Then for N/100 number of magnifications, generate new data 
for each minor class data by retrieving "in line" data with one 
of the randomly selected k-NN data results. 

The (simplified) steps of the SMOTE algorithm are as 
follows: 

1. Select k number of nearest neighbours to use and how 

many times l = N / 100 oversamples will be performed. 

2. For each of the minority class x data points, do: 

3. Select randomly l data from the nearest neighbour's 

data k. 

4. For each of these data, form synthetic data by 

taking the random data points that are aligned with 

the present x points with each observed l. 

5. The return of the SMOTE algorithm is the initial data 

plus the oversampling results that have been performed. 

The magnification undertaken at SMOTE in this research 
is at 200 %, which means to enlarge the data of the minor 
class into 3-fold the original amount or to increase the result 
of generating oversampling data by 2-fold the initial size. 

The ratio of the original training data amount before the 
oversampling of the positive and negative classes is 900:300, 
which following the oversampling of SMOTE becomes 
balanced by a ratio of 900:900 for each class. 

F. Classification Algorithms 

Some of the classification algorithms used in this 
research are; Naïve Bayes (NB), Logistic Regression (LR), 
and Support Vector Machine (SVM). 

 Naïve Bayes is renowned for being fast, inexpensive 
computing, accurate, and reliable. In addition to 
being successful in many cases, this algorithm is also 
known to work optimally and popularly in the field 
of Natural Language Processing especially in text 
classification [16]. 

 Logistic regression algorithm is an actual 
classification algorithm derived from a linear 
regression algorithm, but with a non-linear function 
applied to the output outcome. Non-linear functions 
are a logistic function or sigmoid function. The 
sigmoid function itself is a function that produces a 
curve with a character set such as the letter S (S-
shaped curve) [17]. 

 The idea behind the Support Vector Machine is to 
find the best hyperplane that separates the datasets 
into each class. In a two-dimensional space, a 
hyperplane is a line that divides the dataset into its 
own class. That means the hyperplane is a separator 
between dataset classes with n-1 dimensions of the 
dataset dimension [18]. 

G. Evaluation 

Performance metrics are used to perform the performance 
measurement results from the model that have been formed. 
Moreover, the performance metric to be used in this research 
is g-mean which is calculated as the product of prediction 
accuracy for both classes. Even though a model classifies 
most data correctly, poor performance in predicting minority 
instances will result in a low average g-mean. Therefore, this 
performance metric is suitable for use in studies with 
imbalanced datasets. In fact, g-mean is important enough to 
measure overfitting for the majority class and the extent to 
which minority classes are ignored [10]. 

  

In this research, where the amount of positives data are 
more dominant compared to the negatives, TP/true positives 
score will be high and TN/true negatives will be the other 
way around. With SMOTE, better score of TN (true negative 
rate) of the model is expected. 

III. EXPERIMENTAL RESULT 

A. Training Evaluation 

In the first scenario we will see the performance based on 
the g-mean score on the training process of each combination 
which is a total of 18 combinations obtained from the 
combination of 3 classification algorithms: NB, SVM, and 
LR, 3 feature representations: term presence (TP), term 
occurrence (TO), TF-IDF (TF), and whether (Y) or not (T) 

(1) 

2018 2nd International Conference on Informatics and Computational Sciences (ICICoS)



oversampling (SMOTE) is applied. The value of the g-mean 
score in this scenario is the average of the result of the g-
mean score of the training process of the 10-fold on the 10-
fold cross validation that has been performed. 

The table above shows a very distinct pattern indicating 
an increase in model performance on all combinations of the 
training process after oversampling (SMOTE) in minority 
class data. Accordingly, an average performance increase of 
approximately 16 % occurs after oversampling. This 
indicates that the oversampling process with SMOTE is quite 
effective in improving model performance in the case of the 
classification with imbalanced data. 

TABLE III. THE RESULT OF SCENARIO I OF 18 COMBINATIONS. 

Combination Algorithm Feature Sampling 
G-mean Score 

(%) 

K1 NB TP T 78.59 

K2 NB TO T 80.17 

K3 NB TF T 61.92 

K4 SVM TP T 76.90 

K5 SVM TO T 79.48 

K6 SVM TF T 78.61 

K7 LR TP T 76.97 

K8 LR TO T 76.64 

K9 LR TF T 68.79 

K10 NB TP Y 89.64 

K11 NB TO Y 89.65 

K12 NB TF Y 90.28 

K13 SVM TP Y 92.38 

K14 SVM TO Y 93.03 

K15 SVM TF Y 93.44 

K16 LR TP Y 91.94 

K17 LR TO Y 92.42 

K18 LR TF Y 91.25 

 
In the NB classification algorithm, there is an increase in 

performance when the oversampling is undertaken because 
the minority oversampling process improves the individual 
likelihood of the words (features) that should be more 
suitable or stronger into the minority class. Whereas, on the 
LR classification algorithm, oversampling improves the cost 
function calculation, which increases the frequency of errors 
when minor class data is classified. Lastly, the SVM 
classification algorithm in which the oversampling improves 
performance by updating the support vectors used in forming 
the dividing hyperplane that ultimately shifts the hyperplane 
away from the minority class region. 

In the comparison of training performance based on the 
representation of features used, it is generally seen from the 
average that the best performance resulted from the 
representation of the TO type feature with the value of 85.23 
%, followed by the TP of 84.40 % and finally, TF of 80.72 
%. Indeed, the performance generated by TO and TP is 
relatively similar to most cases, and TO is better than TP 
because TP loses information regarding how often a term 
appears in the document. Although, in the comment data 
with a relatively short length, the difference from the same 
word occurrence frequency tends to be minimal. 

Notwithstanding, the performance gaps may be more 
significant in longer-term data types. As for TF, especially 
on the NB algorithm before oversampling, the performance 
difference compared to the other types of features is 
relatively far away. This is due to the distribution/continuous 
value of the TF features being relatively broader. 

B. Testing Evaluation 
In the second scenario the performance of the 

classification model is seen based on the g-mean score on the 
testing process of each combination of 18 combinations 
obtained from the combination of 3 classification algorithms: 
NB, SVM and LR, 3 representation features: TP, TO, TF, 
and whether (Y) or not (T) oversampling (SMOTE) is 
applied. 

In this scenario, there is an average increase of 
approximately 12 % after oversampling. The difference in 
the magnitude of the increase in the testing process compared 
to the training process (12 % versus 16 %) is due to some 
unseen data on the comment dataset in the testing process 
resulting from the data splitting process. 

In the comparison of training performance based on the 
representation of features used, it is generally seen from the 
average that the best performance resulted from the 
representation of the feature type TO with an average value 
of 81.68 %, followed by the TP of 79.89 % and lastly, TF of 
79.31 %. The pattern is like the first scenario outlined 
previously. Therefore, this shows that the TO feature is best 
suited for SA based on the average performance of the 
training and testing process in both the first and seconds 
scenario undertaken before. 

TABLE IV. THE RESULT OF SCENARIO II OF 18 COMBINATIONS. 
 

Combination Algorithm Feature Sampling 
G-mean 

Score (%) 

K1 NB TP T 69.81 

K2 NB TO T 70.53 

K3 NB TF T 62.40 

K4 SVM TP T 76.70 

K5 SVM TO T 79.38 

K6 SVM TF T 78.43 

K7 LR TP T 76.88 

K8 LR TO T 79.99 

K9 LR TF T 72.46 

K10 NB TP Y 86.96 

K11 NB TO Y 88.43 

K12 NB TF Y 87.92 

K13 SVM TP Y 82.71 

K14 SVM TO Y 85.47 

K15 SVM TF Y 86.63 

K16 LR TP Y 86.29 

K17 LR TO Y 86.29 

K18 LR TF Y 88.00 

 

The results of TO and TP are relatively compareable in 
several cases, but TO is mostly better than TP because TP 
lost the information about how frequent a term appears in a 
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document, despite the fact that in comments-formed dataset 
with count of words that relatively small, the appearance 
frequency from the same term is quite minimal. Performance 
gap maybe broader in the type of data that has more words. 

The best classification algorithm performance seen from 
the average is LR with an average value equal to 81.65 %, 
SVM equal to 81.5 5%, and NB equal to 77.68 %. Notably, 
in this case, it is interesting to note that in the testing process 
LR is the best, replacing SVM. The average is obtained 
because LR produces an average increase in performance 
which is greater than SVM after the oversampling process. 

The further interesting point is that although the average 
NB is the most unfavourable compared to the other two, the 
NB produces the best unit performance on the combination 
with the TO feature after oversampling with a value of 88.43 
%. NB also generates the largest average for performance 
after oversampling. 

C. Training vs. Testing 

In the third scenario a performance comparison will be 
seen based on the g-mean score between the training and the 
testing process of each combination of 18 combinations 
obtained from the combination of 3 classification algorithms: 
NB, SVM and LR, 3 representation features: TP, TO, TF, 
and whether (Y) or not (T) oversampling (SMOTE) is 
applied 

The average training performance is 83.4 %, while the 
average performance of testing is 80.2 %. From the average, 
it can be seen that the difference in performance of about 3 
% is due to model overfitting in the training process. Indeed, 
this may be justified, given that the performance 
measurement of training (validation) is carried out using the 
same data with the data used in forming the model, in which 
all data (vocabulary feature) have been seen. While in the 
testing process, in order to be as close as possible to imitate 
the real-world situation, not all the features have been 
seen/represented in the previous training process. So, the 
words that should probably be important are discarded 
because they do not belong to the vocabulary that has been 
formed. 

Before oversampling, the performance of each model and 
combination with features is relatively balanced in the 
training and testing process, or sometimes it improves in the 
testing process as in the case of K8 and K9. In the case of the 
NB algorithm, there is a considerable decline in testing 
performance, especially for the TP and TO features.  
However, after oversampling, the NB displays its strength by 
generating the least difference in the performance of training 
to testing, compared to the two other algorithms. Even 
though the training performance in NB is not better 
compared to the others, its testing performance is the best. 
Therefore, this concludes that NB has the best generalisation 
ability among the three. 

IV. CONCLUSIONS 

Based on the analysis and testing results in this research, 
several conclusions are presented as follows: 

1. The use of SMOTE is quite effective (based on the g-
mean score) towards improving model performance in 
the case of the classification with imbalanced dataset, as 

evidenced by the average model performance 
improvement of approximately 12 %. 

2. Feature representations that produce the best 
classification performance of the model, based on the 
average value, are TO with G-mean score of 81.68 %, 
followed by the TP of 79.89 %, and TF of 79.31 %. 

3. The classification algorithms that produce the best 
classification performance of the model, based on the 
average value are LR with the G-mean score equal to 
81.65 %, followed by SVM equal to 81.55 %, and NB 
equal to 77.68 %. 
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