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Abstract—Soybean production is decreasing every year. 

The level of soybean production is strongly influenced by soil 

moisture. The problem is that farmers let soybeans grow 

without adequate maintenance, including without checking the 

soil moisture. Therefore, an autonomous robot is built that 

could replace the role of farmers in caring for soybeans. This 

robot is built to monitor the conditions of the soybean field and 

classify the image of soybean field soil using the K-Nearest 

Neighbor algorithm. The results of soil classification are used 

to control the watering node for watering plants. This robot 

uses the Internet of Things concept with the MQTT protocol 

integrated with ThingsBoard as a display of monitoring 

information. The robot is built based on the Raspberry Pi 3 

Model B+. In this research, with the KNN algorithm, the robot 

can classify soil moisture accurately and adequately, where it 

obtained 83.3% accuracy, 90% recall, 81.8% precision, and 

85.7% F1 score. The watering node also performed well with a 

94.4% success rate. In addition, soybeans in a field with the 

robot have better growth than soybeans in a field without 

robot. That is evidenced by the average plant height and the 

number of leaves in the field with the robot is better than those 

in the field without robot, that is 17.28 cm and 9 leaves 

compared to 15.72 cm and 8 leaves. However, plants without 

robot have a better stem diameter than those in a field with the 

robot, which is 2.8 mm compared to 2.74 mm. 

Keywords—Internet of Things, K-Nearest Neighbor, MQTT, 

Robot, Soybean 

I. INTRODUCTION 

Agriculture is a strategic sector in driving the national 

economy, namely in realizing food security, increasing 

competitiveness, expanding employment, and reducing 

poverty. The agricultural sector recognizes the term 

"strategic commodity," one of which is soybean commodity. 

The problem that occurs in soybean commodities is the 

production rate which has declined every year until 2019. 

Soybean production only reached 424 thousand tons, or the 

lowest in 5 years [1]. There are many factors behind low 

soybean production, but in general natural factors play a 

significant role in soybean growth and production. The 

condition of soil moisture, air temperature and humidity 

affect the growth of soybeans and soybean production [2].  

The problem is often farmers plant soybeans by 

spreading seeds and letting them grow without adequate 

maintenance, including without checking the soil moisture. 

This is driven by the fact that many soybean farmers apply 

the intercropping system, namely planting soybeans and 

other types of crops (generally corn) simultaneously in the 

same field, so farmers have to take care of two types of 

crops at once. In addition, soybeans are just a side crop so 

farmers are less concerned about caring for soybeans [2].  

Many researchers have researched in the field of 

technology-based agricultural system automation, or 

commonly referred to as smart farming. Arista Setyawan et 

al (2018) built a monitoring system for soil moisture, air 

temperature and humidity, which is integrated with the 

Internet of Things in the Message Queuing Telemetry 

Transport (MQTT) protocol which is used to transmit data 

and information from monitoring results to the ThingsBoard 

web server [3]. Ipin Prasojo et al (2020) built an automatic 

watering system based on the level of soil moisture [4]. 

Then, some studies used wheeled robot media to perform 

automatic watering based on the level of soil moisture. First, 

Rizal Isnanto et al (2020) implemented the concept of wall-

follower robot and the ESP-NOW protocol to their watering 

robot [5]. Pengfei Lv et al (2020) built an intelligent 

watering robot with the NRF24L01 module as a 

communication communication module [6], and L. Mechsy 

et al (2017) built a watering robot for lawn maintenance 

using CPP (Coverage Path Planning) algorithm as robot 

navigation system [7]. All of those robots used the soil 

moisture sensor to measure soil moisture. In addition, Djulil 

Amri (2012) also built agricultural robot but worked to plant 

peanut seeds by utilizing the concept of image processing 

[8]. Almost the same as the previous one, Marcin Jasiński et 

al (2018) built an autonomous agricultural robot with a 

vision system utilizing image processing for plant/weed 

classification [9]. 

It does not stop with the Internet of Things. Smart 

farming today works more accurately and smarter with 

machine learning. In relation to machine learning, Zorgani 

and Ugail (2018) compared the performance of several 

machine learning algorithms in classifying histological 

images [10]. The research shows that the SVM (Support 

Vector Machine) and KNN (K-Nearest Neighbor) 

algorithms are the algorithms with the best accuracy, 

namely 99.86%, better than the Naïve Bayes, Binary 

Decision Tree, and Discriminant Analysis algorithms. 

Besides, KNN has advantages over other algorithms, 

namely a simple algorithm, fast training, and robust to noisy 

training data [11]. 
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Of the many studies above, none of them have made 

soybeans the object of their research. Therefore, this 

research seeks to provide solutions to problem of neglecting 

soybean plant care by farmers, in the form of a robot that 

monitors the conditions of soybean field and classifies 

images of soybean field soil using the K-Nearest Neighbor 

algorithm. The results of soil classification are used to 

control the watering node for watering plants. This robot 

uses the Internet of Things concept based on the MQTT 

protocol. MQTT has a smaller payload size [12], lower 

power consumption, and higher success rate than HTTP 

[13]. Robot is built based on the Raspberry Pi 3 Model B+. 

The MQTT protocol is integrated with ThingsBoard as a 

display of monitoring information. This research is expected 

to help soybean farmers in caring for soybean fields and 

increasing soybean production. 

II. METHODOLOGY 

 

Fig. 1. Flowchart of Methodology 

Literature study is the stage of extracting concepts and 
materials related to the problems raised and the design of the 
system that is built, both from devices, sensors, and 
actuators, communication protocols, and methods that can 
help in realizing the system. 

The requirements analysis and specification stage is the 
stage to describe the needs needed in conducting research. 
Then these needs are analyzed and used at the design phase. 

The design stage is the stage of designing hardware and 
software or programs needed in conceptual system 
development. The implementation and unit testing stage aims 
to implement the system design that was made in the 
previous stage and test each component used to ensure that 
the components can work properly. 

In the integration and system testing stage, each 
component that has been tested is connected to form a 
complete system. Then, a full system test is carried out, as 
well as re-evaluating errors that can occur when a component 
is run as a system. 

III. DESIGN AND IMPLEMENTATION 

The working principle of the system is that the robot 
explores the soybean field while checking temperature and 
humidity and the processing and classifying soil images. If 
the soil image is classified as dry, the water pump will water 
the plants. On the other hand, if the soil image is classified as 
wet, then the water pump still off. Checking the condition of 
the land is always followed by sending data to the MQTT 
broker. When the entire land has been explored, the robot 
will stop. 

 

Fig. 2. Block Diagram of The Whole System 

A. Hardware Design 

 
Fig. 3. Block Diagram of The Robot Hardware 

Figure 3 shows a block diagram of the robot hardware. 
The robot is built based on the Raspberry Pi 3 Model B+, 
which is equipped with sensor and actuator components 
including 2 (two) HC-SR04 distance sensors, BME280 
temperature, and humidity sensor, camera module board Rev 
1.3, DC motor driver L298N which controls 4 (four) DC 
motors as a robot wheel. 

 

Fig. 4. Block Diagram of The Watering Node Hardware 

Figure 4 shows a block diagram of the watering node 

hardware. The watering node is built based on NodeMCU 

V3, which is embedded with the ESP8266-12E wireless 

communication module and is equipped with a logic level 

converter, a 5V 4-Channel relay module a 5V 2-Channel 

relay that controls 6 (six) 12V micro water pumps. 

B. Software Design: Robot Intelligence 

The flowchart of robot intelligence software shown in 
Figure5. First of all, the used libraries are imported. Next, the 
program performs GPIO initialization and BME280 sensor 
initialization. Then, there are defining and allocating GPIO 
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pins to each component and defining global variables. In 
addition, the MQTT protocol was initialized, which included 
creating an MQTT client and connecting MQTT to a broker. 

 

Fig. 5. Flowchart of Robot Intelligence Software 

After that, a navigation and movement procedure 
determines the motion and direction of motion carried out by 
the robot based on the distance of the wall against the sensor 
(front and left) so that the robot moves to the desired point. 
After the robot is at the desired point, the robot will measure 
the air temperature and humidity values and then send them 
to the ThingsBoard broker. Still, at the same point, the robot 
will call the soil moisture classification program, which is 
tasked with classifying soil moisture at that point. After that, 
the robot will check whether all points have been visited or 
not. If the robot has checked the air and soil conditions 6 
times and has met the corner (there is a wall in front and on 
the left side) 3 times, it means that the robot has been in the 
robot's cage and all points have been visited. If all points 
have been visited, the robot will stop the program, and if not, 
then the robot will return to carrying out the navigation and 
movement procedure. 

C. Software Design: Soil Moisture Classification 

 

Fig. 6. Flowchart of Soil Moisture Classification Software 

In the soil moisture classification program, we first 
imported the used libraries and initialized the MQTT 
protocol. Then, the dataset that has been in the CSV 
(Comma-separated values) file is loaded. This CSV file 
contains numbers ranging from 0 to 1, representing each 
pixel in each soil image. This CSV will be converted into a 
NumPy array which will be used in the classification 
process. Converting an image dataset into a CSV file is 
carried out outside of this program, where the process is 
described in Figure 7. 

 

Fig. 7. Flowchart of Processing Image Dataset Into CSV File 

Then, a KNN algorithm class is built, which contains 
methods for loading training data and test data, calculating 
the Euclidean distance between training data and test data, 
and predicting or classifying test data. Next, the program will 
capture the soil image where the robot is located and predict 
that soil image. Before making the prediction, the soil image 
is first processed into an array, which is the same process as 
converting an image dataset into a CSV file. Then, the 
prediction results are sent to the broker. 

IV. RESULTS AND DISCUSSION 

A. KNN Algorithm Performance Test 

Tests were carried out with a soil images dataset 

consisting of 143 images divided into 2 classes, namely 

“Wet” (63 pictures) and “Dry” (80 pictures). Soil conditions 

are stated as wet when the soil moisture is as desired, above 

or equal to 70%. Meanwhile, the soil is declared dry if the 

soil moisture is below 70% [2]. 

TABLE I.  KNN ALGORITHM PERFORMANCE ON TRAINING DATA 

Training-Testing 

Data Ratio  

Training Set 

Accuracy F1 score 

70 : 30 98.00% 98.15% 

80 : 20 98.24% 98.36% 

85 : 15 98.35% 98.48% 

The dataset is split into 85% for training data and 15% 

for testing data in this test. That ratio is chosen because it 

produces the best accuracy and F1 score on training data 

compared to the others. Then, perform the calculation of 

accuracy, precision, recall, and F1 score for each k value. 

Tests are carried out in the range k = 1 to 20. 

 

Fig. 8. Graph of KNN Algorithm Performance Test Results 

The best k is 17 with 90.9% accuracy, 100% precision, 

84.6% recall, and 91.7% F1 score. 
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B. Throughput Test 

Throughput is the rate of data transmission [14]. The 

throughput can be formulated as follows: 

�ℎ����ℎ��� 	  
∑ ������ ������� ��� �����

����� ������������ ����
 

Throughput test is performed by sending a specific 

number of packets to the destination and taking note of the 

length of transmission time. The destination devices are 

ThingsBoard with the ThingsBoard server broker and 

watering node with Hive MQ broker. This test is carried out 

by varying the number of packets, which is 25 bytes/packet. 

 

Fig. 9. Graph of Throughput Test Results 

The ThingsBoard server broker has an average 

throughput of 1784.45 bps while the Hive MQ is 5040.45 

bps. 

C. Packet Loss Test 

Packet loss (loss rate) is the percentage of packets 

dropped compared to the number of packets sent by the 

sender [14]. Packet loss can be formulated as follows:  

����� ���� 	  
∑ ������ ����

∑  ������ ����
� 100% 

Packet loss testing is performed by sending a specific 

number of packets to the destination with variations in 

packets and the gap between transmission. The destination 

devices are ThingsBoard with the ThingsBoard server 

broker and watering node with Hive MQ broker. The gap 

between transmission for the ThingsBoard server broker is 

0.2 and 0.3 seconds, while the gap between transmission for 

the Hive MQ broker is 0.2 seconds. In this test, 1 packet is 

15 bytes.  

 

Fig. 10. Graph of Packet Loss Test Results 

The ThingsBoard server broker has an average packet 

loss of 15.1% for 0.2 seconds gap of transmission and 2.2% 

for 0.3 second gap of transmission while the Hive MQ is 

0.2%. 

D. Delay Test 

Delay is a latency that arises in the process of sending a 

packet [15]. Delay is the time it takes for a packet sent by 

the sender to arrive at the destination device [14]. Delay can 

formulated as follows: 

���� 	  
����� ������������ ����

∑ ������ �������
 

A delay test is performed by sending a specific number 

of packets to the destination and taking note of the length of 

transmission time. The destination devices are ThingsBoard 

with the ThingsBoard server broker and watering node with 

Hive MQ broker. In this test, on the ThingsBoard server 

broker, 1 packet is 15 bytes, while on Hive MQ broker, 1 

packet is 25 bytes.  

 

Fig. 11. Graph of Delay Test Results 

The ThingsBoard server broker has an average delay of 

68.31 ms while the Hive MQ is 11.59 ms. 

E. The Whole System Test 

 

Fig. 12. Illustration of Soybean Field Prototype 

This test examines the overall work of the system, which 

consists of a robot and a watering node when it is run in the 

soybean field. The soybean field prototype has a size of 4.96 

m2 which is illustrated in Figure 12. The test is carried out 3 

times where each test consists of 6 checking points, 

resulting in 18 points or test result data.  

Out of 18 test data, 3 times the error in predicting soil 

moisture conditions occurs. Then, of the 18 test points, there 

(1) 

(2) 

(3) 
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is 1 point that has not reached the desired soil moisture 

condition after watering. From the result of this test, a 

confusion matrix can be generated, which is shown in Table 

II. 

TABLE II.  CONFUSION MATRIX OF ROBOT TEST RESULT 

 Actual Value: Dry Actual Value: Wet 

Predicted Value: Dry 9 (TP) 2 (FP) 

Predicted Value: Wet 1 (FN) 6 (TN) 

From the confusion matrix in Table II, we can calculate 

accuracy, recall, precision, and F1 score. Accuracy is the 

proportion of correct predictions divided by the number of 

predictions [17]. Accuracy is formulated as 

!��� 	
�� + �#

�� + �# + $# + $�
 

The recall is the percentage of positive cases that are 

correctly predicted. Precision is the ratio of the correct 

positive predictions among the positive predictions. 

Meanwhile, the F1 score is the harmonic mean between 

precision and recall [18]. Recall, precision, and F1 score are 

formulated as 

%���� 	
��

�� + $#
 

�������� 	
��

�� + $�
 

$1 ���� 	 2 �
�������� � %����

�������� + %����
 

where: 

TP = true positive 

TN = true negative 

FP = false positive 

FN = false negative 

From equations (4), (5), (6), and (7), accuracy, recall, 

precision, and F1 score are obtained as follows: 

!��� 	
9 + 6

9 + 6 + 1 + 2
	 0.833 	 83.3% 

%���� 	
��

�� + $#
	

9

9 + 1
	

9

10
	 0.9 	 90% 

�������� 	
��

�� + $�
	

9

9 + 2
	

9

11
	 0.818 	 81.8% 

$1 ���� 	 2 �
0.818 � 0.9

0.818 + 0.9
	 0.857 	 85.7% 

So, from this test, the robot has 83.3% accuracy, 90% 

recall, 81.8% precision, and 85.7% F1 score. In addition, to 

calculate the success rate of the watering unit, the following 

equation can be used: 

.���� %��� 	
∑ �����/�� �����

∑ �����
 

.���� %��� 	
17

18
	 94.4% 

So, in this test, the success rate of the watering node was 

94.4%. In this test, the time needed by the robot to check at 

each planting point is 20-40 seconds. 

F. Comparison of the Growth of Soybean in Field with the 

Robot and Field without Robot 

In this test, performed a comparison of the growth of 

soybean in the field treated using robot and soybean in a 

field without robot. Comparisons were only carried out on 5 

plants in each field. Observations were made up to 18 days 

after sowing (DAS). The parameters observed for plant 

growth were plant height, number of leaves, and stem 

diameter. 

TABLE III.  DEPENDENT VARIABLE 

Variable Value 

Type of soil Entisol 

Type of seed Willis F1 Varieties 

Number of seeds per 

point 
5 – 6 seeds 

Hole depth 5 – 7 cm 

Watering interval 2 days 

Length of observation 18 days after sowing 

TABLE IV.  INDEPENDENT VARIABLE 

Variable Field with Robot Field without Robot 

Number of points 6 3 

Soil moisture 

measurement 
Performed by robot Not performed 

Water Volume ±210 ml 200 – 300 ml 

Watering 
Performed by watering 

node 
Performed by human 

Watering treatment 

The robot checks every 

2 days and is watered 
or not determined by 

the robot 

Watering every 2 
days 

TABLE V.  COMPARISON OF SOYBEANS HEIGHT 

Plants 

Height Plants (cm) 

6 DAS 12 DAS 18 DAS 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

1 6 5 13 12.4 15 14.8 

2 7.5 6 13.5 13.3 16.4 15.6 

3 7.5 5 13.5 12.6 16 14 

4 9 6 14.9 13 18.2 16.2 

5 8 8 16.4 15 20.8 18 

Average 7.6 6 14.26 13.26 17.28 15.72 

TABLE VI.  COMPARISON OF SOYBEANS NUMBER OF LEAVES 

Plants 

Number of Leaves 

6 DAS 12 DAS 18 DAS 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

1 3 4 7 7 8 8 

2 3 4 7 7 8 8 

3 4 4 8 7 8 8 

4 4 4 9 7 10 8 

5 4 4 10 7 11 8 

Average 3.6 4 8.2 7 9 8 

(5) 

(7) 

(6) 

(4) 

(8) 
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TABLE VII.  COMPARISON OF SOYBEANS STEM DIAMETER 

Plants 

Stem Diameter (mm) 

6 DAS 12 DAS 18 DAS 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

With 

Robot 

Without 

Robot 

1 1.27 1.59 2.23 2.55 2.86 2.86 

2 1.59 1.27 2.23 1.91 2.86 2.86 

3 1.59 1.27 2.55 2.23 2.86 2.86 

4 1.59 1.59 2.23 2.23 2.55 2.86 

5 1.59 1.59 1.91 2.23 2.55 2.55 

Average 1.53 1.46 2.23 2.23 2.74 2.80 

After 18 days after sowing, the plants in the field with 

the robot had a better average plant height and number of 

leaves, namely 17.28 cm and 9 leaves, compared to plants in 

the field without robot, which are 15.72 cm and 8 leaves. 

Meanwhile, plants in the field without robot have a better 

stem diameter than those in the field with robot, which is 2.8 

mm compared to 2.74 mm.  

V. CONCLUSION AND RECOMMENDATION 

A. Conclusion 

In this research, with the help of an autonomous robot 

and the soil moisture classification method using the KNN 

algorithm, farmers were able to increase soybean growth. 

This is evidenced by the average plant height and the 

number of leaves in the field with the robot is better than 

those in the field without robot, that is 17.28 cm and 9 

leaves compared to 15.72 cm and 8 leaves. It can be 

achieved because the robot can classify soil moisture 

accurately and adequately, where it obtained 83.3% 

accuracy, 90% recall, 81.8% precision, and 85.7% F1 score. 

The watering node also performed well with a 94.4% 

success rate. Whereas the KNN algorithm achieves optimal 

performance when k = 17, where using a dataset of 143 

images and the dataset is split into 85% training data and 

15% test data, and it is obtained 90.9% accuracy, 100% 

precision, 84.6% recall, and 91.7% F1 score. Even so, plants 

in the field without robot have a better stem diameter than 

those in the field with the robot, which is 2.8 mm compared 

to 2.74 mm. 

B. Recommendation 

This research still uses the relatively simple KNN 

algorithm, so further research is recommended to use an 

algorithm that is able to produce better accuracy but is still 

practical and lightweight. This research also only has 2 soil 

classifications, namely "Dry" and "Wet", besides that the 

dataset used is still relatively small. So, the number of 

classes can be augmented and detailed in the future, and the 

number of datasets can be enlarged. In addition, in this 

research the robot takes about 20-40 seconds to check each 

point. So, in the future, the waiting time can be minimized. 
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