Occupational Health and Safety Management System in Engineering Faculty of Diponegoro University Using Scrum Model

Dania Eridani[†] Computer Engineering Diponegoro University Semarang <u>dania@ce.undip.ac.id</u>

Jojor Kakanda Purba Computer Engineering Diponegoro University Semarang jojorpurba26@yahoo.com Ike Pertiwi Windasari Computer Engineering Diponegoro University Semarang ikepertiwi@ce.undip.ac.id

Fanny Hasbi Computer Engineering Diponegoro University Semarang <u>fnyhsbi@gmail.com</u> Risma Septiana Computer Engineering Diponegoro University Semarang rismaseptiana@live.undip.ac.id

Dita Ananda Elisa Reviana Computer Engineering Diponegoro University Semarang <u>ditaananda99@gmail.com</u>

ABSTRACT

ISO 45001 is a standard that provides a framework for an organization to manage risks and opportunities to help prevent work-related injury and ill-health to workers. In campus area, there is also injury and ill-health possibilities happened to student, lecturer, laboratory assistant, or other academic staff especially in laboratories. This work proposes the development of occupational health and safety management system in Engineering Faculty of Diponegoro University. The methodology used is Scrum Model. The Test Case also used to make sure the application meets the Client expectation. The result showed that the methodology used reduces the design time and lead to an application that meet Client expectation.

CCS CONCEPTS

•Software and its engineering~Software creation and management~Software development process management~Software development methods~Agile software development•Information systems~Information systems applications

KEYWORDS

ISO 45001 application, Scrum Model, agile, real-time software management.

1 Introduction

Safety in the work place is one of important issue that must be considered, it means there is a prevention concept to reduce risk from varies hazard and threads [13]. There are several examples of occupational health and safety management systems applied in International Platforms in several country [3]. ISO 45001 is an international standard provides framework to manage the occupational health and safety issue in the organization [6,7]. ISO 45001 implement Plan Do Check Action (PDCA) cycle in maintaining the standard management, so that the occupational health and safety issue in the organization run properly and minimize the possible risk and accident to occur. Silva and Amaral [16] also said there are several critical factors of success and barriers for the implementation of occupational health and safety management systems. It is also said that there are some indicators must be considered to manage occupational health and safety in the workplace.

To perform safety in the workplace, an organization can do Hazard Identification, Risk Assessment and Risk Control (HIRARC) modeling. It is very important to classify the work activities, do consultation between employee and worker representative, identify hazards on each work activities, do the risk assessment, prepare risk control action plan if necessary, and finally implement the HIRARC [15]. HIRARC is one of the models that can be used to perform the safety in the workplace.

The development of the technology also supports the implementation of safety in the workplace. Take on [5,8,14] as examples of fire prevention in the building. One of the common hazards is fire. Those researches showed how to build a wireless sensor network to sense fire and extinguishers monitoring system to prevent and minimalize accident that possibly happened because of fire. There are also several another example like [12] that showed the occupational safety and health capability maturity indicator on a web-based system.

University or campus is also an organization that must hold into ISO 45001. One of the concerns is mainly in a laboratory. Laboratory is a place on campus when a safety issue must be considered because there are various hazard can occur in the laboratory. Laboratory safety guidance and laboratory standard usually also need to pay attention to ISO 45001 when the implementation happened[1,10]. It is not only in laboratory, but hazards can also occur in the other place inside campus, that's way campus may also pay attention to ISO 45001. This paper presents the development of the occupational health and safety

^{*} Occupational Health and Safety Management System in Engineering Faculty of Diponegoro University Using Scrum Model

[†]Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). *WOODSTOCK'18, June, 2018, El Paso, Texas USA*

management system in Engineering Faculty of Diponegoro University. The system built as a tool of the ISO 45001 implementation in campus.

2 Scrum Model

One of the software development methods is Scrum Model, which part of Agile Methodology. It is applicable to Software Product Management in development process [18]. Scrum also approach on client's need by working in cycles called Sprint [17]. Pérez, et all [11] also used Scrum to bridge user stories and software architecture. Scrum is adaptable and flexible to scenarios that has possibly changing and must be finished in some periods of time [4].

Based on [2,4,9,11,17], there are 3 roles in Scrum, namely Product Owner, Scrum Master, and Development Team. Product Owner is responsible to manage the application development or maximize the application by identifying the application features and all. Scrum Master is responsible to make sure everyone understand and follow the sprint. Development team is responsible to develop the application in each sprint. The Scrum process [4,17] can be seen on Figure 1.

Figure 1: Scrum Process

As on this work, the Scrum Roles are the research leader as the Product Owner, one research member as the Scrum Master and the rest of the four are the development team. The Client here is ISO 45001 team from Engineering Faculty of Diponegoro University.

3 Application Development Process

The development of the Occupational Health and Safety System application consist of four steps. The first is the client meeting to check what the client wants in this application is. Then, the result used to map the client stories to product backlog. The sprint process done by using each backlog mapped. When each sprint done and integrated a Test Case is planned.

3.1 Client Meeting

Client meeting done as the first step to gain information needed in visualizing the application as the client's wanted. Here, the team must pay attention to the application features and flow wanted, also differentiate what is the client wants and what is the client needs.

The client of this work is ISO 45001 team from Engineering Faculty of Diponegoro University. The client meeting started with a brief explanation of ISO 45001 implementation on campus, and then continued with the explanation about current condition of the standard run in the Faculty, about how the team wants an

application able to inform user about safety tools around the campus building, incident report and the safety tools control checking, and also the product delivery time.

Based on client meeting, it was found that the condition of some first aid kit boxes was incomplete and there were no records of drug use and filling. As for APAR, almost all APARs are expired because they have not been routinely inspected and there are no APAR condition notebooks. Lack of supervision leads to long repairs, and can lead to a variety of new problems, so a system is needed to facilitate the monitoring of the condition of APAR and first aid kits. For this reason, an application that is capable of being used as a recording medium for APAR and first aid kit boxes is needed. Implementation of the use of the dashboard in the application is expected to facilitate the response of management related to the condition of APAR and first aid kit boxes in all twelve Departments in Engineering Faculty of Diponegoro University. Besides that, it is also needed to facilitate the initial risk, incident, and summary that happened in all of the Departments.

3.2 Client Stories and Product Backlog

Client meeting done as the first step to gain information needed in bridging what is the client want and what is the client needs. The bridging process between the client ant scrum team can be seen on Table 1.

Story No	Subject	User Story	Acceptance Criteria
1	1, 2, 3	I can report the incident happened using the application so that I don't need to write a manual report and inform it to all of the Engineering Faculty Subject	*log in using account into the system *click the incident report menu *fill out the incident report data *can't continue before filling all the empty field *save the final incident report
2	3	I can see the incident data without going and searching the manual incident report book to one of the ISO45001 team	*log in using account into the system *click on the incident data list menu *search form the incident data
4	1, 2	I can see and manage the incident data using the app so that I don't need to search the incident data document when I want to see the incident data or when there is a change on it.	*log in using account into the system *click the incident data list menu *search incident data *edit the incident data *can't continue before filling all the empty field *save the final incident data
5	1, 2	I can see and manage the HIRARC using the app so that I don't need to search the HIRARC document	*log in using account into the system *click the HIRARC menu *add the HIRARC

-		-	T T		<i>c</i>			
	ahle	••	I Ser	stomes	ot.	the	61	retem
	anc		USUI	stories	OI.	unc	01	stom

Occupational Health and Safety Management System in Engineering Faculty of Diponegoro University Using Scrum Model

		when I want to see the HIRARC or when	data or search the HIRARC data			
		there is a change on it.	*add or edit the HIRARC data			
			*can't continue before filling all the empty			
			*save the final HIRARC data			
6	1, 2	I can see and manage the inventory list using the app so that I don't need to search the inventory list document when I want to see the inventory list or when there is a change on it.	*log in using account into the system *click the inventory list menu *add the inventory data or search the inventory data *add or edit the inventory data *can't continue before filling all the empty field *save the final inventory data			
7	1, 2	I can see and manage the inspection report using the app so that I don't need to search the inspection report document when I want to see the inspection report or when there is a change on it.	*log in using account into the system *click the inspection report menu *add the inspection report or search the inspection report *add or edit the inspection report *can't continue before filling all the empty field *save the final inspection report			
8	2	I can do APAR inspection without coming to each APAR location and make an inspection report on it	*log in using account into the system *click APAR inspection menu *choose inspection method *inspect the APAR data			
9	2	I can do first aid kit box inspection without coming to each first aid kit box location and make an inspection report on it	*log in using account into the system *click first aid kit box inspection menu * choose inspection method *inspect the first aid kit box data			

Note:

1 = Head of ISO 45001 Engineering Faculty Team

2 = ISO 45001 Engineering Faculty Team

3 = General User, i.e. lecturer, laboratory assistant, student, staff, et all.

User stories made by Product Owner in the Scrum team because the product knowledge is much needed. Besides, the vision of the product and what the product will be must be clear.

3.3 Application Development

Product backlog is all list of a job that needs to be done in developing the product. It contains user stories, bugs, and technical task. Based on the bridging process from the user stories, the job list of the Scrum Team is floored. The Scrum Team using Trello to manage the product development as seen on Figure 2.

SIMK3 Project & Per	sonal 🗴 Private 🕅 🖓 🖓	W. P	Instead 104 se	arch res	uta 🗙 🚳 Watching 🌰 Butle	- 6	Card Dependencies	-
one (Sprint S)	Done (Sprint 4) 21 cards	- 1	Done (Sprint 3) 10 cards	177	Done (Sprint 2) 19 cards	-	Done (Sprint 1) 12 cards	-
hange incident "happened_at" to ATETIME	Build BE foundation	Î	First deployment to beta server	Î	Delete name input after finish scanning QR	^	Build codebase for the front end	Î
nplement incident submission	(BE) Build get all inventories endpoint		Fix server-side routing		Build Hydrant inspection	1	Create Home Screen	
IE) get all inventories by opartment location and inventory rpe	Handle if the QR scan data is not valid		Ric Camera from QrReader		Implement QR scan flow on Hydrar page	a.	Form input types in Argon	
D 2	(BE) Build APAR inspection submit		Remake the admin view B: 1/7	J	Handle multiple input type in Hydrant inspection		Build P3K inspection	
pdate inspection method by sation	(BE) Create /WT Token generator and chedger		Create Inspection Header		Build Inddent Report		Build APAR inspection	
x cookie "undefined" on beta irver	IBE] Build login service	- 1	ES AN Create P3K Inspection in admin	-	Handle "other" option in Incident Report input		Build success QR scan page component	_
F Add another card	+ Add enother cent		+ Add another card	-	+ Add another card		+ Add another card	

Figure 2: Sprint Process in Trello

Product backlog is all list of a job that needs to be done in developing the product. It contains user stories, bugs, and technical task that must be done. Product backlog is dynamic because it can change at any time in accordance with developments and changes in the application made. Product Backlog can increase or decrease with each Sprint, depending on the application's needs.

The planning stage of Scrum, commonly referred to as Sprint Planning. Sprint Planning is done on initial meeting involving all members of Scrum The team is a Scrum Master, Product Owner, and Development Team. Product Owner, explained Product backlog that has been created and schedules determined by all team members to be discussed back. The result of the agreement from Sprint Planning becomes a reference for the Development Team to work on their work according to the deadline time for each Sprint.

The implementation stage of each application development on one day will be monitored by Product Owner. The day before starting the work, the writer and the team gathered to carry out the Daily Sprint. Daily Sprint implemented by explaining what has been done by the Development Team, the problem is faced, and to until what stage the process is being done. It aimed so that the whole teams know the team's performance and if there is a problem can be discussed and resolved together.

4 Result and Analysis

Every completed feature created by the Development Team re-tested by Product Owner. Product Owner makes a Test Case related to the feature to be tested as shown on Table 2. The Test Case here becomes a work item in the Product Backlog. The Product Owner creates a Test Case name, test steps, and expected results in the Test Case with the initial state of Design. If the Test Case is declared ready, then the state changed to Ready. **Table 2:** Product Test Case

ID	Test Scenario	Test Steps	Expected Results	Actual Results	Pass / Fail
1	Check employee login with	 Open the app Enter username 	User should login to the app and the	As expected	Pass

WOODSTOCK'18, June, 2018, El Paso, Texas USA

	valid data	3.	Enter password	menu displayed		
		4.	Click	based on		
-		1.	Login Open the	user's role		
	Check employee	2.	app Enter username	User should get error	As	
2	with invalid	3.	Enter password	message and cannot log in to	expected	Pass
	data	4.	Click Login	the app User get		
		1.	Log in into	into the app		
	Check	2.	the app When app	with		
3	session for each		is open, close the	correct credentials	As expected	Pass
	user	3.	app Open the	need to	_	
			app again	credentials		
		1	Logininto	Page again		
		1. 2	the app Fill all the	User should get		
1	Check	2.	filed on the	a successful	As	Pass
-	incident		incident	message in filling an	expected	1 455
		3.	Click finish	incident report		
	Saa	1.	Log in into the app	User landing on		
5	incident	2.	Click on the	the incident	As expected	Pass
	uata		incident data list	data list page		
		1.	Log in into	User should get		
6	Manage	2.	Manage the	a successful	As	Pass
0	data		incident	message in manage	expected	1 400
		3.	Save data	incident data		
		1.	Log in into the app	User should get		
7	Manage HIRARC	2.	Manage the	a successful	As expected	Pass
		3.	HIRARC Save data	message in manage	1	
		1.	Log in into	User should get		
	Manage	2.	the app Manage	a a	Δs	
8	inventory list		the inventory	message in	expected	Pass
		3.	list Save data	inventory		
		1.	Log in into	User		
9	Manage inspectio	2.	the app Manage	should get a	As expected	Pass
	n report		the inspection	successful message in	expected	

D	m • 1	•		1
1)	Hrid	ant	et	<u>a</u>
ν.	LIIU	am	υı	aı.

		3.	report Save data	manage inspection report		
10	Inspect APAR	1. 2. 3.	Log in into the app Click on selected inspection mode Inspect APAR	User should get the APAR informatio n based on the method selected	As expected	Pass
11	Inspect First Aid Kit	 1. 2. 3. 	Log in into the app Click on selected inspection mode Inspect First Aid Kit	User should get the First Aid Kit informatio n based on the method selected	As expected	Pass

Based on the test case, it showed that all featured in the application pass the test case. The initial state of the application is now ready. All sprint in the Application Board is now completed and the product ready to be delivered to the client.

5 Conclusion

The use of Scrum Model is very suitable for this project because the Scrum Team need to be agile in every change that occurs in the application. The Scrum Team really pays attention to the ISO 45001 detail when implementing the application, so that the application really meets the client expectation in using it to implement occupational health and safety in Faculty Engineering, Diponegoro University.

ACKNOWLEDGMENTS

This work is supported by Engineering Faculty of Diponegoro University with letter number 145/UN7.5.3.2/HK/2020.

REFERENCES

- Maria João Benoliel. 1999. Step-by-step implementation of a quality system in the laboratory. *TrAC - Trends Anal. Chem.* 18, 9–10 (1999), 632–638. DOI:https://doi.org/10.1016/S0165-9936(99)00168-5
- [2] Krunal Bhavsar, Vrutik Shah, and Samir Gopalan. 2020. Scrum: An Agile Process Reengineering in Software Engineering. Int. J. Innov. Technol. Explor. Eng. 9, 3 (2020), 840–848. DOI:https://doi.org/10.35940/ijitee.c8545.019320
- [3] Serenay Caliş and Banu Yeşim Buÿükakinci. 2019. Occupational Health and Safety Management Systems Applications and A System Planning Model. *Procedia Comput. Sci.* 158, (2019), 1058–1066. DOI:https://doi.org/10.1016/j.procs.2019.09.147
- [4] Bernardo Vasconcelos de Carvalho and Carlos Henrique Pereira Mello. 2011. Scrum agile product development method - literature review, analysis and classification. *Prod. Manag. Dev.* 9, 1 (2011), 39–49. DOI:https://doi.org/10.4322/pmd.2011.005
- [5] Roberto Garcia-Martin, Alfonso González-Briones, and Juan M. Corchado. 2019. Smartfire: Intelligent platform for monitoring fire extinguishers and their building environment. *Sensors (Switzerland)* 19, 10 (2019), 1–19. DOI:https://doi.org/10.3390/s19102390
- [6] Safety Implementation Guide. 2018. NQA-ISO-45001-Implementation-Guide. (2018).
- [7] ISO. 2018. Occupational Heath & Safety 45001. (2018), 5.
- [8] Wonju Lee, Minkyu Cheon, Chang Ho Hyun, and Mignon Park. 2013. Development of building fire safety system with automatic security firm monitoring capability. *Fire Saf. J.* 58, (2013), 65–73. DOI:https://doi.org/10.1016/j.firesaf.2013.01.003

- [9] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. 2010. A teamwork model for understanding an agile team: A case study of a Scrum project. *Inf. Softw. Technol.* 52, 5 (2010), 480–491. DOI:https://doi.org/10.1016/j.infsof.2009.11.004
- [10] OSHA. 2011. Laboratory Safety Guidance. Occup. Saf. Heal. Adm. (2011), 3404–11R.
- [11] Jennifer Pérez, Jessica Díaz, Juan Garbajosa, and Agustín Yagüe. 2013. Bridging User Stories and Software Architecture: A Tailored Scrum for Agile Architecting. Agil. Softw. Archit. Aligning Agil. Process. Softw. Archit. (2013), 215–241. DOI:https://doi.org/10.1016/B978-0-12-407772-0.00008-3
- [12] Anush Poghosyan, Patrick Manu, Abdul Majeed Mahamadu, Olugbenga Akinade, Lamine Mahdjoubi, Alistair Gibb, and Michael Behm. 2020. A web-based design for occupational safety and health capability maturity indicator. Saf. Sci. 122, February 2019 (2020), 104516. DOI:https://doi.org/10.1016/j.ssci.2019.104516
- [13] Philip P. Purpura. 2019. Safety in the Workplace. Secur. Loss Prev. (2019), 435–455. DOI:https://doi.org/10.1016/b978-0-12-811795-8.00014-x
- [14] PNN Reddy, PI Basarkod, and SS Manvi. 2011. Wireless sensor network based fire monitoring and extinguishing system in real time environment. *Int. J. Adv. Netw.* ... 3, 2 (2011), 1070–1075. Retrieved from http://ijana.in/papers/V3I2-4.pdf
- [15] A. M. Saedi, J. J. Thambirajah, and Agamuthu Pariatamby. 2014. A HIRARC model for safety and risk evaluation at a hydroelectric power generation plant. *Saf. Sci.* 70, (2014), 308–315. DOI:https://doi.org/10.1016/j.ssci.2014.05.013
- [16] Sabrina Letícia Couto da Silva and Fernando Gonçalves Amaral. 2019. Critical factors of success and barriers to the implementation of occupational health and safety management systems: A systematic review of literature. Saf. Sci. 117, April (2019), 123–132. DOI:https://doi.org/10.1016/j.ssci.2019.03.026
- [17] Jeff Sutherland, D Ph, and Co-creators Scrum. 2007. The Scrum Papers : Nuts, Bolts, and Origins of an Agile Process. (2007).
- [18] Kevin Vlaanderen, Slinger Jansen, Sjaak Brinkkemper, and Erik Jaspers. 2011. The agile requirements refinery: Applying SCRUM principles to software product management. *Inf. Softw. Technol.* 53, 1 (2011), 58–70. DOI:https://doi.org/10.1016/j.infsof.2010.08.004