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Abstract— a library is one of the important places for the 

community, especially students. However, not all visitors know 

the library’s rules and act arbitrarily to create noise that can 

disturb other visitors. This research is focused on the 

development of classifying and monitoring the unwanted noise 

in the library. The system is built with the Arduino Nano 33 BLE 

microcontroller using the DFROBOT Analog Sound Level 

Meter Sense sensor and ESP32-WROOM32U. The system is 

equipped with classification capabilities resulting from machine 

training using the Convolutional Neural Network algorithm by 

utilizing a Feature Extraction.  The system is then connected to 

Wi-Fi to be integrated with websites created using the PHP 

programming language and the Laravel framework. Data from 

the monitoring will be stored in the MySQL database. The 

system can give a noise warning when a human or cell phone 

sound exceeds the threshold with an average of 82.78% 

classification accuracy and an ideal distance from the sound 

source, as far as 30-100 cm. 

Keywords—Noise Monitoring System, Internet of Things, 

Feature Extraction, CNN. 

I. INTRODUCTION  

A library is needed for students, lecturers, and researchers, 
which makes it an alternative place to search library sources 
and a place for group scientific activities. But, visitors often 
do not understand the ethics of being in the library room. 
Visitors who do not understand the rules make rowdy noises 
and speak too loudly, causing noise to other visitors and 
interfering with the concentration of reading or discussions 
being carried out. This is one of the main reasons for 
complaints submitted by library visitors to librarians. 
Librarians, as authorized officers, need to remind visitors to 
be calm and not to cause noise. Librarians must also carry out 
their work, from collecting new book data to maintaining 
books in the library. Of course, continuous warnings to 
different visitors will significantly interfere with the 
librarian’s work [1][2]. Therefore, a system is needed that can 
automatically detect and simultaneously provides a 
notification signal to visitors not to make noise. One way to 
reduce noise in the library is to use a system that alerts visitors 
when it reaches the specified noise threshold. However, The 
problem found when creating a noise monitoring system is in 
the noise itself.  

Sound is a condition of changing pressure or can also be 
described as the speed of oscillations or frequencies in Units 
of Hertz (Hz). There are three types of sounds, namely those 
that have frequencies between 20Hz to 20 kHz (can be heard 
by human ears), above 20 kHz, and below 20Hz (both of 
which cannot be heard by human ears) [3]. 

Noise can be interpreted as unwanted, disliked, and 
disturbing sounds or can also be interpreted as complex sound 

vibrations that have various frequencies and amplitudes that 
are periodic/non-periodic. Noise can be measured 
logarithmically by units of decibels (dB) which is the energy 
currency of the unity of the area. Noise can be classified into 
three types: engine, vibration, air movement, gas, and liquid 
[4]. 

The human sense of hearing can listen to sounds within 20 
Hz-20kHz. Humans can easily distinguish the types of sounds 
without making any additional effort. If the machine wants to 
have the same ability to distinguish the types of sounds, extra 
effort must be made because the machine has a problem that 
is often called machine hearing. Feature extraction [5] can 
help the machine recognize sounds.  

The system must distinguish which noise is produced by 
visitors and which is produced by the library environment. 
Adding Artificial Intelligence to the system allows it to 
recognize the noise around it. One of the branches of Artificial 
Intelligence is Machine Learning. Machine Learning has now 
arrived at the implementation of existing embedded systems 
[6][7]. Several studies were done on using artificial 
intelligence in voice recognition, and all use CNN as the 
algorithm [9]–[11]. However, The application of Artificial 
Intelligence to embedded systems is limited when operating 
on devices with limited capabilities [8]. 

There is also a study about noise monitoring systems in the 
library using an Arduino Uno-based sound noise detection and 
warning system made at the Amikom Purwokerto University 
Library. In the system, the GY-MAX4466 sensor was used as 
a noise sensor, and a 128x64 pixel OLED screen and speakers 
functioned as issuing warnings in the form of sound to library 
visitors around it [12]. The research also built a noise detection 
system in Arduino-based libraries. The system is built using 
an LM393D sensor and is connected to an LCD that will 
display the text and speakers used as sound output. The 
research built a library visitor noise detection tool with the 
ES8266 microcontroller. The microcontroller is connected to 
a KY-037 sensor and an LCD [13]. The study also built a 
website as a medium for monitoring and controlling noise 
detection [14]. 

These studies are similar because they built a monitoring 
system using a microcontroller connected to a sound sensor. 
However, no one has researched how the system can 
distinguish the noise produced by library visitors from the 
noise coming from the environment around the library. For 
this reason, this study has the main objective of how a system 
built on a microcontroller can have artificial intelligence that 
can identify sound noise. 
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II. RESEARCH METHOD 

This research was built using several steps. Which are 
system concept, analysis of requirements, system design, 
system implementation, and system testing. 

A. System concept 

The system has a working principle of being able to 
receive sound input from the surroundings. The sound enters 
through 2 components, namely the noise sensor and 
microphone. The typical conversation or the minimum audible 
sound level is 60dB [15][16]. When the sound around the 
device exceeds the threshold of 60 dB, the system will run the 
microphone sensor and perform sound classification. Sounds 
will be classified into five categories: falling object, horn, 
human, cell phone, and siren. When the classification 
indicates a category of human or mobile phones, the 
notification LED will light up to commemorate the people 
around it. All tool readings in decibel values and classification 
results will be sent to the database, and a data summary will 
be displayed on the website. 

B. Analysis of requirement 

This system is built using two microcontrollers, Arduino 

Nano BLE Sense [17] as a classification microcontroller and 

ESP32-WROOM32U [18] as a microcontroller that connects 

with databases. Arduino Nano BLE Sense which already has 

a microphone type MP34DT05, is also connected to a noise 

sensor made by DF Robot with an Analog Sound Level Meter 

type and an indicator LED that functions as an indicator when 

the device is on and a warning LED for users around it. DF 

Robot Analog Sound Level Meter is a decibel measuring 

sensor produced by DF Robot. This sensor is also known as 

a decibel meter or noise meter, which measures the noise 

around the sensor [19]. The feature extraction results will be 

used for input in training using the Convolutional Neural 

Network (CNN) algorithm [10]. The data received from these 

sensors will enter the Arduino communication serial, which 

will be forwarded to the ESP32. 

ESP32 will be connected to a previously determined WIFI 

so that it can communicate with the server. The data from 

Arduino nano sent to ESP32 is in the form of noise sensor 

reading data, and the classification results will be forwarded 

to the server to be stored in the database. So, data from the 

tool that has entered the database will be able to be displayed 

on the website. On the website, data can be displayed by year, 

month, and day. There is also an option to display reading 

data directly. 

C. System design 

Based on the analysis of requirements before, the system 

is shown in Fig. 1. When the device is connected to a power 

source, it immediately reads the required library. Next, the 

initialization of the pins, serial communication, and required 

variables will be carried out. Then, it is also checked whether 

the microphone is working or not. Otherwise, it will display 

an error warning. Then, the pin connected to the LED 

indicator will be turned on as long as the tool is on. It will 

then read the data from the noise sensor and go into 

conditioning. When the noise sensor reading exceeds the 

threshold of 60 decibels, a voice reading will be carried out 

through the microphone. Then the noise level reading and 

classification will be sent to the communication serial to be 

accepted on the ESP32. If the noise is not more than 60 

decibels, then only the noise level measurement results are 

transmitted to the communication serial. This Noise 

Measurement and Sound Classification software will be 

embedded on the Arduino Nano 33 BLE Sense board with a 

flowchart, as shown in Fig. 2. 

 

 
Fig. 1 Diagram Block 

 
Fig. 2 Noise measurement and classification system 

The AudioClassification library was created using Edge 

Impulse Studio [20]. This library is generated from machine 

training that generates a classification model based on the 

training carried out. In creating a classification model, a prior 

invocation of libraries is required in training. Then, a dataset 

will be loaded with 1071 sound samples divided into five 

categories called falling objects containing 216 sound 

samples representing the sounds of falling objects. Human 

contain 246 sound samples that represent noises coming from 

humans.  A cell phone contains 225 sound samples, a 

collection of noise sounds from a cell phone. The horn 

contains 198 sound samples which are a class containing 

noise sounds caused by vehicle horns. The siren contains 186 

sound samples, a type of sound produced by the sirens of 

ambulance, police, or fire engines. The fallingObj category 

contains sounds obtained from live recordings of falling 

objects by the author. The Phone category contains mobile 

phone voices obtained from open media such as YouTube. 

The Siren, Human, and Horn categories contain sounds taken 

from the UrbanSound8K dataset by sorting out sounds 

relevant to library conditions. Furthermore, sound wave 
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extraction will be carried out aimed at improving the 

accuracy of the training results. The sound waves used for 

classification training are not recommended to be used 

directly because they will result in poor accuracy [21]. Then, 

after the extraction of sound waves, training is immediately 

carried out using the Convolutional Neural Network 

algorithm. The algorithm is made from several hidden layers 

to make it easier for the machine to recognize the type of 

sound expected. The hidden layers used are reshaped layer, 

two Conv/pool layers, flatten layer, a dropout, a dense layer, 

and drop out again. The flatter layer is true, the epoch used is 

1000, and the learning rate parameter used is 0.005. After the 

training and testing are completed, the model will finally be 

saved and converted into a C++ library for easy use in 

programming on hardware. 

In the data storage system, this will be done by ESP32-

WROOM32U. First, the invocation of the libraries necessary 

for the running of the program is carried out. After calling the 

library, a serial communication initialization will be carried 

out to retrieve data from the Arduino Nano 33 BLE Sense, 

and initialize the variables and functions needed to be able to 

connect with WIFI such as SSID and password from the WIFI 

you want to connect. Furthermore, ESP32 will wait for the 

data sent from Arduino Nano until the data is received then 

the data will be sent to the server that was initialized at the 

beginning. The device will keep repeating the previously 

mentioned stages until the device is turned off. In addition to 

the configuration performed on the ESP32, it also needs 

configuration for the server to save the data to the database. 
The database needs to be initialized to configure the 

MySQL database's table name, username, and password. In 
addition, there is also a variable initialization that will store 
data from ESP32. Furthermore, it will wait for a request from 
the hardware; when there is a POST request, it will be checked 
whether the API key owned is appropriate or not. This is 
necessary to avoid the entry of unwanted data from other 
parties. The received data will be sent to the MySQL database 
if the key is appropriate. Monitoring Website is a website that 
functions to display data statistics obtained from noise 
monitoring and classification.  

III. RESULT AND ANALYSIS 

The website functions to display data statistics obtained 
from noise monitoring and classification. A summary of the 
data will be displayed on the website. The dashboard of the 
website is shown in Fig. 3. 

 
Fig. 3 Dashboard View of The Website  

The monitoring system provides a login page used by 

admin and dashboard page to see a graph of the monitoring 

being carried out, the maximum data, and the average 

monitoring of the day. It also has a detailed page to see a 

summary graph of all monitoring carried out and the 

maximum, average, and highest-year data of the entire 

monitoring. Users can also see the details per year, month, 

week, and day. 

A. Noise Monitoring System Distance Testing 

Testing the noise monitoring system aims to see how it 

performs in monitoring the noise around it. Noise monitoring 

is done by taking noise measurements against the distance 

from the sound source. This test aims to determine how the 

DFRobot Analog Sound Level Meter sensor can measure 

sound noise at varying distances. One sound sample will be 

used, compared to the percentage loss from the initial noise 

read at a distance of 0 cm until a specific distance change is 

made. The calculation of the loss percentage can be defined 

by equation 1. 

 

                     ���� �  
���	
 ���
 � ��	����


���	
 	������� ����� 
� 100%    (1) 

TABLE I.  NOISE MONITORING SYSTEMS DISTANCE TESTING 

No. Volume Distance Noise Loss 

1. 

20 % 

0 cm 90.4 dB 0% 

2. 10 cm 78.5 dB 13,1% 

3. 20 cm 69.6 dB 23,0% 

4. 30 cm 64.5 dB 28,7% 

5. 40 cm 60.6 dB 32.9% 

6. 50 cm 60.3 dB 33,3% 

7. 60 cm 59.9 dB 33,7% 

8. 70 cm 59.8 dB 33,8% 

9. 80 cm 58.7 dB 35,1% 

10. 90 cm 58.3 dB 35,6% 

11. 100 cm 57.7 dB 36,1% 

The trial was conducted using one constant sound sample 

with a speaker volume of 20%, as seen in Table I. From the 

test, the initial noise at a distance of 0 cm was 90.4 dB. Then 

a shift of length of 10 cm is carried out. This can be used as a 

reference for the optimal measurement distance that can be 

done by the DFRobot Analog Sound Level Meter sensor. 

 

B. Noise Monitoring System Data Delivery Testing 

In testing the IoT system, measurements of the 

performance of receiving and sending data to the server will 

be carried out on the ESP32-WROOM32U board. Some 

aspects that will be tested include the accuracy and delay of 

data transmission. Data transmission accuracy can be defined 

as how much data is sent versus the amount of data received. 

Delivery accuracy can be formulated in equation 2 

 

          �������� �  
���� ���
��
�

���� �
�� 
�
� 
� 100%           (2) 

 

Delivery accuracy testing needs to be done because when 

serial communication is carried out between Arduino Nano 

BLE Sense and ESP32-WROOM32U, there is a condition 

called lag that causes some data sent by Arduino to be 

received simultaneously by ESP32 which causes only 1 data 

to be sent to the server.  

Delay is the time distance from data transmission to being 

received by the time during the data transmission process.  

Delay can also be defined as the time it takes from the sender 

to get to the recipient.  Calculating the average delay can be 
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done by dividing the total delivery time by the data received 

by the destination device with equation 3. The results of the 

accuracy and delay tests can be seen in Table II. 

 

       !"#�� �  
����� ��$
 %�� 	
����� ����

����� ���
��
� ���� 
� 100%           (3) 

TABLE II.  DATA DELIVERY IN IOT SYSTEM TESTING 

No. 
Time 

Interval 

Total 

Data 

Sent 

Data 

Received 

Accuracy 

(%) 

Delay 

(ms) 

1. 1 Minute 30 20 50% 
3000 

ms 

2. 
10 

Minutes 
300 159 53% 

3774 

ms 

3. 
30 

Minutes 
900 475 53% 

3789 
ms 

4. 
60 

Minutes 
1800 932 52% 

3863 

ms 

Average 52% 
3607 

ms 

 

Table II shows an average of 52% data accuracy and an 

average 3607 ms delay in the data delivery testing. Based on 

the delay column, sometimes there is a delay of 

approximately 3-4 seconds from the data send until the data 

received. 

C. System-Wide Testing 

This testing mechanism consists of two parts; the first is 

to check the CNN algorithm used in the library monitoring 

system in classifying the noise. The second one is to check 

the system’s data flow from the input to the noise monitoring 

system.  

In the first testing process, after the system builds using 

the CNN, the accuracy, F1 score, precision, and recall will be 

calculated based on the five noise categories in edge impulse 

studio, as shown in Table III. 

TABLE III.  ACCURACY, F1, PRECISION, AND RECALL RESULT 

Confusion 

Matrix 

Parameter 

Falling 

Object 
Horn Human  

Cell 

Phone 
Siren 

Accuracy 68.3% 90.8% 93.8% 93% 68% 

F-1 0.8 0.92 0.78 0.8 0.85 

Precision 0.96 0.94 0.67 0.98 0.81 

Recall 0.68 0.91 0.93 0.68 0.9 

 

The test result showed that the system's average accuracy 

is 82.78%. As shown in Table III, horn, human, and cell 

phone sounds have a high accuracy value compared to falling 

objects and siren sounds. 

The second testing process is testing the system built with 

two microcontrollers. The test was carried out by simulating 

the activities that occurred in the library with the distance of 

the tool to the user is 50 cm and it carried out for 

approximately 1 minute for each simulation. Testing is used 

to determine the system's capabilities starting from 

monitoring noise, classifying, storing, and displaying data, as 

shown in Table IV.  

Fig. 4 also shows one of the scenarios where the system 

will notify the user when the sound input is greater than the 

threshold given. In the scenario, given one of the human 

sound which level is greater than the threshold. The system 

will process the input and provide a warning in the red LED.  

 
Fig. 4 The Library Noise Monitoring System’s Warning Sign  

TABLE IV.  NOISE MONITORING SYSTEMS TESTING 

Simula-

tion 

Qualita-

tive 

Condi-

tions 

Noise 

Monito-

ring 

Classifica-

tion 

Data 

Reten-

tion 

Web-

site 

Silent 

state, 
there is 

only the 

sound of 
buzzing 

fans and 

air 
conditio-

ners. 

Calm 
35-43 

dB 
- 

The 

majority 

of 
impor-

tant data 

is stored 

Data 

may 

appear 
on the 

web-

site 

Chat in a 

fairly 

small 
voice 

Calm 
41-55 

dB 
- 

The 
majority 

of 

impor-
tant data 

is stored 

Data 
may 

appear 

on the 
web-

site 

Laughs 
loud 

enough 

Noisy 
55-73 

dB 

Man, 
Falling 

Objects 

The 
majority 

of 

impor-
tant data 

is stored 

Data 
may 

appear 

on the 
web-

site 

Coughing 

sound 

Quite 

Noisy 

53-68 

dB 

Humans, 
Falling 

Objects, 

Cell Phones 

The 

majority 
of 

impor-

tant data 
is stored 

Data 

may 
appear 

on the 

web-
site 

Dropping 

objects 

Quite 

Noisy 

51-65 

dB 

Falling 

Objects, 
Cell Phones 

The 

majority 
of 

impor-

tant data 
is stored 

Data 

may 
appear 

on the 

web-
site 

Horn 
sound 

Noisy 
58-85 

dB 

Horns, 

Sirens, Cell 

Phones 

The 

majority 

of 
impor-

tant data 

is stored 

Data 

may 

appear 
on the 

web-

site 

Chat 

quite 

loudly 

Noisy 
57-75 

dB 

Man, 

Phone, 
Falling 

Object 

The 

majority 

of 
impor-

tant data 

is stored 

Data 

may 

appear 
on the 

web-

site 

Phone 

ringing 
Noisy 

58-77 

dB 

Phone, 

Siren 

The 

majority 

of 
impor-

Data 

may 

appear 
on the 
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tant data 

is stored 

web-

site 

Siren 

sound 
Noisy 55-78 

Sirens, 
Telephones, 

Horns 

The 
majority 

of 

impor-
tant data 

is stored 

Data 
may 

appear 

on the 
web-

site 

 

Based on Table IV, from those 1 minute, some conditions 

are not right. However, the main function of recognizing 

human noise sounds is good enough because it can recognize 

some sounds produced by humans and cell phone.  

 

IV. CONCLUSION  

From the research that has been carried out, the system 

can give a noise warning when a human or cell phone sound 

exceeds the threshold with an average of 82.78% 

classification accuracy and an ideal distance from the sound 

source, as far as 30-100 cm. It is also able to monitor the noise 

in its surroundings. In IoT systems that utilize ESP32-

WROOM32U hardware, they have excellent capabilities in 

transmitting data. Still, for data receipt from serial 

communication, there is a delay of approximately 3-4 

seconds. Improving the accuracy of delivery can be done by 

increasing the delivery lag time performed by Arduino Nano 

33 BLE Sense. Still, it will make noise monitoring less 

accurate due to the long lag. 
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