
Noise Monitoring System Development in a Library

Based on The Internet of Things

1st Dania Eridani

Department of Computer Engineering

Diponegoro University

Semarang, Indonesia

dania@ce.undip.ac.id

2nd Adian Fatchur Rochim

Department of Computer Engineering

Diponegoro University

Semarang, Indonesia

adian@ce.undip.ac.id

3rd Alvin Zulham Firdananta

Department of Computer Engineering

Diponegoro University

Semarang, Indonesia

alvinzulham@students.undip.ac.id

Abstract— a library is one of the important places for the

community, especially students. However, not all visitors know

the library’s rules and act arbitrarily to create noise that can

disturb other visitors. This research is focused on the

development of classifying and monitoring the unwanted noise

in the library. The system is built with the Arduino Nano 33 BLE

microcontroller using the DFROBOT Analog Sound Level

Meter Sense sensor and ESP32-WROOM32U. The system is

equipped with classification capabilities resulting from machine

training using the Convolutional Neural Network algorithm by

utilizing a Feature Extraction. The system is then connected to

Wi-Fi to be integrated with websites created using the PHP

programming language and the Laravel framework. Data from

the monitoring will be stored in the MySQL database. The

system can give a noise warning when a human or cell phone

sound exceeds the threshold with an average of 82.78%

classification accuracy and an ideal distance from the sound

source, as far as 30-100 cm.

Keywords—Noise Monitoring System, Internet of Things,

Feature Extraction, CNN.

I. INTRODUCTION

A library is needed for students, lecturers, and researchers,
which makes it an alternative place to search library sources
and a place for group scientific activities. But, visitors often
do not understand the ethics of being in the library room.
Visitors who do not understand the rules make rowdy noises
and speak too loudly, causing noise to other visitors and
interfering with the concentration of reading or discussions
being carried out. This is one of the main reasons for
complaints submitted by library visitors to librarians.
Librarians, as authorized officers, need to remind visitors to
be calm and not to cause noise. Librarians must also carry out
their work, from collecting new book data to maintaining
books in the library. Of course, continuous warnings to
different visitors will significantly interfere with the
librarian’s work [1][2]. Therefore, a system is needed that can
automatically detect and simultaneously provides a
notification signal to visitors not to make noise. One way to
reduce noise in the library is to use a system that alerts visitors
when it reaches the specified noise threshold. However, The
problem found when creating a noise monitoring system is in
the noise itself.

Sound is a condition of changing pressure or can also be
described as the speed of oscillations or frequencies in Units
of Hertz (Hz). There are three types of sounds, namely those
that have frequencies between 20Hz to 20 kHz (can be heard
by human ears), above 20 kHz, and below 20Hz (both of
which cannot be heard by human ears) [3].

Noise can be interpreted as unwanted, disliked, and
disturbing sounds or can also be interpreted as complex sound

vibrations that have various frequencies and amplitudes that
are periodic/non-periodic. Noise can be measured
logarithmically by units of decibels (dB) which is the energy
currency of the unity of the area. Noise can be classified into
three types: engine, vibration, air movement, gas, and liquid
[4].

The human sense of hearing can listen to sounds within 20
Hz-20kHz. Humans can easily distinguish the types of sounds
without making any additional effort. If the machine wants to
have the same ability to distinguish the types of sounds, extra
effort must be made because the machine has a problem that
is often called machine hearing. Feature extraction [5] can
help the machine recognize sounds.

The system must distinguish which noise is produced by
visitors and which is produced by the library environment.
Adding Artificial Intelligence to the system allows it to
recognize the noise around it. One of the branches of Artificial
Intelligence is Machine Learning. Machine Learning has now
arrived at the implementation of existing embedded systems
[6][7]. Several studies were done on using artificial
intelligence in voice recognition, and all use CNN as the
algorithm [9]–[11]. However, The application of Artificial
Intelligence to embedded systems is limited when operating
on devices with limited capabilities [8].

There is also a study about noise monitoring systems in the
library using an Arduino Uno-based sound noise detection and
warning system made at the Amikom Purwokerto University
Library. In the system, the GY-MAX4466 sensor was used as
a noise sensor, and a 128x64 pixel OLED screen and speakers
functioned as issuing warnings in the form of sound to library
visitors around it [12]. The research also built a noise detection
system in Arduino-based libraries. The system is built using
an LM393D sensor and is connected to an LCD that will
display the text and speakers used as sound output. The
research built a library visitor noise detection tool with the
ES8266 microcontroller. The microcontroller is connected to
a KY-037 sensor and an LCD [13]. The study also built a
website as a medium for monitoring and controlling noise
detection [14].

These studies are similar because they built a monitoring
system using a microcontroller connected to a sound sensor.
However, no one has researched how the system can
distinguish the noise produced by library visitors from the
noise coming from the environment around the library. For
this reason, this study has the main objective of how a system
built on a microcontroller can have artificial intelligence that
can identify sound noise.

978-1-6654-6541-0/22/$31.00 ©2022 IEEE

2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 4-5 November 2022

24

II. RESEARCH METHOD

This research was built using several steps. Which are
system concept, analysis of requirements, system design,
system implementation, and system testing.

A. System concept

The system has a working principle of being able to
receive sound input from the surroundings. The sound enters
through 2 components, namely the noise sensor and
microphone. The typical conversation or the minimum audible
sound level is 60dB [15][16]. When the sound around the
device exceeds the threshold of 60 dB, the system will run the
microphone sensor and perform sound classification. Sounds
will be classified into five categories: falling object, horn,
human, cell phone, and siren. When the classification
indicates a category of human or mobile phones, the
notification LED will light up to commemorate the people
around it. All tool readings in decibel values and classification
results will be sent to the database, and a data summary will
be displayed on the website.

B. Analysis of requirement

This system is built using two microcontrollers, Arduino

Nano BLE Sense [17] as a classification microcontroller and

ESP32-WROOM32U [18] as a microcontroller that connects

with databases. Arduino Nano BLE Sense which already has

a microphone type MP34DT05, is also connected to a noise

sensor made by DF Robot with an Analog Sound Level Meter

type and an indicator LED that functions as an indicator when

the device is on and a warning LED for users around it. DF

Robot Analog Sound Level Meter is a decibel measuring

sensor produced by DF Robot. This sensor is also known as

a decibel meter or noise meter, which measures the noise

around the sensor [19]. The feature extraction results will be

used for input in training using the Convolutional Neural

Network (CNN) algorithm [10]. The data received from these

sensors will enter the Arduino communication serial, which

will be forwarded to the ESP32.

ESP32 will be connected to a previously determined WIFI

so that it can communicate with the server. The data from

Arduino nano sent to ESP32 is in the form of noise sensor

reading data, and the classification results will be forwarded

to the server to be stored in the database. So, data from the

tool that has entered the database will be able to be displayed

on the website. On the website, data can be displayed by year,

month, and day. There is also an option to display reading

data directly.

C. System design

Based on the analysis of requirements before, the system

is shown in Fig. 1. When the device is connected to a power

source, it immediately reads the required library. Next, the

initialization of the pins, serial communication, and required

variables will be carried out. Then, it is also checked whether

the microphone is working or not. Otherwise, it will display

an error warning. Then, the pin connected to the LED

indicator will be turned on as long as the tool is on. It will

then read the data from the noise sensor and go into

conditioning. When the noise sensor reading exceeds the

threshold of 60 decibels, a voice reading will be carried out

through the microphone. Then the noise level reading and

classification will be sent to the communication serial to be

accepted on the ESP32. If the noise is not more than 60

decibels, then only the noise level measurement results are

transmitted to the communication serial. This Noise

Measurement and Sound Classification software will be

embedded on the Arduino Nano 33 BLE Sense board with a

flowchart, as shown in Fig. 2.

Fig. 1 Diagram Block

Fig. 2 Noise measurement and classification system

The AudioClassification library was created using Edge

Impulse Studio [20]. This library is generated from machine

training that generates a classification model based on the

training carried out. In creating a classification model, a prior

invocation of libraries is required in training. Then, a dataset

will be loaded with 1071 sound samples divided into five

categories called falling objects containing 216 sound

samples representing the sounds of falling objects. Human

contain 246 sound samples that represent noises coming from

humans. A cell phone contains 225 sound samples, a

collection of noise sounds from a cell phone. The horn

contains 198 sound samples which are a class containing

noise sounds caused by vehicle horns. The siren contains 186

sound samples, a type of sound produced by the sirens of

ambulance, police, or fire engines. The fallingObj category

contains sounds obtained from live recordings of falling

objects by the author. The Phone category contains mobile

phone voices obtained from open media such as YouTube.

The Siren, Human, and Horn categories contain sounds taken

from the UrbanSound8K dataset by sorting out sounds

relevant to library conditions. Furthermore, sound wave

2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 4-5 November 2022

25

extraction will be carried out aimed at improving the

accuracy of the training results. The sound waves used for

classification training are not recommended to be used

directly because they will result in poor accuracy [21]. Then,

after the extraction of sound waves, training is immediately

carried out using the Convolutional Neural Network

algorithm. The algorithm is made from several hidden layers

to make it easier for the machine to recognize the type of

sound expected. The hidden layers used are reshaped layer,

two Conv/pool layers, flatten layer, a dropout, a dense layer,

and drop out again. The flatter layer is true, the epoch used is

1000, and the learning rate parameter used is 0.005. After the

training and testing are completed, the model will finally be

saved and converted into a C++ library for easy use in

programming on hardware.

In the data storage system, this will be done by ESP32-

WROOM32U. First, the invocation of the libraries necessary

for the running of the program is carried out. After calling the

library, a serial communication initialization will be carried

out to retrieve data from the Arduino Nano 33 BLE Sense,

and initialize the variables and functions needed to be able to

connect with WIFI such as SSID and password from the WIFI

you want to connect. Furthermore, ESP32 will wait for the

data sent from Arduino Nano until the data is received then

the data will be sent to the server that was initialized at the

beginning. The device will keep repeating the previously

mentioned stages until the device is turned off. In addition to

the configuration performed on the ESP32, it also needs

configuration for the server to save the data to the database.
The database needs to be initialized to configure the

MySQL database's table name, username, and password. In
addition, there is also a variable initialization that will store
data from ESP32. Furthermore, it will wait for a request from
the hardware; when there is a POST request, it will be checked
whether the API key owned is appropriate or not. This is
necessary to avoid the entry of unwanted data from other
parties. The received data will be sent to the MySQL database
if the key is appropriate. Monitoring Website is a website that
functions to display data statistics obtained from noise
monitoring and classification.

III. RESULT AND ANALYSIS

The website functions to display data statistics obtained
from noise monitoring and classification. A summary of the
data will be displayed on the website. The dashboard of the
website is shown in Fig. 3.

Fig. 3 Dashboard View of The Website

The monitoring system provides a login page used by

admin and dashboard page to see a graph of the monitoring

being carried out, the maximum data, and the average

monitoring of the day. It also has a detailed page to see a

summary graph of all monitoring carried out and the

maximum, average, and highest-year data of the entire

monitoring. Users can also see the details per year, month,

week, and day.

A. Noise Monitoring System Distance Testing

Testing the noise monitoring system aims to see how it

performs in monitoring the noise around it. Noise monitoring

is done by taking noise measurements against the distance

from the sound source. This test aims to determine how the

DFRobot Analog Sound Level Meter sensor can measure

sound noise at varying distances. One sound sample will be

used, compared to the percentage loss from the initial noise

read at a distance of 0 cm until a specific distance change is

made. The calculation of the loss percentage can be defined

by equation 1.

 ���� �
���	
 ���
 � ��	����

���	
 	������� �����
� 100% (1)

TABLE I. NOISE MONITORING SYSTEMS DISTANCE TESTING

No. Volume Distance Noise Loss

1.

20 %

0 cm 90.4 dB 0%

2. 10 cm 78.5 dB 13,1%

3. 20 cm 69.6 dB 23,0%

4. 30 cm 64.5 dB 28,7%

5. 40 cm 60.6 dB 32.9%

6. 50 cm 60.3 dB 33,3%

7. 60 cm 59.9 dB 33,7%

8. 70 cm 59.8 dB 33,8%

9. 80 cm 58.7 dB 35,1%

10. 90 cm 58.3 dB 35,6%

11. 100 cm 57.7 dB 36,1%

The trial was conducted using one constant sound sample

with a speaker volume of 20%, as seen in Table I. From the

test, the initial noise at a distance of 0 cm was 90.4 dB. Then

a shift of length of 10 cm is carried out. This can be used as a

reference for the optimal measurement distance that can be

done by the DFRobot Analog Sound Level Meter sensor.

B. Noise Monitoring System Data Delivery Testing

In testing the IoT system, measurements of the

performance of receiving and sending data to the server will

be carried out on the ESP32-WROOM32U board. Some

aspects that will be tested include the accuracy and delay of

data transmission. Data transmission accuracy can be defined

as how much data is sent versus the amount of data received.

Delivery accuracy can be formulated in equation 2

 �������� �
���� ���
��
�

���� �
��
�
�
� 100% (2)

Delivery accuracy testing needs to be done because when

serial communication is carried out between Arduino Nano

BLE Sense and ESP32-WROOM32U, there is a condition

called lag that causes some data sent by Arduino to be

received simultaneously by ESP32 which causes only 1 data

to be sent to the server.

Delay is the time distance from data transmission to being

received by the time during the data transmission process.

Delay can also be defined as the time it takes from the sender

to get to the recipient. Calculating the average delay can be

2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 4-5 November 2022

26

done by dividing the total delivery time by the data received

by the destination device with equation 3. The results of the

accuracy and delay tests can be seen in Table II.

 !"#�� �
����� ��$
 %�� 	
����� ����

����� ���
��
� ����
� 100% (3)

TABLE II. DATA DELIVERY IN IOT SYSTEM TESTING

No.
Time

Interval

Total

Data

Sent

Data

Received

Accuracy

(%)

Delay

(ms)

1. 1 Minute 30 20 50%
3000

ms

2.
10

Minutes
300 159 53%

3774

ms

3.
30

Minutes
900 475 53%

3789
ms

4.
60

Minutes
1800 932 52%

3863

ms

Average 52%
3607

ms

Table II shows an average of 52% data accuracy and an

average 3607 ms delay in the data delivery testing. Based on

the delay column, sometimes there is a delay of

approximately 3-4 seconds from the data send until the data

received.

C. System-Wide Testing

This testing mechanism consists of two parts; the first is

to check the CNN algorithm used in the library monitoring

system in classifying the noise. The second one is to check

the system’s data flow from the input to the noise monitoring

system.

In the first testing process, after the system builds using

the CNN, the accuracy, F1 score, precision, and recall will be

calculated based on the five noise categories in edge impulse

studio, as shown in Table III.

TABLE III. ACCURACY, F1, PRECISION, AND RECALL RESULT

Confusion

Matrix

Parameter

Falling

Object
Horn Human

Cell

Phone
Siren

Accuracy 68.3% 90.8% 93.8% 93% 68%

F-1 0.8 0.92 0.78 0.8 0.85

Precision 0.96 0.94 0.67 0.98 0.81

Recall 0.68 0.91 0.93 0.68 0.9

The test result showed that the system's average accuracy

is 82.78%. As shown in Table III, horn, human, and cell

phone sounds have a high accuracy value compared to falling

objects and siren sounds.

The second testing process is testing the system built with

two microcontrollers. The test was carried out by simulating

the activities that occurred in the library with the distance of

the tool to the user is 50 cm and it carried out for

approximately 1 minute for each simulation. Testing is used

to determine the system's capabilities starting from

monitoring noise, classifying, storing, and displaying data, as

shown in Table IV.

Fig. 4 also shows one of the scenarios where the system

will notify the user when the sound input is greater than the

threshold given. In the scenario, given one of the human

sound which level is greater than the threshold. The system

will process the input and provide a warning in the red LED.

Fig. 4 The Library Noise Monitoring System’s Warning Sign

TABLE IV. NOISE MONITORING SYSTEMS TESTING

Simula-

tion

Qualita-

tive

Condi-

tions

Noise

Monito-

ring

Classifica-

tion

Data

Reten-

tion

Web-

site

Silent

state,
there is

only the

sound of
buzzing

fans and

air
conditio-

ners.

Calm
35-43

dB
-

The

majority

of
impor-

tant data

is stored

Data

may

appear
on the

web-

site

Chat in a

fairly

small
voice

Calm
41-55

dB
-

The
majority

of

impor-
tant data

is stored

Data
may

appear

on the
web-

site

Laughs
loud

enough

Noisy
55-73

dB

Man,
Falling

Objects

The
majority

of

impor-
tant data

is stored

Data
may

appear

on the
web-

site

Coughing

sound

Quite

Noisy

53-68

dB

Humans,
Falling

Objects,

Cell Phones

The

majority
of

impor-

tant data
is stored

Data

may
appear

on the

web-
site

Dropping

objects

Quite

Noisy

51-65

dB

Falling

Objects,
Cell Phones

The

majority
of

impor-

tant data
is stored

Data

may
appear

on the

web-
site

Horn
sound

Noisy
58-85

dB

Horns,

Sirens, Cell

Phones

The

majority

of
impor-

tant data

is stored

Data

may

appear
on the

web-

site

Chat

quite

loudly

Noisy
57-75

dB

Man,

Phone,
Falling

Object

The

majority

of
impor-

tant data

is stored

Data

may

appear
on the

web-

site

Phone

ringing
Noisy

58-77

dB

Phone,

Siren

The

majority

of
impor-

Data

may

appear
on the

2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 4-5 November 2022

27

tant data

is stored

web-

site

Siren

sound
Noisy 55-78

Sirens,
Telephones,

Horns

The
majority

of

impor-
tant data

is stored

Data
may

appear

on the
web-

site

Based on Table IV, from those 1 minute, some conditions

are not right. However, the main function of recognizing

human noise sounds is good enough because it can recognize

some sounds produced by humans and cell phone.

IV. CONCLUSION

From the research that has been carried out, the system

can give a noise warning when a human or cell phone sound

exceeds the threshold with an average of 82.78%

classification accuracy and an ideal distance from the sound

source, as far as 30-100 cm. It is also able to monitor the noise

in its surroundings. In IoT systems that utilize ESP32-

WROOM32U hardware, they have excellent capabilities in

transmitting data. Still, for data receipt from serial

communication, there is a delay of approximately 3-4

seconds. Improving the accuracy of delivery can be done by

increasing the delivery lag time performed by Arduino Nano

33 BLE Sense. Still, it will make noise monitoring less

accurate due to the long lag.

ACKNOWLEDGMENT

This research was financially supported by The Faculty of
Engineering, Diponegoro University, Indonesia through the
Strategic Research Grant 2022.

REFERENCES

[1] J. Lange, A. Miller-Nesbitt, and S. Severson, “Reducing noise in the

academic library: the effectiveness of installing noise meters,” Libr.
Hi Tech, vol. 34, no. 1, pp. 45–63, 2016, doi: 10.1108/LHT-04-2015-

0034.

[2] S. Gordon-Hickey and T. Lemley, “Background Noise Acceptance
and Personality Factors Involved in Library Environment Choices by

College Students,” J. Acad. Librariansh., vol. 38, no. 6, pp. 365–369,
2012, doi: 10.1016/j.acalib.2012.08.003.

[3] C. R. Pereira, “Basic Characteristics of Sound,” 2015.

[4] G. Taraldsen, T. Berge, F. Haukland, B. H. Lindqvist, and H.
Jonasson, “Uncertainty of decibel levels,” J. Acoust. Soc. Am., vol.

138, no. 3, pp. EL264–EL269, 2015, doi: 10.1121/1.4929619.

[5] G. Sharma, K. Umapathy, and S. Krishnan, “Trends in audio signal
feature extraction methods,” Appl. Acoust., vol. 158, p. 107020, 2020,

doi: 10.1016/j.apacoust.2019.107020.

[6] N. David, C. V. N. Anyika, I. N. Ejindu, and A. O. Abioye, “Library
Sound Level Meter,” Quest J. Electron. Commun. Eng. Res., vol. 1,

no. 1, p. 10, 2013, [Online]. Available:

http://www.questjournals.org/jecer/papers/vol1-issue1/C112029.pdf.
[7] C. Banbury et al., “Micronets: Neural Network Architectures for

Deploying TinyML Application on Commodity Microcontroller,”

Dict. Genomics, Transcr. Proteomics, 2015, doi:
10.1002/9783527678679.dg13290.

[8] M. Z. H. Zim, “TinyML: Analysis of Xtensa LX6 microprocessor for

Neural Network Applications by ESP32 SoC,” no. June, 2021, doi:
10.13140/RG.2.2.28602.11204.

[9] H. S. Bae, H. J. Lee, and S. G. Lee, “Voice recognition based on

adaptive MFCC and deep learning,” Proc. 2016 IEEE 11th Conf. Ind.
Electron. Appl. ICIEA 2016, pp. 1542–1546, 2016, doi:

10.1109/ICIEA.2016.7603830.

[10] A. Azarang, J. Hansen, and N. Kehtarnavaz, “Combining Data
Augmentations for CNN-Based Voice Command Recognition,” Int.

Conf. Hum. Syst. Interact. HSI, vol. 2019-June, pp. 17–21, 2019, doi:

10.1109/HSI47298.2019.8942638.
[11] K. H. Lee and D. H. Kim, “Design of a Convolutional Neural Network

for Speech Emotion Recognition,” Int. Conf. ICT Converg., vol. 2020-

Octob, pp. 1332–1335, 2020, doi:
10.1109/ICTC49870.2020.9289227.

[12] C. M. Achsan and D. Krisbiantoro, “Design and Build an Arduino-

Based Noise Detection and Warning Device (Case Study: AMIKOM
Purwokerto University Library),” SYMMETRICAL J., vol. 11, no. 2,

pp. 551–559, 2021, doi: 10.24176/simet.v11i2.5013.

[13] Nurwati, “Noise Level Detection and Warning in Arduino-Based
Libraries,” R. Natl. Semin., vol. 1, no. 1, pp. 1–4, 2018.

[14] Herianto and K. Hasnor, “Design and Build A Library Visitor Noise

Detection Device Based on Sound Pressure Parameters using
NodeMCU ESP8266,” J. Comput. Sci., vol. 10, no. 1, pp. 20–26,

2021.

[15] “Levels of Noise Levels of Noise Levels of Noise Levels of Noise.”
p. 140.

[16] “6 - Signalling systems and confirmed alarms.pdf.” .

[17] Arduino, “Arduino® Nano 33 BLE Sense,” Arduino USA website, pp.
1–12, 2021, [Online]. Available:

https://docs.arduino.cc/resources/datasheets/ABX00031-

datasheet.pdf.
[18] E. Systems, “ESP32-WROOM-32U,” 2019.

[19] Jason, “DFROBOT SEN0232 Gravity Analog Sound Level Meter,”

2017.
https://wiki.dfrobot.com/Gravity__Analog_Sound_Level_Meter_SK

U.
[20] Edge Impulse, “Recognize Sounds from Audio.”

https://docs.edgeimpulse.com/docs/tutorials/audio-classification.

[21] S. Shalev-Shwartz and S. Ben-David, Understanding machine
learning: From theory to algorithms, vol. 9781107057. 2013.

2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 4-5 November 2022

28

