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Abstmct—mllomlion such as the autopilot car technology is
considered to be a promising solution to reduce the number of
accidents on the road. However, it is believed that to increase
safety l'orch technologies, it is necessary for an intelligent agent
(IA) and the human driver to share their situational awareness
s0 that the same conclusions regarding driving situations can
be reached. Hence, developing a reasoning engine to generate
goal-driven exp! tions regarding IA’s situational awareness is
highly required. To address this challenge, this paper proposes a
fuzzy-cognitive-map-based reasoning engine to disclose inferred
situations ind IA’s executed action. Carla simulator was used
to conduct an experimental test in a collaborative driving context.
As the results, goal-driven lanations can be generated with
a better performance than the baseline method. This work is
in'nrlanl to reduce road incidents invelving autonomous cars.

Index Terms—artificial situation awareness, intelligent agent,
collaborative driving

I. INTRODUCTION

Granting a higher level of autonomy to IA as a member
of a human-IA team requires a mechanism to generate the
explicit representation of IA’s situational awareness (referred
to as artificial situational awareness) that provides explanations
about the situations behind IA’s selected action (goal-based
explanations) [1]. Such explanations are useful for human
to understand IA’s behaviors [2]. One example of human-
IA team can be seeain the collaborative driving. In the
collaborative driag, the on-board advanced driver assistance
system (ADAS) provides cognitive supports when the human
driver drives the car in a manual ra.lc, Morcover, ADAS
through its autopilot agent as IA has a certain level of
autonomy for driving tasks when the autoa)t mode is on.
Hence, such driving collaboration between the human driver
and the autopilot agent is considered at level 4 of 6 levels
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(0-5) car automation based on the Society of Automotive
Engineering classification [3].

For humans, situational awareness is constructed by relating
task-relevant surrounding objects statuses at a certain time-
window to form comprehension of situations [4]. For example,
a human driver concludes a tailing red light situations by
connecting the color of traffic light and the existence of another
car in front located at a certain distance wiu the same lane.
In this regard, “traffic a]l color’ and ‘the existence of a
lead vehicle within the same lane at a certain distance’ are
considered to be the statuses of surrounding objects relevant
to the driving task.

The construction of human’s situational awareness can be
adopted for IA that infers the statuses of surrounding objects
from its sensory tools and a set of recognition models [5],
[6]. For example, cameras and distance sensors can be used
to collect the data to infer the statuses of traffic light and
surrounding objects, respectively. By combining those statuses,
the IA’s situation understanding can be artificially developed.
There are many approaches for IA developers to present the
IA’s comprehension of situations to its human counterpart.
In the tailing red light situation case, a red traffic light icon
and a car icon representing the lead vehicle can be provided.
However, this approach requires a more cognitive effort from
the human driver to conclude the meaning of such icon
combinations.

As the recognition models may not perfectly accurate, IA
can fail in detecting the statuses of surrounding task-relevant
objects such as traffic light state [7]. Assuming that in the
traffic light situation, red light is not recognized. By design,
the IA’s logic instructs the vehicle ta(eep moving in such a
situation. This design is considered a trade-off between road
safety and other road users’ convenience [8]. But this trade-off




3
might Ead to road incidents as the red light can be violated.
Presenting the traffic light icon may give cues to the human
driver about IA’s perception. However, the human driver might
wonder how IA will react given unrecognized status of the
traffic light [9], [10].

The simple illustration above highlights the necessity of
a reasoning engine which can link the IA’s action to the
background situation so its human counterpart can have better
understanding on IA’s behaviors. Mostly, previous studies
rely on graph-based behavioral representation to develop a
reasoning engine, such as decision tree [11], provenance graph
[12], belief-desire-intention (BDI) hierarchy [13], and goal
hierarchy [14]. Moreover, researchers in [5] and [15] proposed
knowledge graph system and rule-based system for the reason-
ing engine, respectively. However, the main weakness of such
behavioral representation is their limitations to disclose the
type of situations encountered by IA behind its selected action.
We believe that a graph representing a situation model is
more suitable to reveal IA’s situational awareness. Hence, this
paper aims to propose a reasoning engine using a graph-based
situation model as the core part of IA’s artificial situational
awareness to generate goal-based explanations. In this regard,
such a situation model is implemented using Fuzzy Cognitive
Maps in our proposcatpproach.

In this research, we conducted an experimental imple-
mentation in a collaborative driving context. Wﬂscd Carla
simulator for the experiments. Carla simulator is an open-
source software to simulate autonomous driving [16], and the
autopilot is a]Sidﬁl‘ed to be TA. There are two scenarios for
simulations, namely traffic light and overtaking scenarios. The
result shows that the proposed method is applicable and has
better performance in generating goal-based explanations than
th@baseline method.

The key contributions of this work are as follows:

« This paper proposes a reasoning engine with the Fuzzy

n:gnilivc Maps as the situation model

« This paper provides a mechanism cxploit the proposed

representation of situation model to generate goal-based
explanations.

The remainder of this paper is structured as described
below. Section 2 presents the theoretical background, and
Section 3 propcas the reasoning engine. An experimental
implementation and evaluation are presented in Section 4.
Finally. the conclusions are drawn in Section 5.

II. BACKGROUND
A. Fuzzy Cognitive Maps

The Fuzzy Cognitive Map (FCM) is firstly introduced by
Kosko [17], and it is a graph-based knowledge representation.
Its nodes denote concepts in the domain of problem while
the edges represent causal relationships among concepts. FCM
offers fuzziness in each relation by using fuzzy binaries of
causal influences. Suppose C; and C; are the FCM’s nodes
(see Fig. 1); the strength of the edge connecting those two
concepts will be weighted where the value of the weight w;;

is ranging from -1 to 1. There are three types of edge strength
that indicate possible causalities between C; and C; [18]:
o w;; > 0 represents a positive causality. If C; occurs (or
not), '; will also occur (or not)

o w;; < 0 represents a negative causality. If C; occurs (or
not), C'; will not occur (or occur)
o w;; = 0 represents no causality. Both ; and C'; do not

have influence each other.

Wij

Fig. 1. Relation between two concepts in FCM

FCM comprising n factors is mathematically represented
by a n % n matrix (W), and w;; becomes the element of W.
Hence, based on Fig. 1, the mathematical representation of

FCM is as follow:
v 0wy
W= [‘u,‘_-,;(' 0 :I

FCI\ﬂ;cts the input from a state vector given time t (X')
which can model the changes of a scenario in a certain time-
w'uﬁ:w by letting its nodes interact to each other.

B. Situation Awareness

Endsley [19] described situation awareness (SA) as "the
perception of the elements in the environment within a volume
of time and space, the comprehension of their meaning, and the
projection of their status in the near future”. Hence, situation
awarene@s formed through three steps of information pro-
cessing: perception (SA Level 1), comprehension (SA Level
2), and 3) projection (SA Level 3).

According to [20], a certain degree of SA can be hold by
IA. As itis owned by IA, such SA is called artificial situational
awareness as it needs to be explicitly deﬁnenS], [6]. However,
as IA’s behaviors are created by design, we define artificial
situational awareness as an explicit representation of the three-
levels situation awareness model comprising perception (Level
1), comprehension (Level 2), and action (Level 3).

The development of artificial SA may have many problems
e toic. system boundaries, imperfect recognition models,
and sensor failures. As a result, IA might misn]ave as it has
incorrect SA. Hence, exposing IA’s artificial SA can be one
way to comprehend IA’s behaviors and to improve human-IA
collaboration.

ITII. THE PROPOSED REASONING ENGINE

This section presents the proposed FCM-based reasoning
engine that can generate goal-based explanations to clarify
situations encountered by IA behind its selected action or
decision. Fig. 2 depicts the diagram block illustrating the
architecture of the proposed engine. There are two main parts
in the architecture, IA systemrawn in the yellow block) and
the reasoning engine (drawn in the green block). The details
about each part will be explained in the following sub-sections.
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Fig. 2. FCM-based reasoning engine

A. IA System

In this paper, we only focus on the core components
of IA system which becomes the inputs for the reasoning
engine. The first group of A system’s components is a set
of sensory tools and inference engines. Sensors generate the
input data with various data type. Some of them can produce
measurement values, and these values can be directly used
without an inference engine to interpret them. For example,
distance sensors and temperature sensors. However, the other
types of sensors, such as cameras, need an inference engine
to recognize the state of concerns, such as the red light.

The components in the secca group are functions and
logics. In a logic-based agent, functions and logics can be
viewed as the representation of goal model and goal-execution
plans, respectively. Functions and logics generate flags to feed
the FCM. A flag is a variable providing a signal regarding a
certain state of programming or logic. Hence, it can also be
used to indicate the IA’s selected action state.

The last group is IA’s static knowledge, which can be
scribed as a set of default values or user-custom values
stored in the system settings. From the static knowledge, a
flag can also be generated and sent to FCM for the reasoning
process. Before feeding the FCM, the values from static
knowledge may undergo a discretization process, particularly
when these values are continuous.

From the inputs above, a time-dependent state vector A is
constructed and denoted as follows:

t_ [t t

At =lag, ... a; (1)
where a represents the state of an input (e.g., a sensor, an
inference engine, or a flag) with £ = 0,1,2,...,n is the

infinite number of inputs, and A" is considered to be the initial
state vector.

B. The Reasoning Engine

The reasoning engine consists of two parts, namely the
FCM graph representing a situation model and a gmdriven
explanation generator. We divided the FCM graph into three
groups of nodes, namely root, intermediate, and leaf nodes

that represent IA’s perception, comprehension, and action,
respectively. Root nodes gather their inputs from sensors,
inference engine states, and flags. Intermediate nodes directly
connected to the root nodes without linked to leaf nodes are
referred to as IA’s lower-level comprehension of situations.
Meanwhile, intermediate nodes directly connected to action
nodes are referred to as IA’s higher-level comprehension of
situations.

The connections among concepts and their weight values
are defined by the expert. The state vector denoted in Eq. 1
becomes the initial points for FCM, and the concept state at
A" can be calculated according to following equation:

"
ARt =f > wy x XS )

J=1,j#i

where )ij is the value of ' in the simulation at time f, and
f is a sigmoid function denoted by:

ﬁf) L (3

Tlte

where A = 0, and x is the value of )Li for the given t. Once
the concept states A§+l are obtained, g.oal-driven explanations
can be inferred from the state of concepts representing IA's
action and the higher-level comprehension.

Now, let § = {01,...,04} be the set of concepts® states for
higher-level comprehension, where ¢ is the number of concepts
in this part. The following equation is used to determine which
concept representing current [A’s situational awareness at the
given time f:

o = mazx(§) 4)

Similarly, by assuming that v = {p;,...,p,} is the set of
leaf nodes’ states where w is the number of leaf nodes, current
IA’s action given time ¢ can be determined by the following
equation:

¢ = maz(y) (5)

The goal-driven explanations, then, are obtained by linking
¢ (as the IA’s selected action) to o (as the situation behind
IA’s selected action).

IV. EXPERIMENTAL EVALUATION

A. Testing Environment

Carla simulator [16] was used in the experiment, and
the autopilot agent which drives the autonomous car in the
simulator is considered TA. Built-in Carla’s virtual sensors are
used, such as depth and semantic cameras, navigation system,
lane invasion sensors, and LIDAR. The cameras are used
to recognize and identify surrounding objects in the driving
environment. Geo-location of the simulated autonomous cars
in the Carla’s virtual map is provided by the navigation system.
Furthermore, lane invasions sensors and LIDAR provides the
recognition of road line types and distance measurement to




surrounding objects, respectively. Moreover, the lane invasion
sensors provide a support to keep the ego car (our car) within
the lane.

B. Scenarios P

There are two showcases in the cx]:amcm, namely traffic
light (TL) and overtaking scenarios. As illustrated in Fig. 3, the
ego vehicle just entered a tailing TL situation. Two segments
are determined for TL situation, namely Segment 1 and
Segment 2. For the human drivers, they respond to TL state
after [J unit of distance away from the TL location. From D to
the TL location is called Segment 1. Before entering Segment
achmcul 2), the drivers tend to keep their current maneuver.
Such behaviors, then, are implemented in our autopilot agent.

TABLE I
Li1sT oF CONCEPTS IN TRAFFIC LIGHT SCENARIO
Symbol Descriptions
Root Nodes
TLR Red light
TLG Green light
TLU Unknown light
LVTL The existence of a lead vehicle with respect to the TL
location
Segment2 The ego vehicle position with respect to TL Segment

(Segment 1 or 2)
Intermediate Nodes

T Tailing situations
FR Free nde situations
TS2 Tailing situations in Segment 2

The scenario for TL situations can be described as follows: FRS2 Free ride in Segment 2
the ego vehicle enters TL situation without recognizing TL TRLS1 Tailing under red light situations in Segment 1
state, but a lead vehicle exists. TGLS1 Tailing under green light situations in Segment 1
TULS1 Tailing under unknown light situations in Segment 1
Traffic FRRLS1 Free ride under red light situations in Segment 1
Light (TL) FRGLSI1 Free ride under green light situations in Segment 1
Ego Vehicle Lead Vehicle I FRULS1 Free nide under unknown light situations in Segment 1
e = ;21' Nodes - .
; eep going
——5 t2———0o—§ t1
: egmen ‘—egmen AS Keeping safe distance with lead vehicle
° ¥ ST Stopping vehicle
Fig. 3. Traffic light situation
TABLE II
Overtaking lane LiSsT 0F CONCEPTS IN OVERTAKING SCENARIO
/ /ad@cent lane
Symbol Descriptions
ﬁ'ﬁ‘l . Root Nodes
i) S, D RS Risk of overtaking speed
[ OL Overtaking lane
BOV The ego vehicle position is still behind the overtaken
vehicle
oy — S0 el NOV The ego vehicle position is next to the overtaken vehicle
Ego lane / RLVO Risk to other vehicles in the oventaking lane
depi lare
Intermediate h&s
Fig. 4. Overtaking situation Cl Overtaken vehicle is increased its speed; road speed limit
will be violated
Overtaking situation is illustrated in Fig. 4. The lead vehicle e Risk [ vehicles in GUEIRERN lane f] detected; it is not
B = N = 3 . safe to return to the departure lane
will bc‘ovcltdkcl?, and the existence of other ve‘hlc.lcs in t‘hc o It is still behind overtaken vehicle, unsafe speed to
overtaking lane is called LVO. In the overtaking scenario, overtake
two main risks are considered, namely the risk to violate C4 Itis still behind overtaken vehicle, unsafe risk to vehicles
road speed limit during overtaking maneuver and () risks in overtaking lane
associated with LVO including the distance to LVO and the =) No overtaking risk detected
o S . ] . ) Leal Nodes 4
space to go back departure lane after overtaking. Furthermore, -
. . o . . . COT-1 Overtaking cancelled and go back to departure lane
the scenario for overtaking situation can ln described as ot G e el
follows: while next to overtaken vehicle in the overtaking lane, COT-2 Overtaking cancelled and stay in the overtaking lane
the overtaken vehicle increases its speed so the road speed KP Keep processing overtaking

limit will be violated if the overtaking maneuver is insisted.

C. FCM Settings

The list of concepts for the two scenarios can be seen
in Table I and Table II. The weighted connections among
concepts are presented in Fig. 5 and Fig. 6. The state vector
feeding the root nodes in TL scenario consists of five elements
indicating the three states of traffic light (red, green, unknown;

denoted by TLR, TLG, and TLU, respectively), the existence
of lead vehicle with respect to TL location, and TL segment
(see Table I).

There are also five elements in the state vector as the inputs
of FCM’s root nodes for overtaking scenario. Those elements




represent risk of overtaking speed (denoted by RS), overtaking
lane (denoted by OL), the ego vehicle position whether behind
(denoted by BOV) or next to (denoted by NOV) the overtaken
vehicle, and risk to LVO (denoted by RLVO) (see Table II).

In the simulation, each FCM graph will be called when a
certain situation is recognized. For example, in TL scenario,
TL situation begins when the ego vehicle is within d distance
from TL location. Furthermore, overtaking scenario starts
when an overtaking recommendation is suggested by the
ADAS and the human driver send a signal to ADAS to execute
the maneuver.

Fig. 5. The weighted relation of concepts in traffic light scenario (the weight
of yellow line = -1 and blue line = 1)

Fig. 6. The weighted relation of concepts in overtaking scenano (the weight
of yellow line = -1 and blue line = 1)

D. Results and Discussion

The final states of concepts in the TL scenario can be seen
in Fig. 7. It can be seen that the leaf node having the maximum
value is AS (0.05). Hence, it can be inferred that currently,
the ego vehicle is keeping safe distance with the lead vehicle.
Furthermore, the maximum value of intermediate nodes repre-
senting higher-level comprehension is hold by TU LS51(0.36)
which represents tailing situation with unrecognized traffic
light. Carla simulation oflcmlcd explanations based on
FHM state in TL scenario can be seen in Fig. 8.

Similarly, the final states of concepts in the overtaking
scenario are presented in Fig. 9. COT — 2 is the leaf node
having the meua]um value which indicates that current au-
topilot action’s is “overtaking cancelled and stay in overtaking
lane®. Based on Fig. 7, the rv:asmbehind such an action can
be inferred from C'1 indicating ‘Overtaken vehicle increased
its speed; road speed limit will be violated®. The gener
explanations by Carla simulator for overtaking scenario can
be seen in Fig. 10.

The Weight of Concepts in Traffic Light Scenario
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Fig. 7. The weight of concepts in TL scenano

Fig. 8.
simulator

Generated explanations in traffic light scenario using the Carla

For evaluation, we selected a baseline method from [13]
because this method provides the relation between IA’S
ecuted action and the rationale through BDI hierarchy. The
results show that the proposed method can extract critical
y information for explanations such as ‘cancel overtaking
and stay in overtaking lane®, and ‘overtaken vehicle increased
its speed®. Such extractions cannot be accomplished by the
baseline method. Furthermore, there are some limitations in
our proposed method, particularly when two concepts hold the
same weight which are recognized as the maximum values
in Eq. 4 and Eq. 5. Under such conditions, the generated

The Weight of Concepts in Overtaking Scenario
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20,00
-0,10
0,20
-0,30
-0,40

Wei
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Fig. 9. The weight of concepts in overtaking scenario




Fig. 10. Generated explanations in overtaking scenario using the Carla
simulator

goal-driven expanations may fail to indicate actual situations.
However, carefully designing and verifying the FCM can

minimize those pmblc.ms,
1
V. CONCLUSIONS

This rcscn:h proposes a new FCM-based reasoning engine
which can generate goal-driven explanations. This proposal
is useful to discl& IA’s situational awareness behind its
executed actions. The proposed method is implemented in
the autonomous driving simulator software called Carla, and
the results show its applicability and capability to generate
explanations on IA’s behaviors.
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