RASĀYAN J. Chem. Vol. 15 | No. 4 | 2773-2781 | October - December | 2022 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in # SYNTHESIS OF BiVO₄ THIN FILM AS PHOTOANODE WATER SPLITTING AND DYE DEGRADATION Gunawan^{1,⊠}, R. A. Lusiana¹, A. Haris¹, Y. Astuti¹, E. Pratista, H. Widiyandari² and W. Septina³ ¹Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, 50275, Semarang, Indonesia ²Physics Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, 57126, Surakarta, Indonesia ³National Research and Innovation Agency (BRIN), Jalan M.H. Thamrin Nomor 8, 10340, Jakarta, Indonesia [™]Corresponding Author: gunawan@live.undip.ac.id #### ABSTRACT Synthesis and characterization of BiVO₄ thin film as photoanode of PEC water splitting and degradation of methylene blue had been successfully carried out. BiVO₄ was obtained from the electrodeposition of BiOI and VO(acac)₂. Variations in potential and deposition time were carried out to obtain optimum performance results. BiVO₄ results from a potential of -0.2 V for 10 minutes gave the highest photocurrent. Characterization using XRD and SEM showed that the thin film had nanoporous properties. In addition, analysis with UV-Vis DRS obtained a band gap of 2.51 eV. The application of PEC water splitting was carried out with a tandem dual absorber system, BiVO₄ as a photoanode, and CuInS₂ photocathode providing an operating current of about 0.5 mA/cm². The effect of modification with FeOOH catalyst gave a lower photocurrent compared to using a hole-sacrificing agent. In addition, this system can also produce 99.7% degradation of methylene blue. This showed that BiVO₄ had a good potency as PEC water splitting material for hydrogen production and dye waste degradation. **Keywords:** BiVO₄, PEC Water Splitting, Dye Degradation. RASĀYAN J. Chem., Vol. 15, No. 4., 2022 #### INTRODUCTION Photoelectrochemical (PEC) water-splitting cells have attracted much attention in terms of the conversion of water to hydrogen and oxygen by solar energy. In addition, the PEC system can also decompose industrial dye waste from the resulting •OH production process. The effectiveness of the PEC system performance is determined by the semiconductor material used in the photoelectrode. BiVO₄ is a widely studied semiconductor due to its excellent optical properties, stability, and suitable band edge position.^{2,3} BiVO₄ thin films can be obtained by various methods such as spray pyrolysis^{4,5}, ultrasonic spray pyrolysis⁶, chemical vapor deposition⁷, dip coating⁸, hydrothermal⁹, and electrodeposition.^{10,11} Electrodeposition has easier preparation control and more homogeneous results.¹² In addition, efforts to improve performance have also been carried out by adding Zn-MOF¹³, Fe₂O₃¹⁴, and Fe₂O₃/NiFe-LDH¹⁵ resulting in effective performance. We intended to make a BiVO₄ semiconductor photoelectrode with FeOOH modification in this study. BiVO₄ was prepared by electrodeposition of BiOI and VO(acac)₂. The success of the synthesis was confirmed by XRD, SEM, and UV-Vis DRS characterizations. The effect of variations in potential, deposition time, and modification with FeOOH as a catalyst was carried out to obtain optimum performance results. The system was then applied to PEC water splitting with a tandem dual absorber system, $BiVO_4$ as photoanode, and $CuInS_2$ photocathode to obtain an optimum current. In addition, the system was also used as a photo fuel cell for methylene blue (MB) degradation. Thus, it is hoped that this PEC system can play a role in renewable energy and the degradation of dye waste in the environment. #### **EXPERIMENTAL** #### Synthesis of BiVO4 and BiVO4-FeOOH Thin Films BiVO₄ thin film synthesis was carried out by electrodeposition of BiOI and VO(acac)₂ on FTO as shown in Fig.-1. BiOI electrodeposition was made from 50 mL of 0.4 M KI with a pH of 1.3 adjusted with HNO₃ (conc.) then bismuth nitrate was added and the solution was stirred. After the solution was homogeneous, 20 mL of 0.23 M p-benzoquinone in ethanol was added and stirred for 5 minutes. At room temperature Ag/AgCl, Pt, and FTO as reference, counter, and working electrodes were immersed in a previously prepared solution. Before electrodeposition, FTO was cleaned with 1% detergent and sonicated for 14 minutes. After that, rinsed with deionized water and ethanol and then dried with N₂ gas. To remove organic materials, FTO was irradiated with oxygen plasma for 20 minutes. The electrodeposition was run at -0.2 V for 10 minutes. The BiVO₄ electrode was made by dropping 0.15-0.2 mL of 0.2 M VO(acac)₂ on the BiOI surface electrode, then it was air heated at 450 °C with a ramped temperature of 2 hours and 1 hour after reaching 450 °C. To remove V₂O₅ the electrode was immersed in 1M NaOH for 30 minutes. For modified BiVO₄, the synthetic FeOOH-coated BiVO₄ was prepared with 0.1 M FeSO₄ deaerated with N₂ for 1 hour, and then the BiVO₄ was electrodeposited for 10 minutes under illumination at 0.25 V (Ag/AgCl). Fig.-1: Schematic Illustration for the Preparation of BiVO₄ and BiVO₄-FeOOH #### Characterization of BiVO₄ The successful synthesis of the resulting BiVO₄ thin film was confirmed by the peak and crystallinity with X-Ray Diffraction (XRD) Shimadzu XRD-7000. Surface morphology and particle size were observed with a scanning electron microscope (SEM) JSM-6510LA 20 kV Analytical. While the characterization using Shimadzu UV-2430 UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) was used to analyze the BiVO₄ band gap with the Tauc Plot's formula¹⁵ in equation (1): $$Ahv = (hv - E_g)^{n/2}$$ (1) The value of n depends on the characteristics of the transition in the semiconductor, i.e. a direct transition (n = 1) or an indirect transition (n = 4). Measurement of the photocurrent response (J-V) of BiVO₄ was carried out with potentiostat (Hokuto Denko 110) equipped with a digital function generator 0.1 MHz-2MHz DF 1906, Japanese NF (at 0.3 Hz) and Shutter Controller F77 (Suruga Seiki) with a 3-electrode system. Ag/AgCl, Pt, and BiVO₄ as a reference, counter, and working electrodes were immersed in Na₂SO₃ solution, respectively. Measurements were made by irradiating light onto the working electrode, with a sweep potential ranging from -0.45 V to +0.4 V and a scan rate of 10 mV/s. # **Application on PEC Water Splitting** BiVO₄ thin film was measured using a potentiostat (Electrochemical Workstation CorrTest CS Studio 150) under solar simulation (AM 1.5 G, 100 mW cm⁻²) with a three-electrode system (BiVO₄ thin film, Ag/AgCl electrode, and Pt electrode as working, reference, and counter electrodes, respectively). The measurements were done from a sweep potential of ± 1.0 to ± 0.7 V (vs. Ag/AgCl) with a scan rate of 10 mV/s in phosphate buffer solution at pH 7 with or without sodium sulfite (Na₂SO₃ 0.5 M) as a hole scavenger. The resulting BiVO₄ was then set in tandem with the CuInS₂ photocathode to obtain an unbiased tandem PEC operating current. The Nernst equation is used to convert the potential obtained into a reversible hydrogen electrode (RHE) through the standard conversion formula as in equation (2)¹⁶: $$E_{(RHE)} = E_{(Ag/AgCl)} + E^{o}_{(Ag/AgCl)} + 0.059 \text{ pH}$$ (2) where $E_{(RHE)}$, $E_{(Ag/AgCl)}$, and $E^{\circ}_{(Ag/AgCl)}$ are potential at RHE, potential measured using Ag/AgCl electrode and standard reduction potential of Ag/AgCl electrode (0.1976 V at 25 °C). # Application for Methylene Blue (MB) degradation The application of BiVO₄ as a photoanode cell for the degradation of methylene blue (100 mg/L) was carried out by connecting with a platinum sheet cathode (2 cm \times 1 cm) and immersed the two electrodes in MB solution. Then, it was irradiated using a 25 Watt UV lamp (365 nm) at a distance of 20 cm. The effect of variations in treatment time and the type of electrolytes Na₂SO₄ and NaOH were evaluated. The dye concentrations before and after treatment were evaluated using a UV-Vis spectrophotometer at 662 nm. #### RESULTS AND DISCUSSION # Synthesis of BiVO₄ The preparation of BiVO₄ was carried out by electrodeposition using a solution of bismuth nitrate, potassium iodide, and p-benzoquinone to form BiOI and HNO₃. In this case, maintaining acidic conditions using HNO₃ is crucial to dissolve and stabilize Bi ions in the solution.¹⁷ The *J-t* curve profile of BiOI electrode preparation by electrodeposition is depicted in Fig.-2. Then VO(acac)₂ was dropped on BiOI to form BiVO₄. NaOH solution was used to remove impurities on the surface of the photoelectrode.¹² Fig.-2: *J-t* curve of BiOI Electrodeposition on FTO at -0.1V vs. Ag/AgCl in 0.23 M p-benzoquinone, 0.04 M Bi(NO₃)₃, and 0.4 KI Solution The success of the deposition of BiOI and BiVO₄ on FTO can be seen in Fig.-3 with brown BiOI and yellow BiVO₄ colors. This was also confirmed by a spectrum with three characteristic linear peaks 2θ at 27.65 °, 38.54 °, and 52.31°. Peaks associated with BiVO₄ were obtained at 19.79° (011), 29.65° (121), 31.18° (004), 35.29° (002), 43.85° (015), 48.35° (042), 54.64° (161), and 59.65° (123) which were simulated from monoclinic BiVO₄ (JCPDS No.14-0688).¹⁷ The peak patterns of the film samples also match those of Kalanur *et al.* and Park *et al.* ^{18,19} The peak intensity is not so strong due to the thin BiVO₄ deposition. This is also supported by the sharp peaks of the FTO glass (JCPDS No. 46-1088)²⁰, meaning that the FTO is not covered thickly by BiVO₄. Fig.-3: XRD of FTO, BiOI, and BiVO₄ Figure-4 shows an SEM image of a porous BiVO₄ film consisting of aggregated nanoparticles with irregular shapes. The morphology and structure of the BiVO₄ sample showed a lax worm-like structure consisting of dense Bi dendrites and Bi dendritic branches. ^{12,16} This SEM shows that the change in the morphology of the BiVO₄ electrode is directly affected by the change in the morphology of the Bi electrode. The different nucleation and growth rates under different depositional states may explain why the morphology of the Bi electrode changes with the applied voltage and temperature. Fig.-4: SEM images of BiVO₄ with Magnificent of (a) 15000x and (b) 35000x Bandgap determination was measured using UV-Vis DRS. Figure-5a shows the spectrum as a function of transmittance and wavelength. The UV-Vis spectrum of the BiVO₄ photoanode was shown to have a band edge absorption of about 532 nm similar to the results of Li *et al.*¹³ With the Tauc Plots equation, ¹⁵ the transmittance was used to determine the BiVO₄ band gap as shown in Fig.-5b. From this Figure, the bandgap of BiVO₄ is 2.51 eV, which is included in the standard range of several previous studies (2.3-2.6 eV). ^{12,13} Fig.-5: (a) UV-Vis Spectrum of BiVO₄ Measured at 400-800 nm, (b) Bandgap Determination of BiVO₄ # **Photocurrent Response Measurement** Photovoltametry is an efficient method to measure the photoactivity of semiconductors. By scanning the electrode in varied potentials under a chopped light, its current is measured. As a light source, white light lamps or LEDs are usually used with wavelengths in which the semiconductor absorbs a lot. The magnitude of the photocurrent represents the proportion of photogenerated minority carriers that contribute to the photocurrent. As a result, it reveals the presence of surface or bulk traps as well as the external quantum efficiency (EQE). Scan in the dark (light off) to detect pinholes or impurities in the film. The PEC property of BiVO₄ in buffer 0.5 M phosphate at pH 7 with 1 M Na₂SO₃ as hole sacrificing agent is shown in Fig.-6, sample 4 as the highest current density. In this work, eight samples were prepared and each sample had a different photocurrent and onset potential. Sample 4 shows the BiVO₄ that was prepared resulted in 0.2 V onset potential and photocurrent of 0.85 mA/cm² at 1.23V RHE. Fig.-6: PEC Properties of BiVO₄ at pH 7 using Na₂SO₃ Solution as a Hole Sacrificing Agent Illuminated Under 1.5AM chopped Irradiation The effect of heating on the BiVO₄ samples was also observed. Samples 1 and 2 were heated in an air atmosphere at 625 °C for 30 minutes as shown in Fig.-7. Figure-7a shows the effect of post-annealing at 625 °C for 30 minutes that degrades the current density and onset potential almost twice as of initial samples. Therefore, heating the sample after dropping with VO (acac)₂ also needs to be optimized due to different FTO. The stability test of BiVO₄ in phosphate buffer solution at pH 7 using 1 M Na₂SO₃ as sacrificing agent is depicted in Fig.-6b. It shows that BiVO₄ was stable for 1 hour using hole sacrificing agent, for real oxygen oxidation water splitting it needs a catalyst on its surface. Therefore, if after catalyst introduction the electrode is unstable meaning that the junction between the catalyst and the electrode is not perfect that can degrade the electrode. Fig.-7: Effect of Post Heating on Current Density and Onset Potential of BiVO₄ Illuminated Under 1.5AM Chopped Irradiation (a), Stability of BiVO₄ at 1.21V vs RHE for 60 minutes in 0.5 M Buffer Phosphate and 1M Na₂SO₃ Illuminated Under 1.5AM Irradiation. (b) The effect of electrodeposition time, voltage, and direction of illumination can be seen in Fig.-8. The Figure shows that front illumination gives a better photocurrent than back illumination for all samples prepared with different voltages and times. It means that the glass coverage of the BiVO₄ will reduce the light that goes to the BiVO₄ thin film. While the biggest photocurrent 1.97 mA/cm² was obtained for the film prepared at -0.2V for 10 minutes. Fig.-8: *J-V* Profiles of BiVO₄ Prepared with Different Voltage, Time, and the Effect of Position of Illumination to the Photocurrent Responses (backlight and front light) Illuminated Under 1.5AM Chopped Irradiation The effect of the catalyst on the BiVO₄ photoanodes is shown in Fig.-9a with different illumination (from back and front light). Figure-9b shows the real photoanode as photoelectrochemical water splitting, we can see that the photocurrent was reduced compared to using hole sacrifying agent (Na₂SO₃). In this case, bare-BiVO₄ and BiVO₄-FeOOH were measured using Na₂SO₃ and buffer phosphate pH 6, respectively. # Application of BiVO₄ Thin Film Photoanode with Photocathode of CuInS₂/In₂S₃-Pt for PEC Water Splitting The real photoelectrochemical water splitting using photoanode and photocathode can be seen in Fig.-10. We used CuInS₂ from our previous work.²² From the figure, we can see that the operating current for both electrodes was small around 0.5 mA/cm² at a potential of 0.5 V. Although the photocathode produces a high current when the onset is too negative it will reduce the operating current. In previous work²³, under the same condition, Pt/In₂S₃/CdS/CZTS photocathode and BiVO₄ photoanode produced a current density around 0.4 mA/cm² at a potential of 0.5 V. All of these performance results were still better than those of de Araújo *et al.* and Kubendhiran *et al.* ^{24,25} Fig.-9: *J-V* Profiles of BiVO₄ with FeOOH Measured at Front and Back Contact Using (a) 0.1 M Buffer Phosphate pH 6, (b) BiVO₄ and BiVO₄-FeOOH Were Measured Using Na₂SO₃ and Buffer Phosphate pH 6, Respectively, Illuminated Under 1.5AM Chopped Irradiation Fig.-10: *J-V* Profiles of BiVO₄-FeOOH and CuInS₂/In₂S₃-Pt When Measured Using Solution of Buffer Phosphate pH 6 #### BiVO₄ Thin Film Photoanode in Photo fuel (PFC) Cell for Methylene Blue Degradation A schematic description of the mechanism for both the PEC degradation of methylene blue and the splitting of water in a BiVO₄/FeOOH photoanode system is illustrated in Fig.-11. Due to the presence of the oxidation co-catalyst FeOOH thin film of the composite photoanode, the strong oxidative power of holes (h⁺) (+2.5V *vs.* RHE) generated in the valence band of BiVO₄ upon light irradiation can be efficiently transferred to surface-adsorbed water and hydroxyl groups to generate •OH radicals. In contrast, when an appropriate bias potential was applied to the BiVO₄/FeOOH photoanode, photogenerated electrons efficiently move to the external circuit so that •O₂⁻ can readily form on the cathode. As a result, the simultaneous existence of an external bias and FeOOH oxidation cocatalyst benefits the efficient separation and transfer of the photo-excited electrons and holes and thus effectively improves the degradation efficiency. The photocurrent response demonstrates the thin-film semiconductor's quality. When a semiconductor is illuminated, the higher the photocurrent, the greater the effect to create holes and electrons.^{26,27} As a result, dye degradation will be more effective. Figure-12 depicts the methylene blue (MB) percentage decrease at various light exposure durations. It demonstrates that UV light exposure results in a considerable reduction in MB degradation. At 150 minutes, the percent deterioration of MB is around 90%. Concerning our previous work²³ degradation MB using CdS, under the same conditions at a degradation time of 150 minutes, CdS was able to degrade methylene blue around 21%. From this data, it can be said that BiVO₄ is more effectively used to degrade MB compared to CdS. Fig.-11: Schematic of PEC Water Splitting Mechanism and Methylene Blue Degradation with BiVO₄/FeOOH Photoanode Fig.-12: MB Reduction Using BiVO₄ Photoanode at Varied UV-Light Exposure Durations with Na₂SO₄ Solution The addition of electrolytes increase the methylene blue degradation process as shown in Fig.-13. This is caused by an increase in the solution's conductivity. However, sodium sulfate resulted in the least deterioration, followed by NaOH. Because sodium sulfate has no reaction at the cathode and anode and just serves as an electrolyte that enhances conductivity. Meanwhile, OH⁻ anions will accelerate the decomposition of MB. When NaOH is employed as the electrolyte, the effect is amplified due to the formation of •OH radicals (from hydroxide ions) and holes in the BiVO₄ semiconductor when illuminated.²⁸ The radical is a potential oxidant that is capable to destruct MB. The results of this study showed similarities with previous studies²³, namely the highest percent degradation of methylene blue occurred in the NaOH electrolyte solution. Fig.-13: Graph of MB Degradation Using Different Electrolyte #### CONCLUSION The thin film of BiVO₄ can be obtained by electrodeposition of BiOI and followed by nanoparticle deposition using VO(acac)₂ to convert BiOI to BiVO₄. BiVO₄ prepared at potential of -0.2 V for 10 minutes gave the highest photocurrent. The direction of illumination affects the photocurrent produced. Characterization using XRD and SEM shows the thin film prepared was BiVO₄ and had a nanoporous property. BiVO₄ has a bandgap of 2.51 eV. PEC measurement was done after the deposition of FeOOH as a catalyst on BiVO₄ gave a lower photocurrent than using a hole sacrifying agent. PEC measurement using tandem photoanode and photocathode gave an operating current of around 0.5 mA/cm². BiVO₄ thin film photoanode in a photo fuel cell for methylene blue degradation was obtained the best result around 99.7 % with NaOH electrolyte. # **ACKNOWLEDGEMENT** Financial support from Diponegoro University (RPI-3, No: 474-90/UN7.P4.3/PP/2018) was acknowledged. #### REFERENCES - 1. C. M. Kalamaras, A. M. Efstathiou, *Conference Papers in Energy*, Article ID 690627, 1-9(2013), https://doi.org/10.1155/2013/690627 - 2. J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu, H. Yu, F. Xu, F. Feng, L. Jia, D. Friedrich, R. Van de Krol, and H. Wang, *Nature Communications*, **10**, 2609(2019), https://doi.org/10.1038/s41467-019-10543-z - 3. S. Wang, P. Chen, Y. Bai, J.-H. Yun, G. Liu, L. Wang, *Advanced Materials*, **30**, 1800486(2018), https://doi.org/10.1002/adma.201800486 - 4. F. F. Abdi, N. Firet, R. Van de Krol, *ChemCatChem*, **5**, 490(2013), https://doi.org/10.1002/cctc.201200472 - 5. Y. Liang, T. Tsubota, L. P. A. Mooij, R. van de Krol, *Journal of Physical Chemistry C*, **115**, 17594(2011), https://doi.org/10.1021/jp203004v - 6. M. Li, L. Zhao, L. Guo, *International Journal of Hydrogen Energy*, **35**, 7127(2010), https://doi.org/10.1016/j.ijhydene.2010.02.026 - 7. E. Alarcon-Llado, L. Chen, M. Hettick, N. Mashouf, Y. Lin, A. Javey, and J. W. Ager, *Physical Chemistry Chemistry Physics*, **16**, 1651(2014), https://doi.org/10.1039/C3CP53904K - 8. S. Hernandez, S. M. Thalluri, A. Sacco, S. Bensaid, G. Saracco, N. Russo, *Applied Catalysis A*, **504**, 266(2015), https://doi.org/10.1016/j.apcata.2015.01.019 - 9. R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, and C. Li, *Nature Communications*, 4, 1432(2013), https://doi.org/10.1038/ncomms2401 - 10. P. Hajra, S. Kundu, A. Maity, C. Bhattacharya, *Chemical Engineering Journal*, **374**, 1221(2019), https://doi.org/10.1016/j.cej.2019.06.014 - 11. M. Zhong, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Katayama, T. Yamada, and K. Domen, *Journal of Materials Chemistry A*, **4**, 9858(2016), https://doi.org/10.1039/C6TA03072F - 12. H. Bai, F. Wang, Z. You, D. Sun, J. Cui, and W. Fan, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **640**, 128412(2022), https://doi.org/10.1016/j.colsurfa.2022.128412 - 13. Y. L. Li, Y. Liu, Y. J. Hao, X. J. Wang, R. H. Liu, and F. T. Li, *Materials & Design*, **187**, 108379(2020), https://doi.org/10.1016/j.matdes.2019.108379 - 14. S. Bai, J. Han, K. Zhang, Y. Zhao, R. Luo, D. Li, and A. Chen, *International Journal of Hydrogen Energy*, 47(7), 4375(2022), https://doi.org/10.1016/j.ijhydene.2021.11.122 - 15. T. B. Li, G. Chen, C. Zhou, Z. Y. Shen, R. C. Jin, and J. X. Sun, *Dalton Transactions*, **40**, 6751(2011), https://doi.org/10.1039/C1DT10471C - 16. X. Yang, P. Jiang, Q. Yu, H. Jiang, and X. Xu, *Journal of Alloys and Compounds*, **931**,167428(2022), https://doi.org/10.1016/j.jallcom.2022.167428 - 17. J. Wang, L. Xu, T. Wang, R. Li, Y. Zhang, J. Zhang, T. Peng, *Advanced Energy Matererial*, **18**, 2003575(2021), https://doi.org/10.1002/aenm.202003575 - 18. S. S. Kalanur, Y. J. Lee, H. Seo, *Applied Surface Science*, **562**, 150078(2021), https://doi.org/10.1016/j.apsusc.2021.150078 - 19. Y. Park, K. J. McDonald, K.-S. Choi, *Chemical Society Review*, **42**, 2321(2013), https://doi.org/10.1039/C2CS35260E - 20. Z. Wang, X. Li, H. Ling, C. K. Tan, L. P. Yeo, A. C. Grimsdale, A. I. Y. Tok, *Small*, **14(20)**, 1800395(2018), https://doi.org/10.1002/smll.201800395 - 21. S. Hejazi, M. Altomare, P. Schmuki, *Zeitschrift Für Physikalische Chemie*, **234(4)**, 615(2020), https://doi.org/10.1515/zpch-2019-1479 - 22. Gunawan, A. Haris, H. Widiyandari, D. S. Widodo, W. Septina and S. Ikeda, *Rasayan Journa of Chemistry*, **14(2)**, 1322(2021), http://dx.doi.org/10.31788/RJC.2021.1425818 - 23. Gunawan, A. Haris, D. S. Widodo, L. Suyati, W. Septina, *Indonesian Journal of Chemistry*, **21(1)**, 97(2020), https://doi.org/10.22146/ijc.53131 Vol. 15 | No. 4 | 2773-2781 | October - December | 2022 - 24. M. A. de Araújo, D. Coelho, L. H. Mascaro, and E. C. Pereira, *Journal of Solid State Electrochemistry*, **22(5)**, 1539(2018), https://doi.org/10.1007/s10008-017-3774-1 - 25. S. Kubendhiran, R. J. Chung, S. Yougbaré, L. Y. Lin, *International Journal of Hydrogen Energy*, 47(63), 27012(2022), https://doi.org/10.1016/j.ijhydene.2022.06.048 - 26. N. P. Diantariani, I. Kartini, A. Kuncaka, and E. T. Wahyuni, *Rasayan Journal of Chemistry*, **13(1)**, 747(2020), http://dx.doi.org/10.31788/RJC.2020.1315597 - 27. D. I. Prajapati, H. S. Sharma, R. Ameta, *Rasayan Journal of Chemistry*, **11(3)**, 1311(2018), http://dx.doi.org/10.31788/RJC.2018.1132071 - 28. F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen, and S. Ikeda, *Journal of American Chemical Society*, **137(42)**, 13691(2015), https://doi.org/10.1021/jacs.5b09015 [RJC-7058/2022]