Inequalities in immunization coverage in Indonesia: a multilevel analysis

by Agushybana Farid

Submission date: 09-May-2023 07:47PM (UTC+0700)

Submission ID: 2088522166 **File name:** artikel.pdf (676.34K)

Word count: 6938 Character count: 39399

Rural and Remote Health

rrh.org.au

James Cook University ISSN 1445-6354

ORIGINAL RESEARCH

Inequalities in immunization coverage in Indonesia: a multilevel analysis

AUTHORS

Issara Siramaneerat¹ PhD , Assistant Professor *

Farid Agushybana² PhD, Assistant Professor

CORRESPONDENCE

*A/Prof Issara Siramaneerat issara_s@rmutt.ac.th

AFFILIATIONS

¹ Department of Social Science, Faculty of Liberal Art, Rajamangala University of Technology, Thanyaburi, Thailand

² Department of Biostatistics and Population Study, Faculty of Public Health, Diponegoro University, Semarang, Indonesia

PUBLISHED 19

25 August 2021 Volume 21 Issue 3

HISTORY

RECEIVED: 6 August 2020

REVISED: 28 April 2021

ACCEPTED: 30 April 2021

CITATION

Siramaneerat I, Agushybana F. Inequalities in immunization coverage in Indonesia: a multilevel analysis. Rural and Remote Health 2021; 21: 6348. https://doi.org/10.22605/RRH6348

This work is licensed under a Creative Commons Attribution 4.0 International Licence

ABSTRACT:

Introduction: Immunization is one of the most cost-effective methods for reducing mortality and morbidity rates in children. Children being fully vaccinated helps prevent diseases that would have great societal costs otherwise. Incomplete vaccination poses public health risks and challenges. This study examines the issue of incomplete vaccination in Indonesia. The objectives were to quantify the association between child level, parent level and community level determinants and child immunization coverage in Indonesia.

Methods: Dat 52 pre from the 2017 Indonesian Demographic Health Survey; this study included 4753 children aged 12–24 months. The survey implemented multistage random

sampling. The data were examined using descriptive statistics and multilevel logistic regression analysis.

Results: The survey found that in Indonesia, country-wide, 58.22% of children were fully vaccinated. A multilevel logistic regression model after adjusting for household wealth and proportion of public heap care centers (PHCs) showed that children of first birth order had significantly lower likelihood of being fully immunized than children of second order and higher. The parent level factors, such as age of mother at delivery, mother's education, father's occupation, antenatal care (ANC 47) d region, significantly influenced the completeness of child immunization. At the community level, the presence of a PHC significantly improved

immunization coverage.

Conclusion: The findings indicate that there is a wide range of inequality in immunization throughout the region due to socioeconomic and demographic factors. Findings revealed that complete immunization status was significantly associated with

Keywords:

child, health, immunization, Indonesia, vaccination.

birth order, age of mother at delivery, mother's education, father's occupation, ANC, region, and proportion of PHCs. This study emphasizes the need to increase healthcare centers in each community with the objective to reduce disparities in maternal and child health services.

FULL ARTICLE:

Introduction

24

Immunization is one of the most cost-effective interventions for reducing mortality and morbidity, as well as disability, in infants 1,2. The implementation of routine vaccination in infants has resulted in decreasing vaccine-preventable diseases^{3,4}. WHO has issued a policy on the Expanded Program for Immunization to prevent the population from acquiring six diseases, namely tuberculosis, diphtheria, tetanus, pertussis, measles, and poliomyelitis^{4,5}. WHO has set the goal of vaccination in a global immunization vision and strategy⁶. WHO articulated that every country should achieve the goal of 90% of children aged less than 1 year having immunization coverage nationwide and at least 80% in every district/municipality in the country by the year 20206,7. However, immunization coverage above 90% has still not been achieved and 57a problem in some countries that have very little resources8-10. With a population of more than 257 million people, Indonesia has more than 5 million children to be vaccinated every year 11,12. Although the vaccination coverage in Indonesia is increasing every year, it is still far from WHO's goal commitment⁷. Indonesia's pop 50 ion and health survey shows that, in 2012, only half (53.6%) of Indon an children had received complete basic vaccination 11; in 2017, the proportion of Indonesian children who had received complete basic vaccination increased slightly to 58.22% 12. Considering the Indonesia Health Profile in 2016, from 34 provinces in Indonesia, only 12 provinces have achieved national vaccination targets set by the government 13.

Previous literature has demonstrated that the characteristics of children, parents, and households are an important predictor of 2 ld immunization 14-16. As to some characteristics, there is conflicting evidence of the gender gap in immunization, which may reflect specific cultural differences in status. This finding revealed that boys are more fortunate than girls in India 17. Other studies have found the opposite in Nigeria, but this gender difference is not found in Swaziland 18 and Togo 19. Moreover, the variables associated with uptake of immunization are parity, child order 20,21, age of baby, and place of birth 22,23.

For parental-specific characteristics, educational attainment and literacy 6.7.20,23, employment status 22.24,25, age and age at birth 23.26, ma 68 status 19.27, and religion 19.23 have strong relationships with the vaccination status of children. These characteristics have great relevance to the extent and quality of health care mothers are able to provide to their children 26. Household characteristics are influential in their effect on children's health outcomes, which are related to economic and social status

as measured by wealth or property. The impact of these features on the immunization cove 2 be of children is unclear after studying the reflections of national differences. For example, Bugvi et al²², Olorunsaiye and Degge²³, and Singh and Parasuraman²⁸ reported inequality in the 2 cination of children in the absence of parents in the family and for children living in households with lower socioeconomic status. In contrast, Bab 2 e et al²⁹ found that the vaccination rate decreased in children of high socioeconomic status. However, the overall results of these studies indicate that there is a variety of factors related to costs and time for mothers to be able to access health facilities to vaccinate their children^{28,30}.

Moreover, a number of studies report disparities in immunization levels based on residential areas in developing countries. Previous studies reported inequality of rural children in receiving vaccines in Ethiopia³¹, Nigeria²¹, and Pakistan²². A study in India showed that vaccination rates have decreased among urban children, especially in slums and informal settlements in this area³². These differences may be due to differences in development strategies on immunization coverage.

The difference in the ability to access health facilities between villages and cities is also an important factor, where as sen in rural areas is usually lower than in cities. Previous research by Ibnouf et al³³ and Rup et al³⁴ revealed that distance to healthcare providers is an important factor in accessing immunization treatment.

The phenomenon of the incompleteness of immunization in Indonesia still needs to be investigated so that the relevant factors and causes will be known. However, from past literature reviews 15.18,19.23, studies 12 limited because they only consider household-level factors. The 3 aracteristics of the residential area play a very important role in the success of the immunization program in Indonesia because the regions of the country have 36 erent geographic and economic characteristics 24. In addition, most of the previous studies were cross-sectional studies and used only one level of logistic regression analysis 23-27, which is not enough to predict behavior affected by hierarchical structures at the community level.

This study implements the theoretical model of healthcare

5 lization by Andersen. The model consists of three main factors, namely predisposing, enabling and reinforcing characteris 5 35.

Predisposing factors are the personal preference for using services based on demographic, religious, and health-related values and illnesses. This study included predisposing factors, enabling variable and primary health center, while the dependent variable is

the completenes 42 the basic immunizations recommended by the government. The purpose of this study wa 30 identify a three-level model, including child level, parent level, and community level to analyze dete 23 nants of child immunization status in Indonesia based on the Indonesia Demographic and Health Survey 2017 (IDHS 2017).

Methods

This rese 35 drew upon data from IDHS 2017, which was accessed through the Demographic and Health Surveys (DHS) Program. The DHS is an important series of surveys that provides important information about health conditions, nutrition, and demographic indicators. Th 53 HS 2017 successfully interviewed 49250 eligible women aged 15–49 years. Multistage random sampling was used to obtain representative samples from all provinces in Indonesia. In the 2010 population census of Indonesia, there were 1970 census blocks for used as the determination of the first sampling stage, then 34 census blocks representing the number of provinces in Indonesia were selected. In the second stage, eight families were randomly selected for each selected census block. For this study, data were selected pertaining to babies, living with mothers, aged 12–24 months. Accordingly, the sample encompassed 4753 children.

For the purposes 55 halysis, children under 1 year were not included because they are not old e 27 Igh to receive all basic vaccination schedules in Indonesia. The dependent variable in this study was the immunization status of children. The immunization status of these children was further grouped into two groups: if a child was completed immunized, it will be coded as 1; otherwise, it was coded 0. Immunization was said to be complete if t 28 aby or child had received basic immunization consisting of the bacille Calmette-Guérin (BCG), diphtheria, tetanus, pertussis (DTP), polio, reasles, and hepatitis B vaccines. This routine immunization is scheduled to be received by 38 dren up to the age of 12 months 12. The sources of information (34 he immunization status of children were obtained from the Buku Kesehatan ibu dan anak (maternal and child health book) or Kartu Menuju Sehat (child health card), owned by the mother and child. This book/card is a record of the health status of mothers and children, including immunizations received by both mother and child. In Indonesia, the ownership of this book/card is higher than 87%. Accordingly, the immunization data based on these records were a reliable reference for a survey. Where there was no maternal health book or child card, and the mother was uncertain about the status of the child, the child's immunization status was categorized as incomplete³⁶.

The independent variable was chosen based on a theoretical study and a literature review that has been published. The conceptual framework used as the basis for developing the model in this study was Andersen 33 ehavioral health model 35. The children's sex was grouped into male and female. The age of children was counted in months. The birth order was defined as the list of birth from the order 1 birth in the child's family. The mother's age when giving birth (15–49 years) was categorized into groups at 5-y 64 intervals. The educational attainment of mother and father was 'no

education', 'primary level', 'secondary level', and 'higher level'. Mother occupation status was 'do not work' and 'working'. Women's wealth 1 tus refers to the five quintile groups of household wealth³⁶. The household wealth index was developed by totaling household assets and amenities (radio, television, refrigerator, bicycle, motorcycle or car) and housing characteristics (electricity, flooring, wall/roofing, water source, latrine ownership and bedroom)³⁶. It was categorized into quintiles from lowest to highest. The antenatal care (ANC) was 'received ANC', and 'no ANC'; however, for the frequency distribution, the ANC was described as the number of maternal visits to health facility.

The residential area was grouped into urban and rural areas. The proportion of *puskesmas* (public health centers) was the number of *puskesmas* compared to the population in each province, then categorized into quintiles from lowest to highest 36,37.

STATA version 14 (https://www.stata.com) application was used to analyze the data. Frequency distantion was applied to describe the respondents' characteristics. Cross-tabulation was employed to demonstrate the proportion of different categories with respect to immunization status. Multilevel logistic regression was implemented to estimate immunization status in a multivariate context. Model fitting using residuals was checked. Three model levels were categorized as chi 39 vel, parent level, and community level. The child level included child's sex, age, an 21 irth order. The parent's level included mother's age at delivery, mother's education, father's education, father's working status, ANC status, residence, and region. The provincial proportion of puskesmas was included as the third level. The data were run using xtmelogit in Stata, household wealth was introduc 14 s random factors in the multilevel analysis 38,39. The statistical results were expressed as adjusted odds ratio (OR) with t-statistic. The hypothesis was rejected at p-value greater than 0.05.

Ethics approval

32

This study has been approved as ethical resets by The Institutional Research Board of the Faculty of Public Health, 49 onegoro University, Indonesia (25/EA/KEPK-FKM/2020). Approval for the use of IDHS 2017 data was granted by the Measure Demographic and Health Surveys (DHS) Program.

Results

Descriptive statistic

65

Distribution of the study participants across the sociodemographic variables is presented in Table 1. Gender numbers of children were similar: 51.67% male and 48.33 12 male. Most (92.7%) were the first-born child. Most (52.09%) of the mothers were aged between 25 and 34 years. Of the mothers, 28.30% had vocation-level education; of the fathers, 31.41% had senior high school-level education. Almost half (49.55%) of mothers did not work outside the house, and the largest occupational group, fathers (26.76%), 63 e agricultural workers. Among the participants, 54.30% were from rural areas and 32.29% were from the Java and Bali region. Of the mothers, 81.46% had completed an ANC visit. Regarding economics, most (51.72%) of the children's families were of the

most impoverished wealth level. Most of the children's families were located near a centralized health center, with an integrated healthcare center (43.32%), village health service center (40.31%), policlinic (private clinic run by medical practitioner) (42.94%) and public health center (42.94%) at the impoverished levels.

Immunization coverage rate among study participants

The immunization cove across the sociodemographic variables is presented in Table 1. The IDHS dataset contained information for 4753 children whose mothers completed the questionnaire for married women. The proportion of full immunization was 58.22% (2767 out of 4753 children). Full immunization coverage was similar across sex (57.49% for male and 58.99% for female). In this study, first-born babies were less likely to have full immunization (57.19%) than second-born babies (70.97%). Concerning maternal age at delivery, the completed vaccination coverage rate was 51.12% for 15-24 years, 59.53% for 25-34 years and 61.46% for 35 years or older. Regarding education level, full immunization was highest among children whose mother graduated from vocational education (63.35%) and whose father graduated from vocational education (63.16%). 10 ther's occupation seems to be important. Mothers who had no occupation were less likely to have full immunization (45.99%) than mothers who have an occupation. Furthermore, full immunization was highest when fathers worked as managers and in administration (70.41%) followed by professional/technical occupation (66.50%). Moreover, complete immunization was higher among those who completed ANC (59.74%) than those who did not compete ANC (51.53%). The rate of complete immunization coverage was 55.33% in rural area settings, which was lower than in urban settings (61.65%). In terms of household wealth, incomplete immunization coverage was found to increase with the declining economic status of children's families (34.83% for the highest quintile to 47.98% for the lowest quintile). Importantly, for complete immunization there were disparities among regions.

Considering health facilities coverage as presented at Table 1. It was found that there was no clear relationship between immunization coverage and the proportion of *posyandu* (integrated health centers), *poskesdes* (village health services), and policlinics. Children living in areas with the lowest number of public health centers tend to receive less complete vaccination coverage than children in areas with those health services in the highest proportion.

However, in the multilevel analysis, the model did not include the proportion of *posyandu*, *poskesdes* and private policlinic (policlinic) due to they have multicollinearity problem. Accordingly, for the community level variable, the multilevel analysis only applied the proportion of *puskesmas*.

Multilevel logistic regression analysis

The child level included sex of child and birth order. After adjusting for wealth in Table 2, it was found that children of second birth order (OR=1.934) had a 93.4% higher likelihood of receiving complete immunization than the first child.

The pare 12 evel included sex of child, birth order, age of mother at delivery, mother and father's education, mother and father's occupation, antenatal care visit, residence and region. The education of the father and the mother's occupation were removed from the model due to collinearity problems. After adjusting for household wealth, children of mothers who were older at delivery had a 3.4% (OR=1.034) higher likelihood of receiving full immunization than children of mothers of were younger at delivery. Regarding birth order, first borns were less likely to be vaccinated than second order or higher births. Children of mothers with university (OR=3.347), vocation (OR=3.731), senior high school (OR=3.419), junior high school (OR=131) and primary (1.809) education level had an increased likelihood of receiving full immunization compared to children of mothers with no education.

After taking household wealth level into account, the likelihood of receiving full immunization among mothers who had completed ANC (OR=1.199) was 19.9% higher than among mothers who did not complete ANC. Regarding the region, children of mothers from Java and Bali (OR=2.080), Nusa Tenggara (OR=3.298), Kalimantan (OR=1.584), Sulawesi (Of 91.879), and Maluku (OR=1.680) regions had increased likelihood of receiving full immunization compared with children of mothers from the Sumatra region.

In the community level model, the proportion of PHCs (highest, high, medium, low, lowest) was added into the model. The result showed that children whose mothers were resident in communities with highest (OR=1,316), medium (OR=1.316) and low (OR=1.440) proportion of 2015 a higher likelihood of receiving full immunization compared to children of mothers residing in communities with the proportion of PHCs at the lowest level but the 'high' proportion of PHCs did not significantly influence full immunization.

Table 1: Immunization coverage across the sociodemographic variables

Variable	Immunization coverag	
	No f (%)	Yes f (%)
Sex of child	1 (70)	1 (70)
Male	1044 (42.51)	1412 (57.49
Female	942 (41.01)	1355 (58.99
Birth order		
1	1886 (42.81)	2520 (57.19
2	99 (29.03)	242 (70.97)
≥3	1 (16.67)	5 (83.33)
Age of mother at delivery (years))	
15–24	503 (48.88)	526 (51.12)
25–34	1002 (40.47)	1474 (59.53
≥35	481 (38.54)	767 (61.46)
Mean±SD	29.88 (6.48)	30.11 (6.48)
Mother's education	05 (00 00)	22 (22 27)
No education	65 (66.33)	33 (33.67)
Primary Junior high school	181 (52.31)	165 (47.69)
Senior high school	402 (48.73) 488 (41.60)	423 (51.27) 685 (58.40)
Vocation Vocation	493 (36.65)	685 (58.40) 852 (63.35)
Bachelor or higher	357 (36.96)	609 (63.04)
Father's education	001 (00.00)	000 (00.04)
No education	65 (66.33)	33 (33.67)
Primary	583 (49.79)	588 (50.21)
Junior high school	425 (41.46)	600 (58.54)
Senior high school	556 (37.24)	937 (62.76)
Vocation	98 (36.84)	168 (63.16)
Bachelor or higher	259 (37.00)	441 (63.00)
Mother's occupation		
Not working	1083 (45.99)	1272 (54.01
Professional/technical	152 (34.00)	295 (66.00)
Clerical	72 (33.96)	140 (66.04)
Sales	265 (36.50)	461 (63.50)
Agricultural worker	225 (44.47)	281 (55.53)
Industrial worker	87 (36.25)	153 (63.75)
Services	102 (38.20)	165 (61.80)
Father's occupation	440 (44 44)	445 (55 50)
Not working	116 (44.44)	145 (55.56)
Professional/technical Manager and administration	131 (33.50)	260 (66.50)
Clerical	29 (29.59) 115 (33.63)	69 (70.41) 227 (66.37)
Sales	237 (42.70)	318 (57.30)
Services	357 (43.48)	464 (56.52)
Agricultural worker	599 (47.09)	673 (52.91)
Industrial worker	402 (39.68)	611 (60.32)
ANC visit	, ,	, , , , , , , , , , , , , , , , , , , ,
Not complete	427 (48.47)	454 (51.53)
Complete	1559 (40.26)	2313 (59.74
Residence		
Urban	833 (38.35)	1339 (61.65
Rural	1153 (44.67)	1428 (55.33
Region		
Sumatra	762 (51.24)	725 (48.76)
Java and Bali	363 (33.86)	709 (66.14)
Nusa Tenggara	129 (29.12)	314 (70.88)
Kalimantan	148 (42.65)	199 (57.35)
Sulawesi	291 (39.43)	447 (60.57)
Maluku	196 (41.97)	271 (58.03)
Papua Isusahald wasith	97 (48.74)	102 (51.26)
lousehold wealth	740 (47.00)	044 /50 000
Lowest	748 (47.98)	811 (52.02)
Low	404 (44.94) 310 (40.21)	495 (55.06)
Medium	310 (40.21)	461 (59.79)
High Highest	261 (33.94)	508 (66.06)
riigilest	263 (34.83)	492 (65.17)
Proportion of integrated healthco		
Proportion of integrated healthca		603 /56 46)
Lowest	465 (43.54)	603 (56.46) 553 (55.80)
		603 (56.46) 553 (55.80) 654 (63.37)

Highest	431 (45.51)	516 (54.49)
Proportion of village hea	alth service centers (poskesdes)	
Lowest	409 (42.08)	563 (57.92)
Low	478 (50.64)	466 (49.36)
Medium	446 (40.33)	660 (59.67)
High	385 (43.26)	505 (56.74)
Highest	268 (31.87)	573 (68.13)
Proportion of policlinics		
Lowest	404 (39.38)	622 (60.62)
Low	497 (51.93)	460 (48.07)
Medium	417 (40.68)	608 (59.32)
High	377 (44.35)	473 (55.65)
Highest	291 (32.51)	604 (67.49)
Proportion of public hea	Ith centers (puskesmas)	
Lowest	495 (48.77)	520 (51.23)
Low	419 (40.84)	607 (59.16)
Medium	389 (36.39)	680 (63.61)
High	364 (43.54)	472 (56.46)
Highest	319 (39.53)	488 (60.47)

ANC, antenatal care center. SD, standard deviation.

Table 2: Multilevel logistic regression analysis of immunization coverage among children aged 12-24 months

Independent variable	Odds ratio (t-statistic)			
	Children level	Parent level	Community level	
Sex of child				
Male (ref.)	-	-	-	
Female	1.047 (0.932-1.177)	1.056 (0.937-1.190)	1.059 (0.939-1.194)	
Birth order				
First (ref.)	_	-	_	
Second	1.934*** (1.516-2.468)	1.972*** (1.531-2.540)	1.957*** (1.519-2.522)	
Third	4.058 (0.469-35.13)	4.547 (0.521-39.68)	4.562 (0.520-40.02)	
Age at delivery		1.034*** (1.024-1.044)	1.034*** (1.024-1.044)	
Mother's education				
No education (ref.)		-	-	
Primary		1.809* (1.112-2.943)	1.801* (1.106-2.932)	
Junior high school		2.131** (1.343-3.379)	2.158** (1.359-3.426)	
Senior high school		3.419*** (1.960-5.964)	3.459*** (1.980-6.042)	
Vocation		3.731*** (2.346-5.934)	3.751*** (2.356-5.972)	
University		3.347*** (2.066-5.422)	3.383*** (2.085-5.487)	
Father's education		(omitted)	(omitted)	
Mother's occupation		(omitted)	(omitted)	
Father's occupation				
Do not work (ref.)		-	-	
Work		1.217 (0.912-1.623)	1.236 (0.926-1.650)	
ANC visit				
Do not complete (ref.)		_	-	
Complete		1.199* (1.026-1.402)	1.198* (1.025-1.400)	
Residence				
Rural (ref.)		-	-	
Urban		1.024 (0.885-1.185)	1.047 (0.903-1.214)	
Region				
Sumatra (ref.)		_	-	
Java and Bali		2.080*** (1.748-2.476)	1.993*** (1.665-2.385)	
Nusa Tenggara		3.298*** (2.582-4.213)	3.115*** (2.380-4.078)	
Kalimantan		1.584*** (1.242-2.021)	1.571*** (1.222-2.019)	
Sulawesi		1.879*** (1.558-2.266)	2.094*** (1.697-2.582)	
Maluku		1.680*** (1.338-2.108)	2.011*** (1.544-2.618)	
Papua		1.345 (0.982-1.842)	1.446* (1.049-1.995)	
Proportion of PHC		,		
Lowest (ref.)			-	
Low			1.440*** (1.188-1.745)	
Medium			1.316** (1.070-1.620	
High			1.053 (0.853-1.302)	
Highest			1.290* (1.039-1.601)	
_cons	0.326*** (1.1144-1.7227)	0.07370 (0.03726-0.1457)	-2.881*** (0.0277-0.1132)	
Wald χ ² (df)	30.47 (3)	250.74 (20)	264.42 (24)	
Prob>y ²	0.0001	0.0001	0.0001	
Likelihood ratio test vs logistic regression (Prob≥χ²)	0.0001	0.0112	0.0103	

41

that 58.22% of children aged 12–24 months were fully vac 70 ted. However, the percentages found in this study are far from the WHO and UNICEF's global immunization goals, vision and strategies, which outline a goal of 80% coverage. Therefore, finding out how socioeconomic factors and community characteristics affect the status of child immunization is crucial to improving vaccination coverage in Indonesia.

Vaccination coverage in Indonesia appears weakly ass 4 ated with region after accounting for all confounders. Although birth order, age of mother at delivery, mother's education, father's occupation, ANC and proportion of PHC were strongly associated with vaccination coverage, the marginally significant result obtained for the region does not mean that the influence of location on vaccine uptake should be excluded. On a regional basis, it was found that geographical differences and the size of the population were significantly related to achieving complete immunization coverage 40,41. The highest coverage of complete immunization was found in the Java and Bali region, whereas the lowest complete immunization coverage was in the Sumatra region. In Indonesia, gagraphical conditions make some areas isolated or remote, and other areas are difficult to reach because of the limited availability of roads and public transport 40,41. Low immunization coverage is often found in distant, rural areas, and where there are religious restrictions and fear of side effects from vaccines⁴¹. Some research has found that certain regions have their own beliefs about health and that it is a challenge for health professionals to try to look after mothers' health42,43. This is also caused by a lack of knowledge and awareness about child immunization 44,45. For this reason, in this difficult area, an innovative approach is needed to achieve immunization targets. The needs of supply and demand must be met. For example, outreach programs with small mobile units have great potential to reach remote areas in the mountains. The use of local transportation to reach remote areas in Bangladesh has been highly recommended⁴⁴. This approach is very appropriate for reaching children far from health facilities 44-48 so that the overall, low coverage of immunization in children can be addressed and the numbers improved⁴⁹.

As birth order increased, the likelihood of the child being vaccinated increased 50,51. This finding contradicts other findings that an experience of immunization side effects in vaccinated babies might have triggered parents' negative perceptions about vaccination⁵². If a first child expe 60 ces side effects from vaccination, parents may be less likely to vaccinate their second child. Therefore, the chances of a second child being vaccinated are reduced 53. Moreover, it was found that older mothe 7 are more likely to complete the vaccination of children 51,52; children of older mothers are more likely to be fully immunized than children of younger mothers, who are often unable to make their own decisions. Young 46 others have to discuss the decision with family members. Older mothers are more likely to have parenting experience and are 115 e likely to have knowledge of the child's health in general 54. The importance of maternal education child health is internationally recognized. Children with highly educated mothers are more likely to be fully vaccinated 51,54. Older mothers

have possibly been e 66 sed to more immunization information, and have experience in terms of access to informa 620 and better health services 15,18,27. Knowledge and experience of access to health services is what drives the completeness of child immunization^{41,49}. Also, highly educated mothers tend to have better knowledge and understanding of general health and the benefits of immunization⁵⁰. As previous studies have shown, level of education is significantly related to the level of public health awareness^{51,52}. This can be explained by those having better education having a better understanding of immunization recommendations⁴⁶. The studies also found that children of mothers who routinely do health checks tend to have complete immunization compared to those who do not do health checks during pregnancy and postpartum; this is because mothers who do the checks receive more complete information or health education. Danchin et al's research revealed that information about immunization was received by mothers while pregnant⁵³. It was also found that maternal education affects whether mothers remember whether their children have been vaccinated, and whether the vaccination card is ke 17 or the child 50. This means that education improves mothers' understanding of the importance of vaccination and child health care. Therefore, ensuring access to education for women in remote areas should reduce the disparity in vaccination 54,55.

The completeness of immunization was confirmed as significantly correlated with ANC^{45,56}; mothers who received more information about the benefits of vaccines tended to 30 rease their access to vaccination services for their babies. So, it can be concluded that the ANC visit is not only beneficial to the health of the mother, but it encourages the mother to have a broad insight about health; for example, the benefits of vaccination⁵⁷. A mother's visit during a pregnancy check will increase her interaction with health workers, and this communication can increase the flow of information about health, in this case, the benefits of vaccination, reducing the fear of side effects⁵⁸.

The findings provide very good input for public health worldwide. Public health status is determined not only by modern treatments, but also by effective, widespread public education. In addition, government stakeholders can be encouraged by the findings to increase community education and further increase the dissemination of health information to the wider community 40.41. Furthermore, it is suggested that one way the Indonesian government could increase the coverage of universal child immunization would be by long-term investment in increasing parental education 54.

The results of the study also show the importance of the quality of service received by mothers during their ANC and postpartum delivery. If the quality of service is good, health workers will provide the necessary health education and information about immunization ^{51,54}.

Considering the community leve 54 terminants, an increase in the number of public health centers was associated with higher vaccination coverage. Children whose mothers reside in the close vicinity of healthcare centers were strongly positively associated

with immunization coverage. Previous research has shown that increasing the number of health centers in a village to 1 per 1000 people increases the likelihood of children being fully vaccinated 54%⁵⁹. Similarly, several studies⁶⁰⁻⁶² have found that complete immunization of children is related to the use and effectiveness of maternal health services. However, immunization coverage is still incomplete, particularly among children born at home^{63,64}.

The findings, consistent with regional analyses and their relationship to vaccination coverage, underscore the need to bridge the gap in vaccination inequality in Indonesia. The public healthcare center (*puskesmas*) is a community health service facility in Indonesia under the Ministry of Health. Postpartum midwifery visits are important to the integrity of the immunization status. Indonesia's midwifery recruitment program in villages across the country is relevant in this context, aiming to bring maternal and child health services to remote areas and disadvantaged communities 63,64 even when those communities are hard to reach 65.

Regulation of the Minister of Health of the Republic of Indonesia No. 43 of 2019 states that *puskesmas* play a role in fostering health cadres in running *posyandu* (integrated health centers)^{65,66}. If a *posyandu* has active cadres, promotional and preventive health activities are also expected to run well. One of the important activities in *posyandu* is the immunization program⁶⁷. *Posyandu* cadres have a role in encouraging mothers and parents to bring their children to the *posyandu* to get immunization⁶⁷. Therefore, cooperation and *posyandu* guidance carried out by the *puskesmas* is very important. Moreover, the role of the village midwives may also be related to *posyandu* activity. Vaccination in a *posyandu* is mostly introduced and performed by village midwives^{67,68}. Village midwives also have a role in outreach programs such as special vaccinations during home visits for maternal health. This outreach program may have accelerated the immunization coverage⁶⁹.

This study also reveals that the number of healthcare facilities managed by the community is very meaningful in achieving complete immunization. Accordingly, it is recommended that the Indonesian government incre 69 the availability and the number of health facilities 70. Moreover, the ease of access to immunization in various health service facilities should also be prioritized.

From the results of this research and 45 cussion, it is recommended that the government increase the number of health facilities, especially in areas that have low immunization coverage.

Likewise, mothers' knowledge about immunization needs to be improved so that they pay more attention to health during pregnancy and to immunization for their children. In addissi it is hoped that the government can design priority programs to improve the quality of health services and health education, especially for people with low education.

Conclusion

This study's findings indicated that there is a wide range of inequality in immunization throughout Indonesia due to socioeconomic and demographic facto 4 Complete immunization status was significantly associated with birth order, age of mother at delivery, mother's education, father's occupation, ANC, region and prop 44 on of public healthcare centers. This study emphasizes the need to increase the number of health centers in 13 community with the objective to narrow disparities in maternal and child health services. It is recommended that the Indonesian government provide guidelines for immunization and implement relevant policies, including monitoring and evaluation of immunization, especially for regions with low vaccination coverage levels. This conclusion is made in the context of strengthening the role of the community in the fight against diseases preventable by vaccines in developing countries, which is critical to the success of immunization and the general health of society.

Limitations

Although this study has articulated an important finding, it has some limitations. This study did not cover the time of giving vaccination, in which the time of giving vaccination is related to immunization effectiveness. In terms of data collection, this study ranges to 2 years before data collection, which can result in a bias recall on the fact that the first the study could not be directly implemented in developing health policy for particular areas.

Acknowledgements

The research team highly appreciates a mangala University of Technology Thanyaburi, Thailand, and the Faculty of Public Health, Diponegoro University, Indonesia, for all the support during the writing process. Furthermore, the team thanks all colleagues who provided suggestion 37 d input towards the concept of this article. The researchers also thank the Measure DHS for granting permission to use data from Indonesia's Demographic and Health Survey results.

REFERENCES:

- 1 Omer SB, Salmon DA, Orenstein WA, deHart P, Halsey N. Vaccine refusal, mandatory immunization, and the risks of vaccine preventable diseases. *New England Journal of Medicine* 2009; 360: 1981-1988. DOI link, PMid:19420367
- 2 Nyarko P, Pence B, Debpuur C. Immunization status and child survival in rural Ghana. Population Research Division Working Paper No. 147. New York: Population Council, 2001. DOI link
- **3** Black RE, Morris SS, Bryce J. Where and why are 10 million children dying every year? *Lancet* 2003; **361:** 2226-2234. **DOI link**
- **4** WHO UNICEF. Microplanning for immunization service delivery using the Reaching Every District (RED) strategy. New York: WHO, 2009.
- **5** Challenges in global immunization and the Global Immunization Vision and Strategy 2006-2015. *Weekly Epidemiological Record* 2006; **81(19):** 190-195.

- **6** WHO. *Immunization Coverage*. WHO Fact Sheet. 2016. Available: web link (Accessed 28 January 2020).
- **7** WHO. Sustainable Development Goals (SDGs) Immunization indicator selection. WHO Fact Sheet. 2017. Available: web link (Accessed 7 January 2020).
- 8 Berhane Y. Universal childhood immunization: a realistic yet not achieved goal. *Ethiopian Journal of Health Development* 2008; 22(2): 146-147.
- **9** Kidane T, Yigzaw A, Sahilemariam Y, Bulto T, Mengistu H, Belay T, Bisrat F et al. National EPI coverage survey report in Ethiopia, 2006. *Ethiopian Journal of Health Development* 2008; **22(2):** 146-215. DOI link
- 10 Mutua MK, Kimani-Murage E, Ettarh RR. Childhood vaccination in informal urban settlements in Nairobi, Kenya: who gets vaccinated? *BMC Public Health* 2011; 11(1): 6. DOI link, PMid:21205306
- 11 Statistics Indonesia. *Indonesia Demographic and Health Survey* 2012 Final Report, FR275. Jakarta: Statistics Indonesia. Available: web link (Accessed 9 January 2020).
- **12** Statistics Indonesia. *Indonesia Demographic and Health Survey 2017 Final Report, FR275.* Jakarta: Statistics Indonesia. Available: web link (Accessed 9 January 2020).
- 13 Ministry of Health of the Republic of Indonesia. *Indonesia Health Profile 2016*. Available: web link (Accessed 9 January 2020).
- **14** Directorate General for Disease Control and Environmental Health. *Comprehensive Multi Year Plan National Immunization Program Indonesia*. 2010. Available: web link (Accessed 11 January 2020).
- **15** Maharani A, Tampubolon G. Has decentralisation affected child immunisation status in Indonesia? *Global Health Action* 2014; **7:** 24913. DOI link, PMid:25160515
- **16** Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals. *Lancet* 2017; **388(10063):** 3027-3035. **DOI** link
- 17 Corsi DJ, Bassani DG, Kumar R, Awasthi S, Jotkar R, Kaur N, et al. Gender inequity and age-appropriate immunization coverage in India from 1992 to 2006. *BMC International Health and Human Rights* 2009; 9(1): S3. DOI link, PMid:19828061
- **18** Tsawe M, Moto A, Netshivhera T, Ralesego L, Nyathi C, Susuman AS. Factors influencing the use of maternal healthcare services and childhood immunization in Swaziland. *International Journal of Equity in Health* 2015; **14(1):** 32. DOI link, PMid:25889973
- 19 Landoh DE, Ouro-Kavalah F, Yaya I, Kahn AL, Wasswa P, Lacle A, et al. Predictors of incomplete immunization coverage among one to five years old children in Togo. *BMC Public Health* 2016; 16(1): 968. DOI link, PMid:27618851
- **20** Egondi T, Oyolola M, Mutua MK, Elung'ata P. Determinants of immunization inequality among urban poor children: evidence from Nairobi's informal settlements. *International Journal of Equity in Health* 2015; **14(1):** 24. DOI link, PMid:25889450

- 21 Antai D. Gender inequities, relationship power, and childhood immunization uptake in Nigeria: a population-based cross-sectional study. *International Journal of Infectious Diseases* 2012; 16(2): e136-145. DOI link, PMid:22197748
- **22** Bugvi AS, Rahat R, Zakar R, Zakar MZ, Fischer F, Nasrullah M, et al. Factors associated with non-utilization of child immunization in Pakistan: evidence from the demographic and health survey 2006-07. *BMC Public Health* 2014; **14(1):** 232. **DOI** link, PMid:24602264
- 23 Olorunsaiye CZ, Degge H. Variations in the uptake of routine immunization in Nigeria: examining determinants of inequitable access. *Global Health Communication* 2016; 2(1): 19-29. DOI link
- **24** Ataguba JE, Ojo KO, Ichoku HE. Explaining socio-economic inequalities in immunization coverage in Nigeria. *Health Policy and Planning* 2016; **31(9):** 1212-1224. DOI link, PMid:27208896
- 25 Wado YD, Afework MF, Hindin MJ. Childhood vaccination in rural southwestern Ethiopia: the nexus with demographic factors and women's autonomy. *Pan African Medical Journal* 2014; 17(Suppl 1): 9. DOI link
- **26** Antai D. Gender inequities, relationship power, and childhood immunization uptake in Nigeria: a population-based cross-sectional study. *International Journal of Infectious Diseases* 2012; **16(2):** e136-145. DOI link, PMid:22197748
- 27 Awasthi A, Pandey CM, Singh U, Kumar S, Singh TB. Maternal determinants of immunization status of children aged 12-23 months in urban slums of Varanasi, India. *Clinical Epidemiology and Global Health* 2015; 3(3): 110-116. DOI link
- 28 Singh PK, Parasuraman S. 'Looking beyond the male-female dichotomy' sibling composition and child immunization in India, 1992-2006. Social Science and Medicine 2014; 107: 145-153. DOI link, PMid:24607676
- 29 Babirye JN, Engebretsen IM, Rutebemberwa E, Kiguli J, Nuwaha F. Urban settings do not ensure access to services: findings from the immunisation programme in Kampala Uganda. *BMC Health Services Research* 2014; 14(1): 111. DOI link, PMid:24602169
- **30** Pande RP. Selective gender differences in childhood nutrition and immunization in rural India: the role of siblings. *Demography* 2003; **40(3)**: 395-418. DOI link, PMid:12962055
- **31** Abadura SA, Lerebo WT, Kulkarni U, Mekonnen ZA. Individual and community level determinants of childhood full immunization in Ethiopia: a multilevel analysis. *BMC Public Health* 2015; **15(1):** 972. DOI link, PMid:26415507
- **32** Kusuma YS, Kumari R, Pandav CS, Gupta SK. Migration and immunization: determinants of childhood immunization uptake among socioeconomically disadvantaged migrants in Delhi, India. *Tropical Medicine and International Health* 2010; **15:** 1326-1332. DOI link, PMid:20955496
- **33** Ibnouf A, Van den Borne H, Maarse J. Factors influencing immunisation coverage among children under five years of age in Khartoum State, Sudan. *Official Journal of the South African Academy of Family Practice/Primary Care* 2007; **49(8):** 14c-f. DOI link

- **34** Rup KP, Manash PB, Jagadish M. Factors associated with immunization coverage of children in Assam, India: over the first year of life. *Journal of Tropical Paediatrics* 2008; **52(4):** 249-252. DOI link, PMid:18450821
- **35** Andersen R. *A behavioral model of families' use of health services*. Research Series No. 25. Center for Health Administration Studies. Chicago: University of Chicago Press, 1968.
- **36** National Population and Family Planning Board (BKKBN), Statistics Indonesia (BPS), Ministry of Health, Indonesian Cycling Federation (ICF). *Indonesia Demographic and Health Survey 2017*. Jakarta: National Population and Family Planning Board, 2018.
- **37** Statistics Indonesia . *Welfare indicators 2017*. Jakarta: Statistics Indonesia (BPS), 2017.
- **38** Long JS, Freese J. *Regression models for categorical dependent variables using Stata.* 2nd ed. College Station, Texas: Stata Press, 2006
- **39** Indonesian Ministry of Health. *Ministerial Decree No* 1611/MENKES/SK/XI/2005 on the Implementation of Immunization. Jakarta: Kementerian Kesehatan Republik Indonesia, 2005.
- **40** Antai D. Inequitable childhood immunization uptake in Nigeria: a multilevel analysis of individual and contextual determinants. BMC Infectious Diseases 2009; **9:** 1. DOI link, PMid:19930573
- **41** Babirye JN, Engebretsen IMS, Makumbi F, Fadnes LT, Wamani H, Tylleskar T, et al. Timeliness of childhood vaccinations in Kampala Uganda: a community-based cross-sectional study. *PLoS One* 2012; **7:** 1-6. DOI link, PMid:22539972
- **42** Babitsch B, Gohl D, von Lengerke T. Re-revisiting Andersen's Behavioral Model of Health Services Use: a systematic review of studies from 1998-2011. *GMS Psycho-Social-Medicine* 2012; **9:** Doc11
- **43** Etana B, Deressa W, Angela G, Zulfiqar B, Lulu B, Aly G, et al. Factors associated with complete immunization coverage in children aged 12-23 months in Ambo Woreda, Central Ethiopia. *BMC Public Health* 2012; **12:** 566. DOI link, PMid:22839418
- **44** Haque SMR, Bari W. Positive role of maternal education on measles vaccination coverage in Bangladesh. *International Journal of Psychology and Behavioral Sciences* 2013; **3(1):** 11-17.
- **45** Antai D. Faith and child survival: the role of religion on childhood immunization in Nigeria. *Journal of Biosocial Science* 2009; **41:** 57-76. DOI link, PMid:18471339
- **46** Rahman M, Obaida-Nasrin S. Factors affecting acceptance of complete immunization coverage of children under five years in rural Bangladesh. *Salud Publica de Mexico* 2010; **52:** 134-140. DOI link, PMid:20485870
- **47** Oleribe O, Kumar V, Awosika-Olumo A, Taylor-Robinson SD. Individual and socioeconomic factors associated with childhood immunization coverage in Nigeria. *Pan African Medical Journal* 2017; **26**: 1-14. DOI link, PMid:28690734
- **48** Schoeps A, Ouédraogo N, Kagoné M, Sie A, Muller O, Becher H. Socio-demographic determinants of timely adherence to BCG, Penta3, measles, and complete vaccination schedule in Burkina Faso. *Vaccine* 2013; **32(1):** 96-102. DOI link, PMid:24183978

- **49** Gatchell M, Thind A, Hagigi F. Informing state-level health policy in India: the case of childhood immunizations in Maharashtra and Bihar. *Acta Paediatrica* 2008; **97:** 124-126. DOI link, PMid:18076721
- **50** Schaffer SJ, Szilagyi PG. Immunization status and birth order. *Archives of Pediatrics and Adolescent Medicine* 1995; **149(7):** 792-797. DOI link, PMid:7795771
- **51** Xeuatvongsa A, Hachiya M, Miyano S, Mizoue T, Kitamura T. Determination of factors affecting the vaccination status of children aged 12-35 months in Lao People's Democratic Republic. *Heliyon* 2017; **3(3):** e00265. DOI link, PMid:28367510
- **52** Bbaale E. Factors influencing childhood immunization in Uganda. *Journal of Health, Population and Nutrition* 2013; **31:** 118-129. DOI link, PMid:23617212
- **53** Danchin MH, Costa-Pinto J, Atwell K, Willaby H, Wiley K, Hoq M, et al. Vaccine decision-making begins in pregnancy: correlation between vaccine concerns, intentions and maternal vaccination with subsequent childhood vaccine uptake. *Vaccine* 2017; **36(44)**: 6473-6479. Available: web link (Accessed 19 May 2020). DOI link, PMid:28811050
- **54** Mellington L, Cameron N. Female education and child mortality in Indonesia. *Bulletin of Indonesian Economic Studies* 1999; **35(3):** 115-144. DOI link, PMid:12349697
- **55** Fernandez R, Rammohan A, Awofeso N. Correlates of first dose of measles vaccination delivery and uptake in Indonesia. *Asian Pacific Journal of Tropical Medicine* 2011; **4:** 140-145. **DOI link**
- **56** Konstantyner T, Taddei JA, Rodrigues LC. Risk factors for incomplete vaccination in children less than 18 months of age attending the nurseries of day-care centres in Sao Paulo, Brazil. *Vaccine* 2011; **29:** 9298-9302. DOI link, PMid:22015393
- **57** Rowe R, Calnan M. Trust relations in health care the new agenda. *European Journal of Public Health* 2006; **16:** 4-6. DOI link, PMid:16446297
- **58** Dixit P, Dwivedi LK, Ram F. Strategies to improve child immunization via antenatal care visits in India: a propensity score matching analysis. *PLoS One* 2013; **8:** e66175. **DOI link**, PMid:23824555
- 59 Maharani A, Tampubolon G. Has decentralisation affected child immunisation status in Indonesia? *Global Health Action* 2014; 7: 24913. DOI link, PMid:25160515
- **60** Titaley CR, Dibley MJ, Roberts CL. Factors associated with underutilization of antenatal care services in Indonesia: results of Indonesia Demographic and Health Survey 2002/2003 and 2007. *BMC Public Health* 2010; **10:** 485. DOI link, PMid:20712866
- 61 Adedire EB, Ajayi I, Fawole OI, Ajumobi O, Kasasa S, Wasswa P, et al. Immunisation coverage and its determinants among children aged 12-23 months in Atakumosa-west district, Osun State Nigeria: a cross-sectional study. *BMC Public Health* 2016; 16: 905. DOI link, PMid:27578303
- **62** Mbengue MAS, Sarr M, Faye A, Badiane O, Camara FBN, Mboup S, et al. Determinants of complete immunization among Senegalese children aged 12-23 months: evidence from the

demographic and health survey. *BMC Public Health* 2017; **17:** 630. DOI link, PMid:28683781

- Bell J, Curtis SL, Alayon S. *Trends in delivery care in six countries*. DHS Analytical Studies No. 7. Maryland: ORC Macro and International Research Partnership for Skilled Attendance for Everyone (SAFE), 2003.
- Indonesian Ministry of Health. *Regulation of the Minister of Health regarding public health centers.* [In Indonesian] No. 43. Jakarta: Indonesian Ministry of Health, 2019.
- Prihatiningsih A, Sriatmi A, Fatmasari EY. The role of posyandu cadres, pre-concept women's integrated services. *Jurnal Riset Kesehatan* 2020; **9(2):** 88-93. DOI link
- National Population and Family Planning Board, Statistics Indonesia, Ministry of Health, The DHS Program. *Indonesia Demographic and Health Survey 2017*. Jakarta, 2018. Available: web link (Accessed 16 May 2020).

- Rini P, Jemmi. Role cadre posyandu preconception women in integrated services in the area of work health Sapaya District Bungaya Gowa Regency. *Indonesian Journal of Health Promotion* 2019; **2(2):** 148-158. DOI link
- United Nations Group of Experts on Geographical Names. *11th United Nations Conference on the Standardization of Geographical Names*. New York: UNHQ, 8-17 August 2017. Available: web link (Accessed 13 May 2020).
- **69** Yanti NLGW, Widyorini E, Nurhayati BR. Midwife's role in the implementation of the Health Minister's Regulation Number 66 of 2014 through Stimulation, Early Detection and Intervention Activities to Child's Growth Disruption at Public Health Centers of Yogyakarta City. *Jurnal Hukum Kesehatan* 2019; **5(1)**. DOI link
- Mahendradhata Y, Trisnantoro L, Listyadewi S, Soewondo P, Marthias T, Harimurti P, et al. The Republic of Indonesia Health System Review. *Health Systems in Transition* 2017; **7(1).** Available: web link (Accessed 12 May 2020).

This PDF has been produced for your convenience. Always refer to the live site https://www.rrh.org.au/journal/article/6348 for the Version of Record.

Inequalities in immunization coverage in Indonesia: a multilevel analysis

	ALITY REPORT				
SIMILA	9% ARITY INDEX	13% INTERNET SOURCES	16% PUBLICATIONS	4% STUDENT PA	\PERS
PRIMAR	Y SOURCES				
1	bmjope Internet Sour	n.bmj.com			1 %
2	Enemar coverag	suman, Charles k. "Inequalities i ge in Ghana: evic position analysis 2018	n child immur dence from a	nization	1%
3	journals Internet Sour	s.plos.org			1 %
4	the patt	ajian-Tilaki. "Fact tern of breastfee nnals of Human	eding in the no		1%
5	aps.jou	rnals.ac.za			1 %
6	cyberle Internet Sour	ninka.org			<1%

7	Submitted to London School of Hygiene and Tropical Medicine Student Paper	<1%
8	Submitted to University of Adelaide Student Paper	<1%
9	scholarworks.waldenu.edu Internet Source	<1%
10	Eugene Budu, Abdul-Aziz Seidu, Ebenezer Agbaglo, Ebenezer Kwesi Armah-Ansah et al. "Maternal healthcare utilization and full immunization coverage among 12–23 months children in Benin: a cross sectional study using population-based data", Archives of Public Health, 2021	<1%
11	discovery.dundee.ac.uk Internet Source	<1%
12		<1% <1%
11 12 13	wiredspace.wits.ac.za	<1% <1% <1%
_	wiredspace.wits.ac.za Internet Source www.biomedcentral.com	

in Ethiopia: A Systematic Review and Meta-Analysis", Global Pediatric Health, 2020

Publication

16	Submitted to King's College Student Paper	<1%
17	Submitted to Mount Kenya University Student Paper	<1%
18	Delmaifanis Delmaifanis, Kemal Siregar, Artha Prabawa. "mHealth Conceptual Model for Providing Quality Antenatal Care in Health Centers during the Coronavirus Disease 2019 Pandemic", Open Access Macedonian Journal of Medical Sciences, 2021 Publication	<1%
19	Submitted to University of Southern Queensland Student Paper	<1%
20	Submitted to University of Northampton Student Paper	<1%
21	www.medrxiv.org Internet Source	<1%
22	Fahmi Arifan, Sri Winarni, Gentur Handoyo, Asri Nurdiana, Afkar Nabila Rahma H, Sri Risdiyanti. "An analysis of antioxidants, organoleptics and hedonics with variations of boiling time in Jasmine tea and Jasmine root	<1%

tea a study on Kaliprau, Pemalang", Journal of Physics: Conference Series, 2018

Publication

23	Maria Gayatri, Gouranga Lal Dasvarma. "Predictors of early initiation of breastfeeding in Indonesia: A population-based cross-sectional survey", PLOS ONE, 2020 Publication	<1%
24	Thiago M. Santos, Bianca O. Cata-Preta, Andrea Wendt, Luisa Arroyave et al. "Religious affiliation as a driver of immunization coverage: Analyses of zero-dose vaccine prevalence in 66 low- and middle-income countries", Frontiers in Public Health, 2022 Publication	<1%
25	Submitted to University of New South Wales Student Paper	<1%
26	Hyunjeong Shin, Young-Joo Park, Mi Ja Kim. "Predictors of maternal sensitivity during the early postpartum period", Journal of Advanced Nursing, 2006 Publication	<1%
	life e di e consella la conse	
27	Internet Source	<1%
28		<1 % <1 %

29	Diddy Antai. "Gender inequities, relationship power, and childhood immunization uptake in Nigeria: a population-based cross-sectional study", International Journal of Infectious Diseases, 2012 Publication	<1%
30	Evindiyah Prita Dewi, Amal Chalik Sjaaf, Baequni Boerman. "How Much Time Do Midwives Spend on Antenatal Care? Assessment of Antenatal Care (ANC) in Six Districts/cities of West Java-indonesia", Research Square Platform LLC, 2021 Publication	<1%
31	Sanjeev Singh, Damodar Sahu, Ashish Agrawal, Lakshmanan Jeyaseelan, Ambily Nadaraj, Meeta Dhaval Vashi. "Coverage, quality, and correlates of childhood immunization in slums under national immunization program of India: A cross- sectional study", Heliyon, 2019 Publication	<1%
32	repository.stikim.ac.id Internet Source	<1%
33	researchonline.jcu.edu.au Internet Source	<1%
34	www.ijmsph.com Internet Source	<1%

- "Advanced Techniques for Modelling Maternal <1% 35 and Child Health in Africa", Springer Science and Business Media LLC, 2014 **Publication** Abel Negussie, Wondewosen Kassahun, Sahilu <1% 36 Assegid, Ada K. Hagan. "Factors associated with incomplete childhood immunization in Arbegona district, southern Ethiopia: a case control study", BMC Public Health, 2016 Publication Abrham Wondimu, Qi Cao, Derek Asuman, <1% 37 Josué Almansa, Maarten J. Postma, Marinus van Hulst. "Understanding the Improvement in Full Childhood Vaccination Coverage in Ethiopia Using Oaxaca-Blinder Decomposition Analysis", Vaccines, 2020 **Publication** Beatriz Raffi Lerm, Yanick Silva, Bianca O. <1% 38 Cata-Preta, Camila Giugliani. "Inequalities in child immunization coverage: potential lessons from the Guinea-Bissau case", Cadernos de Saúde Pública, 2023 Publication
- Ibidolapo T. Ijarotimi, Akinola A. Fatiregun,
 Oluwapelumi A. Adebiyi, Olayinka S. Ilesanmi,
 Olufemi Ajumobi. "Urban–rural differences in
 immunisation status and associated
 demographic factors among children 12-59

<1%

months in a southwestern state, Nigeria", PLOS ONE, 2018

Publication

40	Priyanka Dixit, Junaid Khan, Laxmi Kant Dwivedi, Amrita Gupta. "Dimensions of antenatal care service and the alacrity of mothers towards institutional delivery in South and South East Asia", PLOS ONE, 2017 Publication	<1%
41	Sarah V Williams, Tanimola Akande, Kaja Abbas. "Systematic review of social determinants of childhood immunisation in low- and middle-income countries and equity impact analysis of childhood vaccination coverage in Nigeria", Cold Spring Harbor Laboratory, 2022 Publication	<1%
42	files.eric.ed.gov Internet Source	<1%
43	www.dovepress.com Internet Source	<1%
44	www.mdpi.com Internet Source	<1%
45	www.panafrican-med-journal.com Internet Source	<1%
46	A. Schweitzer, G. Krause, F. Pessler, M. K. Akmatov. "Improved coverage and timing of	<1%

childhood vaccinations in two post-Soviet countries, Armenia and Kyrgyzstan", BMC Public Health, 2015

Publication

Abebaw, Degnet. "SOCIO-ECONOMIC DETERMINANTS OF CHILD IMMUNIZATION IN RURAL ETHIOPIA: Socio-economic Determinants of Child Immunization", Journal of International Development, 2013.

<1%

Publication

Annabell C. Kantner, Sibylle Herzig van Wees, Erik M. G. Olsson, Shirin Ziaei. "Factors associated with measles vaccination status in children under the age of three years in a post-soviet context: a cross-sectional study using the DHS VII in Armenia", BMC Public Health, 2021

<1%

Publication

Devi Mediarti, Rosnani Rosnani, Tintin Sukartini, Hidayat Arifin, Yulia Kurniawati. "Coverage and factors associated with complete polio vaccination among Indonesian children aged 0–18months", Children and Youth Services Review, 2020

<1%

Publication

Lilis Maghfuroh, Diah Eko Martini, Heny Ekawati, Harnina Samantha Aisyah, Lilin Turlina. "The Impact of the COVID-19

<1%

Pandemic on Vaccination of Children Aged 0– 12 Months in Indonesia", Open Access Macedonian Journal of Medical Sciences, 2022

Publication

Mohammad Zen Rahfiludin, Septo Pawelas Arso, Tri Joko, Alfa Fairuz Asna, Retno Murwani, Lilik Hidayanti. "Plant-based Diet and Iron Deficiency Anemia in Sundanese Adolescent Girls at Islamic Boarding Schools in Indonesia", Journal of Nutrition and Metabolism, 2021

<1%

- Publication
- Moubassira Kagoné, Maurice Yé, Eric Nébié, Ali Sie, Anja Schoeps, Heiko Becher, Olaf Muller, Ane Baerent Fisker. "Vaccination coverage and factors associated with adherence to the vaccination schedule in young children of a rural area in Burkina Faso", Global Health Action, 2017

<1%

Quraish Sserwanja, Linet M. Mutisya, Milton W. Musaba. "Mass Media Exposure and Timing of Antenatal Care Initiation among Women in Uganda", Research Square Platform LLC, 2021

<1%

- Publication
- 54

Sidiki Sangaré, Oumar Sangho, Lancina Doumbia, Hannah Marker et al. "Concordance

<1%

of vaccination status and associated factors with incomplete vaccination: a household survey in the health district of Segou, Mali, 2019", Pan African Medical Journal, 2021

Yohannes Kinfe, Hagazi Gebre, Abate Bekele.
"Factors associated with full immunization of children 12–23 months of age in Ethiopia: A multilevel analysis using 2016 Ethiopia Demographic and Health Survey", PLOS ONE, 2019
Publication

aut.researchgateway.ac.nz

	Publication	
56	aut.researchgateway.ac.nz Internet Source	<1%
57	cdr.lib.unc.edu Internet Source	<1%
58	equityhealthj.biomedcentral.com Internet Source	<1%
59	file.scirp.org Internet Source	<1%
60	jscholarship.library.jhu.edu Internet Source	<1%
61	pure.rug.nl Internet Source	<1%
62	read.dukeupress.edu Internet Source	<1%

63	www.ncbi.nlm.nih.gov Internet Source	<1%
64	www.researchsquare.com Internet Source	<1%
65	www.texilajournal.com Internet Source	<1%
66	"Health Inequities in India", Springer Science and Business Media LLC, 2018 Publication	<1%
67	Bright Opoku Ahinkorah, Richard Gyan Aboagye, Abdul-Aziz Seidu, James Boadu Frimpong et al. "Prevalence and predictors of oral rehydration therapy, zinc, and other treatments for diarrhoea among children under-five in sub-Saharan Africa", PLOS ONE, 2022 Publication	<1%
68	Bryan J. Vonasek, Francis Bajunirwe, Laura E. Jacobson, Leonidas Twesigye et al. "Do Maternal Knowledge and Attitudes towards Childhood Immunizations in Rural Uganda Correlate with Complete Childhood Vaccination?", PLOS ONE, 2016 Publication	<1%
69	Risnawati Tanjung, Eka Lestari Mahyuni, Nelson Tanjung, Oster Suriani Simarmata,	<1%

Jernita Sinaga, Helfi R. Nolia. "The Spatial

Distribution of Pulmonary Tuberculosis in Kabanjahe District, Karo Regency, Indonesia", Open Access Macedonian Journal of Medical Sciences, 2021

Publication

<1_%

Putri Herliana, Abdel Douiri. "Determinants of immunisation coverage of children aged 12-59 months in Indonesia: a cross-sectional study", BMJ Open, 2017

Publication

Exclude quotes Off

Exclude bibliography

Exclude matches

Off

Inequalities in immunization coverage in Indonesia: a multilevel analysis

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	