

Global Journal of Environmental Science and Management (GJESM)

Homepage: https://www.gjesm.net/

ORIGINAL RESEARCH PAPER

Calorific and greenhouse gas emission in municipal solid waste treatment using biodrying

B. Zaman¹, W. Oktiawan¹, M. Hadiwidodo¹, E. Sutrisno¹, P. Purwono^{2,*}

¹Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia ²Center Science and Technology, IAIN Surakarta, Pandawa, Pucangan, Kartasura, Indonesia

ARTICLE INFO	ABSTRACT		
Article History: Received 10 April 2020 Revised 31 July 2020 Accepted 09 August 2020	BACKGROUND AND OBJECTIVES: Urban intensity and activities produce a large amount of biodegradable municipal solid waste. Therefore, biodrying processing was adopted to ensure the conversion into Refuse Derived Fuel and greenhouse gases METHODS: This study was performed at a greenhouse, using six biodrying reactors made from acrylic material, and equipped with digital temperature recording, blower, and flow meters. The variations in airflow (0, 2, 3, 4, 5, 6 L/min/kg) and the bulking agent (15%) were used to evaluate calorific value, degradation process and GHG emissions.		
Keywords: Biodrying Greenhouse gas			
MSW Refuse derived fuel Temperature	 FINDINGS: The result showed significant effect of airflow variation on cellulose content and calorific value. Furthermore, the optimum value was 6 L/min/kg, producing a 10.05% decline in cellulose content, and a 38.17% increase in calorific value. Also, the water content reduced from 69% to 40%. The CH4 concentration between control and biodrying substantially varied at 2.65 ppm and 1.51 ppm respectively on day 0 and at peak temperature. Morever, the value of N2O in each control was about 534.69 ppb and 175.48 ppb, while the lowest level was recorded after biodrying with 2 L/min/kg airflow. CONCLUSION: The calorific value of MSW after biodrying (refuse derived fuel) ranges from 4,713 – 6,265 cal/g. This is further classified in the low energy coal (brown coal) category, equivalent to <7,000 cal/g. Therefore, the process is proven to be a suitable alternative to achieve RDF production and low GHG emissions. 		
DOI: 10.22034/gjesm.2021.01.03		©2021 GJESM. All rights reserved.	
P	G		
NUMBER OF REFERENCES	NUMBER OF FIGURES	NUMBER OF TABLES	
43	11	2	
*Corresponding Author: Email: <i>purwono.ga@gmail.com</i> Phone: +8564 0674048 Fax: +6271 781516			

Note: Discussion period for this manuscript open until April 1, 2021 on GJESM website at the "Show Article.

CONTENTS

Volume 7, Number 1, Winter 2021

1.	Geographic information system and process-based modeling of soil erosion and sediment yield in agricultural watershed	
	G.R. Puno; R.A. Marin; R.C.C. Puno; A.G. Toledo-Bruno (PHILIPPINES)	
2.	The effect of short-term of fine particles on daily respiratory emergency in cities contaminated with wood smoke	15
	R. Torres; N. Baker; G. Bernal; F. Peres; A. Maldonado; D.D. Caceres (CHILE/ USA/ PUERTO RICO/ BRASIL)	
3.	Calorific and greenhouse gas emission in municipal solid waste treatment using biodrying	33
	B. Zaman; <mark>W. Oktiawan</mark> ; M. Hadiwidodo; E. Sutrisno; P. Purwono (INDONESIA)	
4.	Willingness of end users to pay for e-waste recycling	47
	H.T.T. Nguyen; CH. Lee; RJ. Hung (VIETNAM/ TAIWAN)	
5.	The ability of layered double hydroxides for nitrate absorption and desorption in crop and fallow rotation	59
	M. Mohammadi; A. Mohammadi Torkashvand; P. Biparva; M. Esfandiari (IRAN)	
6.	Genotoxic potential induced by marine cage culture	79
	F. Turan; M. Turgut (TURKEY)	
7.	Palm oil plantation waste handling by small holder and the correlation with the land fire	89
	H. Herdiansyah; E. Frimawaty (INDONESIA)	
8.	The effects of glucose, nitrate, and pH on cultivation of Chlorella sp. Microalgae	103
	H. Nouri; J. Mohammadi Roushandeh; A. Hallajisani; A. Golzari; S. Daliry (IRAN)	
9.	Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals	117
	R.E. Caraka; R.C. Chen; Y. Lee; T. Toharudin; C. Rahmadi; M. Tahmid; A.S. Achmadi (TAIWAN/ SOUTH KOREA/ INDONESIA)	
10.	Application of environmental bacteria as potential methods of azo dye degradation systems	131
	G. Manjarrez Paba; R. Baldiris Ávila; D. Baena Baldiris (COLUMBIA)	