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1. Introduction

Some regencies/cities in Central Java Province are the producers of horticultural crops in Indonesia,
for example, Brebes which is the largest area of shallot producer in Central Java, while the others,
such as Cilacap and Wonosobo are the areas of cayenne commodities production. Currently, cayenne
is a strategic commodity and has broad impact to Indonesian economic development. Modelling the
cayenne production is necessary to predict the commodity need for society. The price of this
commodity fluctuates randomly and the market players should consider carefully about the possible
market risks happening. Based on the reality, the decreasing of cayenne production will cause the
increasing of society's basic needs price, and finally it will affect the inflation level at that area or even
that country.

The cayenne production data are classified into time series data. To date, autoregressive integrated
moving average (ARIMA) is the most popular model in time series analysis which proposed by Box-
Jenkins. General procedure of ARIMA modelling covers identification, parameter estimation, model
diagnostic and forecasting [1]. This procedure is very simple when implemented for linear and
stationary data. When time series data have heteroscedasticity effect, generalized autoregressive
conditional heteroscedasticity (GARCH) model can be implemented.

According to the statements above, this research focused on ARIMA modelling by considering the
effect of autoregressive conditional heteroscedasticity (ARCH) to study about cayenne production in
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Central Java. The empirical study of ARIMA-GARCH is implemented for constructing model of
cayenne production in Central Java based on data from January 2003 to November 2015.

2. Box-Jenkins ARIMA Model

Box-Jenkins methodology for ARIMA modelling of time series data includes some procedures that
consist of identification, parameter estimation, model verification, and forecasting based on the best
model which has been built [1]. Nonseasonal Box-Jenkins ARIMA model for stationary process
consists of autoregressive order-p or AR(p), moving average order-q or MA(q) and mixed model
which written as ARMA(p.g). While nonseasonal ARIMA model for nonstationary process consists of
ARIMA(p.d0), ARIMA(0O.d,q) and ARIMA(p, d. q) where p: level of autoregressive, q: level of
moving average and d: level of differencing.

2.1 Box-Jenkins Method

Box-Jenkins method for time series analysis uses backshift operator B that defined as BZ, =Z,_, and
difference operator V defined as VZ, =Z, —Z, | =(1—B)Z,. These operators have the relation of
V =1— B and satisfy the rules of elementary algebra. The statistics process in the form of

#(B)Z, = O(B)a,
is often used in practice, where ¢ and # as polynomials, and {a,} is a sequence which generated by
white noise. Sequence {a,}are independent and distributed normally with mean 0 and constant

. 2
variance g .

2.2 Autoregressive (AR) Process
The general formula of autoregressive process order-p or AR(p) is:

7 =00Z, 02, 3 et ¢pz,_p Sa) (D
where a, ~ N(0,5.) . It can be seen that Z, is regressed to p previous values Z,_, . k=12,--.p.
The equation (1) can be written as:

#B)Z, =aq,
where ¢(B)=1-@B~—...—¢,B"is called an operator of AR(p). The requirement for stationary
AR(p) process is all the roots of @(B) =0 are located outside the unit circle. AR(p) process is always
invertible.

2.3 Moving Average (MA) Process
Moving average order g or MA(q) can be written as

Z =a,+0a,_, +..+ an,_q (2)

where a, are independent and distributed normally with mean 0 and variance a‘j . The equation (2)
can be written as
Z, =68(B)a, (3)
where 6(B)=1+6 B +...+0,B" . Equation (3) can also be written as
0 (B)Z, =a, or
T(B)Z, = q,

MA(q) process is invertible if the value of coefficient 7 is convergent series which is if and only if all
the roots @#(B) =0 located outside the unit circle.

(4
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24 Mixed Process Autoregressive Moving Average (ARMA)
An equation gained from AR and MA model is a mixed model written as
Zr = ¢] erl + é}zrfl +.o.t ¢pzrfp + ar + glarfl +o..t gqarfq (5)
and called ARMA(p.q) model. Model (5) can be written as:
#(B)Z, = 0(B)a, .
ARMA model is stationary and invertible, when roots of ¢(B) =0 and #(B) =0 are located outside
the unit circle.

2.5 Nonstationary Time Series
Stationary time series is rarely found in real life, but stationarity is useful assumption while studying
time series. There are a lot of things that cause nonstationarity of time series. Some examples of
dataset which include in this category are stock exchange, number of sales in a corporation, exchange
rate. Expenses time series like consumption expenses for old goods, government expenses, or
corporate expenses for capital goods are also nonstationary time series.

Making the difference between the consecutive values of the nonstationary time series,
homogeneous is a way to create time series data to be stationary. Furthermore, if it is defined into

sequence of difference W, = Z, — Z | the general process of ARIMA can be written as
W, = 9’61“4—1 +¢2m—2 +---+¢p“/r—p +a, + 91“;—1 +..+0,a (6)

g g
Equation (6) can be seen as autoregressive integrated moving average (ARIMA). In many cases, the
first difference of the time series is still nonstationary, may be the second difference is stationary. By
writing the difference degree as d. the ARIMA process can be drawn as dimension p, d and q. So,
ARIMA(p.d.q) means nonstationary time series difference is taken to d into stationary.

3. ARCH/GARCH Model

“Volatile” behaviour in financial market is usually referred as “volatility”. Volatility has been the
important concept in theoritical and practical of finance, such as risk management, portfolio selection
and others [2]. In statistical study, it is usually measured using variance or standard deviation. Engle in
1982 developed a volatility model for financial time series data which konwn as autoregressive
conditional heteroscedasticity (ARCH) [3] and the more flexible model as konwn generalized
autoregressive conditional heteroscedasticity (GARCH) has been developed by Bolerslev [4].

3.1 ARCH Model

It Zr is a stationary time series, like financial return, Zr can be stated as its mean added by a white
noise if there is no significant autocorrelation in Z, itself, which is:
Z, =u +a, (7
where 4, as mean process of Z, and a, =&,v, with v, ~N(0,l).
Seeing volatility clustering or conditional heteroscedasticity, assumed that Var, ,(a,) = O',2 with
Var,_,(®) stated the conditional variance with information until (t-1) were given, and
crf2 =a, + a]af_] +...+ apaf_ﬂ (8)
Because @, has mean 0 and Var,_,(a,) = E (af) = 0',2 , hence, equation (7) becomes
af =a, +a]af’_] +..+ apaf_P +u, 9
where i, = a,2 —-E, (o.:r2 )is a white noise with mean 0. Model (7) and (8) called as ARCH model [3].
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3.2 ARCH Effect Test

Before estimating the ARCH model for time series data, testing for presence of ARCH effect in the

residual should be done. If there is no ARCH effect in the residual, ARCH model is not conditional.

The ARCH model can be expressed as AR model in the squared residual components as the eq. (9).
Lagrange Multiplier (LM) test is a simple procedure for testing the ARCH effect. The steps of

testing can be constructed in the regression eq. (9) as follows.

Null hypothesis: &, =&, =---=a, =0(no effect of ARCH).

Statistical test: LM =TR?* ~ ,‘gz (p)where T : sample size and R*is measured from regression of
residual (9).

3.3 GARCH Model
If testing for ARCH effect is significant, the ARCH models could be estimated and the estimated

volatility o, can also be obtained based on the past information. In practice, it often acquired large
enough of lag p, the number of parameters to be estimated in the model are also quite large.

The proposed model that is more parsimonious to replace the AR model (8) with the following
formulation [4].

i 4
7 2 7
o =a,+ 2 aa,_, + 2 B, (10$)
i=1 =1

With all the coefficients @; >0 (i =0l,...,p) and 5, >0 (j=1,...,g) to ensure that the conditional

variance c:b',2 is always positive. Equation (10) together with (7) is known as generalized ARCH or

GARCH (p, q). If g=0 then GARCH model becomes ARCH model.

4. Procedure of ARIMA Modelling

4.1 Model Identification

Testing for stationarity of time series data can be identified by time series plot or autocorrelation
function (ACF) plot. The time series data are said stationary if, the plot of ACF shows dies down or
exponential decays, whereas if the ACF drops slowly, the time series is said nonstationary [5]. If the
time series is not stationary, the data should be stationarized by doing differencing.

By changing the original time series to the differencing time series, ARMA model can be identified
for the differencing data. Differencing data should be done continuously until the time series data at a
specific level becomes stationary. When the stationary time series is achieved, the order of ARIMA
model can be identified.

4.2 Parameter Estimation
Estimation of the parameters for tentative model can be done by using least squares (OLS) or
maximum likelihood estimator (MLE).

4.3 Model Verification
The model estimated in step 4.2 can be verified by considering its residual properties, that its residual
should be independent and distributed normally with mean 0 and its variance is constant. Ljung-Box
statistics Q can be applied for testing appropriateness of this model. The test statistics Q is as follow
[6]:
mo,.2

0, =nn+2y D2
k=1 11—
where rf (e) : autocorrelation of residual in the k-th lag,

n : number of residual,
m : number of time lag included in testing.
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If at the residual analysis indicated that the residual is not independent and the variance is not constant
(heteroscedasticity) so ARCH effect with LM test detection should be done. If ARCH effect is
detected, ARCH/GARCH model estimation for that variance should be done.

44 Prediction/Forecasting
Prediction for one step ahead or k-steps ahead can be done by the constructed model. The performance
of model can evaluated by using AIC, BIC or RMSE criterion.

5. Results and Discussion

The data which implemented in this research are monthly data from January 2003 until November
2015 of cayenne production in Central Java. Data were collected from https://jateng.bps.go.id. The
procedure of ARIMA modelling for the dataset are as follows.

5.1 Model Identification

Model of ARIMA is identified by plotting time series data, plotting autocorrelation function (ACF),
and plotting partial autocorrelation function (PACF). The time series plot, ACF, and PACF are
illustrated in Figure 3. Based on ACF plot can be said that data is stationary in mean because ACF plot
form sinus wave. PACF plot shows that lag-1 and lag-3 are significant different to zero, so the subset
ARIMA model in this case ARIMA([1,3],0,0) can be identified as an appropriate model. For
determining order of subset ARIMA can be evaluated by using overfitting concept [7].
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Figure 1. (a). Time series plot, (b). ACF plot, (¢). PACF plot of cayenne production data
5.2 Parameter Estimation

The results of parameter estimation based on the monthly data for tentative model of ARIMA
([1,3]1.0,0) are shown in Table |. From those results can be explained that the constant term,
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coefficient of lag-1, and coefficient of lag-3 significantly influential to the data, because the p-value
related to each parameter is less than level of significant 5%.

Table 1. Estimated parameter of ARIMA([1,3],0,0)

Variables Coefficient Standard Error t-statistic Prob.

Constant 53065.860 6872.827 7721 0.0000
AR(1) 0.974 0.073 13.374 0.0000
AR(3) -0.292 0.097 -3014 0.0026

5.3 Model verification

Residual analysis should be done when the tentative model has been estimated. The aim of residual
analysis is to verify the appropriate model. Verification of model covers testing for independece of
residual, normality and homoscedasticity. Testing for independence of residual using Durbin Watson
(DW) yielded statistics DW equal to 2.428. So the residual satisfies the assumption of independency.
According to normality test of residual using Jarque-Bera test shows that p-value is less than
significance level 5% (p-value=0.00) (see the explanation of Figure 4). It can be concluded that
residual is not distributed normally with mean zero and constant variance..

30
— Series: Residuals
Sample 1 131
254 _ Observations 131
204 Mean 90.37786
Median -1098.676
Maximum 89286.34
15 Minimum -08245.54
Std. Dev. 20564.77
104 ] Skewness 0.340952
Kurtosis 9.331954
5 Jarque-Bera  221.3825
Probability 0.000000
UF!"'I""I""I" "'|""|‘!:!:!|'!:!
-100000 -75000 -50000 -25000 0 25000 50000 75000

Figure 2. Normality test of residual

The results of testing for homoscedasticity using LM-test conclude that the variance of residual is not
constant. So that the residual of model have ARCH effect (see Table 5).

Table 2. ARCH effect test for Residual

Variable Coefficient Standard Error t-statistic Prob.
o 309000000 31643067 9759 0.000
a, 0.201 0.099 2033 0042

The estimated model can be written as:

Z, =53065.86+0974Z, , —0.292Z, . +aq, (11
witha, ~ N(O,Gf); O'f = 309000000+0.201af_] .
Equation (11) is ARIMA model with ARCH effect. Furthermore ARIMA([1,3]0,0)-GARCH(1,0) is

an appropriate model for forecasting.

54 Prediction/Forecasting

Prediction results of model (11) based on in sample data shows value of root mean squares error
(RMSE), Akaike Information Criterion (AIC), and Schwars Information Criterion (SIC)
consecutively is equal to 20567; 28.37 and 28.44. The result of prediction using the model is shown
in Figure 5.
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Figure 3. Plot in sample data and prediction result using AR([1,3],0,0)-ARCH(1)

6. Conclusion

Based on the results and discussion, the best model for monthly data from January 2009 up to
November 2015 of cayenne production in Central Java is ARIMA([1.3.00)-GARCH(1,0). The

formula of the model is as follow:

Z, =53065.86+0974Z,_,-0292Z, _, +a,
witha, ~ N(0,67); o] =309000000+0.201a],
using RMSE criterion. The RMSE value of the prediction is 20567.
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