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Abstract—The aim of this study is to develop modeling
procedure in Adaptive Neuro Fuzzy Inference System (ANFIS)
for forecasting time series data. The focus of the development is
selecting optimal ANFIS model by using the statistical inference
based on Lagrange Multiplier (LM) test. To date, there are
several methods for selecting optimal ANFIS model, but there is
no research which applied LM-test procedure for selecting
inputs, determining membership functions (clusters) and
generating fuzzy rules, especially for forecasting time series data.
Theoretical study related to the proposed procedure is supported
by simulation study. The simulation datasets which generated
based on Autoregressive Integrated Moving Average (ARIMA),
ARIMA-Outlier and Seasonal ARIMA models are used for
constructing ANFIS models and for evaluating the proposed
algorithm. The performance of ANFIS models are evaluated by
minimizing RMSE value.
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L. INTRODUCTION

Neural network (NN), fuzzy inference system (FIS) and its
hybrid have been developed to analyze non-stationary and
non-linear time series data [1,2,3]. ANFIS model is one of the
hybrid methods which combines NN and fuzzy system [4,5].
There are many investigations on time series by using ANFIS
and NN such as: short-term wind-speed forecasting for Egypt's
East-Coast [6]; forecasting gold price changes [7]; prediction
of stock market return [8,9,10]; modeling hydrological time
series [11]; forecasting EPS of leading industries [12];
constructing model of financial volatility [13,14,15]and
exchange rate prediction [16,17]; electricity consumption [ 18].
All of those research concluded that the performance of
ANFIS is better than the classical ARIMA model.

The crucial issues in time series data modeling using
ANFIS are 1) How to identify and select the input variables;
2) How to determine the number of membership functions and
3) How to determine the numbers of fuzzy rules. To date,
there is no researcher which develop the statistical inference
using LM-test for selecting model in ANFIS. Based on
selecting model in NN developed by White (see Unders and
Korn [19]), this research is focused on procedure development
of selecting model in ANFIS based on LM-test. Organization
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of the remaining parts of this article are as follows: Section 2
explain the definition of ANFIS architecture. Section 3
describes LM-test procedure for ANFIS modeling. Section 4
discusses simulation study. The conclusion of the research is
summarized on section 5.

I1. ANFIS ARCHITECTURE
An ANFIS architecture consists of fuzzification (layer-1),
fuzzy inference system (layer-2 and layer-3), de-fuzzification
(layer-4) and aggregation (layer-3). The NN architecture
which used in the architecture has 5 fixed-layers [5].
Generally, the architecture for time series modeling with p
mput Z, ,, Z, ..., 2

,_, and one output Z, by assuming rule-

bases of Sugeno order-one with m rules is as follow.
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The architecture of ANFIS (see Fig.1) consist of 5 layers that
can be described as follows [1].
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Fig. I Architecture ANFIS with p inputs, one output and m rules.

Layer-1: Each node in the first layer is adaptive with a
parametric activation function. The output layer is
membership degree of mputs: y, (Z,,)» p, (Z,)>""

v (Z2) T

Ha (Zip)s by (Zip)s "0 py (Z,)°
For instance, Gaussian membership
(gaussmf) can be written as:
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function

J=12-m, k=12, pic,:
and a,: scaling parameters. The parameters are
called as premise parameters.

Layer-2: Each node in second layer is fixed node and its

output is the product of incoming signal that uses
operation AND. The output of each node

represents firing strength W, .

P
Wy :HPA‘_(Z;—:.)’ J=120mm
k=1 '

Layer-3: Each node in the third layer is fixed node that
computes ratio of firing strength of j-th rule relative
to summation of firing strengths of rules.

W,
= i

‘v‘..l' = "

2w
=1

Layer-4: Each node in the fourth layer is adaptive node
and each node has output:

WZO =W (0,2, +0,Z, ,++0,Z

-1 -

*+6,0)
Layer-5: Every node in the fifth layer is fixed node that

adds all of incoming signal. The output of the whole
network is equal to output of fifth layer.

Z = i?(-‘?,. Z o +0uZ 0 2 +0,) (2)
=1
The general model of ANFIS is given as follow.
ZI = ii‘gﬂt (W.I'Zr—& ) + igmwi [3)
k=1 =

II. PROPOSED PROCEDURE OF MODEL SELECTION
The proposed procedure for selecting model in ANFIS
using Lagrange Multiplier (LM) test are focused on selecting
input variables, determining number of membership function
sand deter mining number of fuzzy rules.

A. Inference Procedure for Selecting Input Variable
Zr—l D =5 z

number of membership functions, then the restricted model for
this case is as follow.

Given p input variables Z p With m

-1

m P m
Z,=2 2.0,(WZ, )+3.0,W, +, (4)
j=1 k=1 =1
where £ ~ N (O,Jf), and unrestricted model for one input
addition is:
Zr—( I}
m pet m
2,23 30,72, + 30,7, 0, (5)
=p= =

where v, ~ N(0, O’i)

The formulation of null hypothesis of adding variables test can
be written as:
H, :'gl{p—l] = 'g:(p—n =-=0

mi psl) = 0
The steps of hypothesis test are as follows:

Step-1: Estimate the parameters of restricted model

9[159135“‘-‘91.115910593159335‘“593;159}‘]’“"&"[-'gnrﬁf'""gmpf'gmﬂ‘
Step-2: Determining residual:
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Step-3:Regress £, with: a constant, (WZ,), (WZ_,), ... ,
@2, )82, ). W (BZ.).(0Z,)s e
FZ,)s (0Z, )y Wos o s (B,Z)s (FuZa)s oo s

m

w,Z._,), w,Z_,,), w, and calculate uRf_, It was

"

known that LM =nR§~zj[15]. Ho is rejected when
nR: >y (a) .

B. Determining Number of Membership Functions (MFs)

When the ANFIS model with optimal inputs have been
established, adding number of clusters can be executed using
LM-test to get a model with optimal number of clusters. If
given pinput 7z _ . Z ,, ..,Z  the unrestricted model for

Ll £F

adding one membership function is
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msl p I
Z,=3 230,02 ,)+3 0, (6)

j=l k=l il
Where v, ~ N(0,7) The null hypothesis for adding variables
(W,m—lzr—l ) ? (W,m—lzr—l] ? v (W

AR be formulated as
follows:

Hy: O(m_nl =Wz == 9

(sl p = 0.
Hypothesis test algorithm based on LM-test are as follows.
Step-1: Estimate the parameters of restricted model:

6,

[R L]
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Step-2: Determine the estimate of residual:

m m

ér =Z, —Zié,k(ﬁfzr k) +Zéfﬂgf
=l

=l k=1

Step-3:Regress the residual érwitll a constant, (w,Z, ), W, ;
j=12mik =12 p, and calculate LM =nR;. 1t is
known that LM =nR? ~ ;. Null hypothesis Ho is rejected

when nR} >y ().

C. Determining Number of Fuzzy Rules

In general, if given Z, . Z,,...Z, , as inputs, and m

MFs, then minimum number of rules is m and the maximum
number of rules is m” . In this research genfis3 method is used
for modeling, the number of rules are given based on the
number of optimal MFs. So, the number of rules are equal to
the number of optimal MFs.

IV. SIMULATION STUDY

The aim of this simulation study is to prove that LM-test
procedure for selecting inputs, determining number of
membership functions and number of fuzzy rules in
constructing optimal model can work well. In this part, three
types of data are generated for constructing ANFIS model and
selecting the optimal model using LM-test procedure. Three
types dataset are generated based on AR(2), AR(2)-Outlier
and seasonal models. Input variables are seclected based on
LM-test procedure. The significant inputs are selected based
on LM statistics or p-value. For simulated AR(2) data resulted
lag-1(Z, ) and lag-2(Z,,) are seclected as input ANFIS
because p-value is less than significance level ¢ =0.05 (5%) .
By using the same procedure AR(2)-O data resulted lag-1 (
Z, ). lag-2 (Z,_,) and for scasonal data resulted lag-2 (Z, ,

). lag-4 (Z, ) as significant inputs (see TABLE ).

The estimated models of simulated datasets can be written
LM-test procedure is also applied to determine the number of
membership functions of the datasets. For AR(2) simulated
data, this test resulted two membership functions because LM
statistics is less then significance level. Whereas for AR(2)-O
data have two membership functions and for each input of
seasonal data divided into three membership functions.

TABLE L RESULTS OF LM-TEST FOR DETERMINING INPUT
Model Input R,l Rf__ LM p-value
Z, 0.561 -
AR(2) Z,, 0.149 -
z= 0.001 -
Zgpe, . - 0171 27915 0.00
Z, 0.939 -
Z, 0.863 -
AR(2)-0 2E 0.792 -
Z.2 2, - 0.066 11.947 0.00
Zg7, . - 0.012 2131 034
2 2.1%10° - -
.. 0.90 - -
SARIMA Z, 4 0.79 - -
£, 0.91 - -
a2,y - 032 57.29 0.00
TABLE 1I. RESULTS OF LM-TEST FOR DETERMINING NUMBER OF
MEMBERSHIP FUNCTIONS
Model Input Nﬁ;ﬁ‘;_ir R LM p-value
AR(2) Z, 2, 2 0171 27915 0.00
3 1.22x107°" 2 161073 1
AR(2)}-0 Z,,.Z, 2 0.066 11.947 0.00
3 6.67=10° 0.001 1
SARIMA  Z,,.Z,, 2 0219 39.52 0.00
3 0.298 53.68 0.00

The complete results of determining number of membership
functions can be seen in TABLE II.

as follows:

1) Estimated model for AR(2) dataset

Z,=09176 W, ,Z,, ~0.3033 W,Z, , —0.24337 w,, 7
+1.35227W, ,Z,_, —0.6701W,,Z, , +0.19377,,
where
- W,

IE

£
i

v o L .(ZJ_‘+3.2680]:+(Z_:+2.?83IJ:1
e 3.2986 3.4977

v —exp| LI 2 —27744 3+ Z_,-22708 V| |.
= =R T T 326m 3.3071

The root mean squares error (RMSE) value based on (7) is
4.965.
2) Estimated model for AR(2)-0 dataset

Z,=08077w, 7, —0.1797 #,,Z, , +4.6323 7, + ®)
0.9711%,,Z

L —0.3775W,,Z,_, +0.00997, ,
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where

— W
Wi=3 3
ZHJJJ
=l
w, —exp| -1 (Za-.—'2-6403]2+[Za.3—12.5|96]2
E B e 57711
1(z,,+02505Y [z, +02313Y]].
W, =exp| —— | L
' 2 6.7046 6.8907

By using (8), the value of root mean squares Error (RMSE)
is 2.262.

3) Estimated model for seasonal dataset

Z, =0.82807,,Z, , —0.21437 7, , +161 4606w, +

(9

0.1333w,,Z,, - 0.11075%W, ,Z,_, +524.0359%,, +
0.1253W, 7, , - 0.24347,,Z, , +307.72967,,
where
Ww
W, =5
2w
=
[ l{ z,_:—4m_0901]3 (2,4—401.0128]:”,
=exp| —— +
2 40.0353 ) 403605
1 -293,7533]3 (ZH -504,3353]3 .
L =expl—— == +
2 43.1570 49.4041
_ 1-504.7904}2+(z,_4-29s_5950J2 .
53.7904 45732

Based on (9), the value of root mean squares error (RMSE)
1s 250.393.

Performance of the optimal model for forecasting in
sample data are given as Fig. 2.

The optimal model gave the accurate result of prediction,
because the predicted value are very close to data.

L.

Based on simulation study, LM-test procedure can be
applied for selecting input, determining number
membership functions and number of fuzzy rules in ANFIS
for forecasting time series data. So the proposed procedure can
work well for selecting model in ANFIS.

CONCLUSION
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Fig. 2. Prediction of in samplesimulated data; (a) AR(2), (b) AR(2)-0,
(c) SARIMA
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