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stract

ge)iging third molar development is commonly used for age assessment in sub-adults. Current staging techniques are, at most,
semi-automated and rely on manual interactions prone to operator variability. The aim of this study was to fully automate
the staging process by employing the full potential of deep learning, using convolutional neural networks (CNNs) in every
step of the procedure. The dataset used to train the CNNs consisted of 400 panoramic radiographs (OPGs), with 20 OPGs
per developmental stage per sex, staged in consensus between three observers. The concepts of transfer learning, using pre-
trained CNNs, and data augmentation were used to mitigate the issues when dealing with a limited dataset. In this work,
a three-step procedure was proposed and the results were validated using fivefold cross-validation. First, a CNN localized
the geometrical center of the lower left third molar, around which a square region of interest (ROI) was extracted. Second,
another CNN segmented the third molar within the ROL Third, a final CNN used both the ROI and the segmentation to
classify the third molar into its developmental stage. The geometrical center of the third molar was found with an average
Euclidean distance of 63 pixels. Third molars were segmented with an average Dice score of 93%. Finally, the developmental
stages were classified with an accuracy of 54%, a mean absolute error of 0.69 stages, and a linear weighted Cohen’s kappa
coefficient of 0.79. The entire automated workflow on average took 2.72 s to compute, which is substantially faster than
manual staging starting from the OPG. Taking into account the limited dataset size, this pilot study shows that the proposed
fully automated approach shows promising results compared with manual staging.

Keywords Dental age assessment - Third molar - Developmental stage - Localization - Segmentation - Classification

Introduction proposed, especially since recent applications of deep lear-

ning in the context of medical imaging have shown to give
In forensic practice, dental age assessment is commonly  promising results [3]. Recent research by Stern et al. [37]
conducted by well-trained forensic odontologists using used MRI data of the hand, clavicle, and teeth to fuse age-
panoramic radiographs (OPGs). The registered degree of  relevant information from three anatomical sites to achieve
development is classified using specific tooth development
staging techniques and correlated with age. However,
the manually performed staging’s major drawback is a
possible stage classification variability within and between
observers. This has been comprehensively reviewed and
reported in [5], with kappa values ranging between 0.52
and 1.00 for different staging techniques. To counter this
drawback, automated age assessment methods have been

a mean absolute prediction error in regressing chronological
age of 1.010.74 years. However, related work in the field
of automated dental age assessment, using X-ray imaging, is
limited. By contrast, in the field of bone age assessment, an
automated method has been established and validated based
on hand-wrist radiographs. Hence, both fields were explored
and conclusions were drawn for the current study design.

- - Developmental stage assessment of teeth
N. Banar and J. Bertels have contributed equally to this work.

2 Jeroen Bertels De Tobel et al. [5] investigated different algorithms for the
Jeroen.bertels @kuleuven.be automated classification of the lower left third molar into
its developmental stages. Their deep learning approach was

Extended author information available on the last page of the article. superior compared with other algorithms. The OPGs were
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preprocessed using contrast-limited adaptive histogram
equalization (CLAHE) [26]. The pre-trained AlexNet [18]
CNN architecture was retrained on a small dataset of 400
rectangular ROIs, carefully extracted by experts from their
corresponding OPGs. The authors did not report the age
range of the study population, but the entire developmental
span of the third molar was covered. They reported a mean
accuracy of 51%, a mean absolute error (MAE) of 0.60
stages, and a mean linearly weighted kappa (LWK) of 0.82.
Most misclassifications were found in neighboring stages.

In a follow-up study, Merdietio et al. [24] investigated
the added value of mgmual third molar segmentations
for stage c]ussiﬁcationrg the lower left third molar. On
q same data as used by De Tobel et al. [5], contours
of the lower left third mol: ere manually delineated
using two approaches: Rough Segmentation (RS) and Full
Segmentation (FS). Both methods removed the information
around the tooth, which might confuse the staging. The
process of evaluating and segmenting OPGs requires
a dental expert to determine whether the surrounding
anatomical parts provide any assistance in stage allocation
depending on the alveolar eruption. The FS approach
provided a high-quality segmentation; however, it was
tedious and the time spent for each segmentation was § min
on average. The average time for the RS approach was 5 min
and a bounding box around the third molar was obtained in
2 min. Using a DenseNet201 [12] CNN, inclusion of the FS
third molar segmentations improved the stage classification
accuracy from 54 to 61%, MAE decreased from 0.61 to 0.53
stages, and LWK improved by 0.02 compared with only
rectangular ROI information.

Yuma Miki 1. [25] also utilized the AlexNet [18]
CNN to classify ROIs, extracted from 52 dental cone-beam
computed tomography images into seven tooth types. First,
the smallest possible bounding box enclosing a tooth was
placed manually on the CT volume. Then, the middle 60%
axial ROIs were used as input for the CNN. The average
classification accuracy was 89% and was comparable with a
conventional non-deep learning method used by Hosntalab
et al. [11]. Although the results of these studies were
promising, the possibility to automatically classify the
developmental stages directly from the presented OPGs
remained unexplored.

Skeletal age assessment based on hand-wrist
radiographs

Spampinato et al. [34] were the first to conduct research
on automated skeletal bone age assessment using deep
learning. They tested several approaches on a public dataset:
(i) a CNN pre-trained on InggeNet [29] was used in a
regression framework; (ii) arglc-tuning of a pre-trained
CNN; (iii) ad hoc CNN, BoNet [34], trained from
scratch. The assessment was conducted on the public Digital
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Hand Atlas Database System (DHADS) [8] containing 1391
radiographs of the left hands of children up to the age of
18 years. Compared with the bone age obtained by human
observers, they reported an MAE of 1.15, 0.80, and 0.79
years for the e approaches, respectively. The latter two
ougerformed state-of-the-art methods from previous years.

arson et al. [19] tested a pre-trained deep residual
CNN with 50 layers for age assessment from left hand
radiographs. Their approach showed similar results com-
pared with human obsernrs, The root mean squared error
(RMSE) on the DHADS was 0.73 years, slightly worse than
the RMSE of 0.61 obtained by BoneXpert [40].

Lee et al. [21] developed an automated system for bone
age assessment from radiographs of left hand and wrist
containing the following steps: (i) the LeNet-5 [20] CNN
was utilized for image segmentation to remove redundant
information around the hand; (ii) a classification CNN pre-
trained on ImageNet was applied. A mean accuracy of
57% and 60%, and an RMSE of 0.93 and 0.82 years, was
obtained for males and females respectively. These numbers
are somewhat comparable with the upper limits of the inter-
observer variation obtained with the Greulich and Pyle (GP)
method [9] in baseline Korean research [16].

Iglovikov et al. [13] also presented an automated
framework for bone age assessment. They applied deep
learning to a dataset of left hand radiographs, labelled by
pediatric radiologists from a pediatric bone age challenge.
First, radiographs were segmented using a U-Net-like
[28] CNN. They normalized image contrast and aligned

nds by detecting key points with VGG-net [33]. Both

regression and classification CNNs from the VGG-net
family of CNNs were applied, with clag'lcalion CNNs
slightly outperforming regression CNNs. An ensemble of
regional CNNs showed superior performance with an MAE
of 0.51 years. This result outperformed the state-of-the-art
BoneXpert software with (.65 years and the work by Lee
et al. [21], thereby obtaining an accuracy comparable with
human observer performance.

Study rationale and aim

Although well performing software for automated age
assessment based on hand-wrist development exists, the
implementation into forensic practice may be insufficient.
Indeed, hand-wrist development ceases around the age of
18 [9], while in most countries, that age is the threshold
from childhood to adulthood [31]. Thus, ideally, an age
indicator is required that helps to discern minors from
adults. Therefore, international guidelines state that besides
development of the hand-wrist, also third molars and the
clavicles should be taken into account [30]. In the current
study, our focus was on third molars, whose developmental
span has been described to start around the age of 7 and
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end around the age of 21 [22]. With the upper end of the
age range beyond the threshold of 18, this anatomical site
holds the potential to better differentiate between minors
and adults compared with the hand-wrist. The current study
aimed to develop a fully automated system to classify a third
molar into its developmental stage.

Materials and methods
Dataset

To develop and train the fully automated deep learning
based system, a dataset of annotated OPGs was required.
The dataset of OPGs was collected at the University Hospi-
tals Leuven, Belgium, and was first used by De Tobel et al.
[5] and later updated by Merdietio et al. [24]. The dataset
consisted of 400 OPGs of varying sizes, with 20 OPGs
per sex and per developmental stage of the lower left third
molar, resulting in a chronological age range between 7 and
24 years. These OPGs were selected in consensus between
three observers as follows. Developmental stages were allo-
cated to each lower left third molar by two observers,
R.M.B. and J.D.T., with 2 and 7 years of experience eval-
uating dental radiographs, respectively. A third observer,
P.W.T., had over 10 years of experience in dental age esti-
mation, and acted as a referggy The developmental stages
were allocated corresponding to a modified Demirjian et al.
[6] staging technique proposed by De Tobel et al. [5], obtai-
ning a total number of 10 ordinal developmental stages (i.e.,
0 to 9; Fig. 1—top rows). Reaching the consensus stage
was reported to take up to 15 min per case, depending on
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Fig. 1 Representative example of each of the 10 developmental
stages of the lower left third molar (top rows) and their manual full
segmentations according to Merdietio et al. [24] (bottom rows)

the difficulty and thus expertise required. The OPGs of dif-
ferent sizes and resolutions were cropped and resampled
automatically to a common size of 1600 x 800 pixels.
This cropping and resampling account for the appearance of
white and black spaces in some of the resulting ROIs (shown
as all-white spaces for illustrative purposes).

In order to evaluate the performance of the current
method, fivefold cross-validation was used. Therefore,
the dataset was randomly split into five equally large
validation sets of 80 OPGs with four OPGs per sex and per
developmental stage of the lower left third molar. In each
fold, the remaining 320 OPGs were used to train the CNNs
from the proposed procedure.

Three-step procedure

Based on recent work [5, 13, 19, 21, 24, 34], the following
three-step procedure was proposed as presented in Fig. 2
First, a CNN estimated the center of the lower left third
molar in the OPG and defined a fixed region of interest
(ROI) around it. Second, another CNN segmented the
third molar within the proposed ROI. Third, a final CNN
combined the image content within this ROI and the
associated automated segmentation to classify the third
molar’s developmental stage.

Third molar localization

The first step (Fig. 2—top) automatically extracts a
bounding box or ROI around the lower left third molar.
The training ROIs were defined as a 448 x 448 pixels
bounding box parallel to the image axes and centered around
the geometrical center of the manual full segmentations
(FS) as described in [24] (Fig. |—bottom row, annotated
in yellow in Fig. 2). In contrast to [5, 24], where
training ROIs were carefully aligned with the third
molar, here, larger unaligned ROIs (in combination with
rotational augmentation) were used to trade off spatial
noise (e.g., surrounding teeth can trick the final staging)
and localization performance (e.g., larger ROIs have higher
chances to capture a minimal surface of the third molar).
A YOLO-like [27] CNN architecture was therefore utilized
with minor modifications. Each image was divided into
25 adjacent non-overlapping cells and the cell containing
the third molar and its geometrical center within this cell
was predicted. For feature mapping, the DenseNet201 [12]
CNN architecture, pre-trained on the ImageNet [29] dataset
with dense layers suitable for the problem, was used. The
sum of two mean squared error (MSE) losses—one for cell
classification and one for geometrical center regression—
was defined as objective function to be mirgized. This
combined loss function was optimized for 10 epochs using
the Adam optimizer [17] with default Keras [4] settings.

9 Springer
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ROI extraction

geometrical center coordinate

gg. 2 A schematic overview of the proposed three-step procedure
to automate third molar development staging. STEP 1: A first CNN
detects a rectangular ROI around the third molar under assessment.

The mean absolute error (MAE; Eq. 1) and mean Euclidean
distance (MED; Eq. 2) between the manual and predicted
center coordinates in pixels were calculated:

SNy = Fil + |6 — &)
N .

YN Vi =50+ (i — %i)?

N .
where (x;, y;) and (X;, ¥;) refer to the manually annotated
and predicted coordinates, respectively, of the geometrical
center of the lower left third molar in the ith OPG, and
N = 400 refers to the total number of OPGs. A qualitative
localization measure of “good”, “poor,” or “wrong” was
further defined when the predicted ROI overlapped with the
manual segmentation of the third molar completely, partly
or not, respectively.

MAE =

MED =

Third molar segmentation

The second step (Fig. 2—middle) automatically segmented
the lower left third molar, given a 448 x 448 bounding
box around its geometrical center. For this purpose, a U-
Net-like [28] CNN architecture was used. This model has
been proven to work well across many segmentation tasks in
medical imaging [2, 14, 28]. It processes the input image by
successively applying linear convolutions using kernels of
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threshold > 0.5 Manual

Predicted

STEP 2: Another CNN segments the third molar out of the established
ROI. STEP 3: A final CNN combines the third molar’s ROI and its
segmentation to classify the third molar’s developmental stage

size 3 x 3 and non-linear leaky-ReLU [23] activations. The
latter are necessary to avoid creating linear, and thus simple,
features only. Before final classification (segmentation can
be seen as classifying each pixel as being foreground or
background), this successive pattern should result in local
and global features that are informative for the state of a
certain pixel.

In order to train the CNN, its internal parameters
need to be optimized with respect to a certain loss
function (i.e., the optimization objective), which directly
compares the automatic and manual segmentations. For
segmentation, cross-entropy (CE), soft Dice (SD), or their
linear combination (CS) are often used [2]. Here, a suitable
loss function was identified on the manual ROIs and their
associated segmentations by analyzing the segmentation
performance in terms of pixel-wise accuracy (3), precision
(4) and recall (5), and the Dice score (6) [2, 35]:

TP+TN
Accuracy = \ (3)
TP+TN+FP+FN
. TP
Precision = ————, 4)
TP +FP
TP
Recall = ————, (5)
TP+ FN
. 2TP
Dice = ————— (6)

2TP + FP+FN’
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where TP, TN, FP, and FN refer to the pixels labelled
correctly as third molar or background, or incorrectly as
third molar or background, respectively. This way, accuracy
represents the proportion of pixels classified correctly,
precision represents the fraction of pixels being classified
as tooth correctly, and recall represents the fraction of
tooth pixels that are correctly identified as being tooth.
The Dice score is a commonly used intersection-over-union
measure used to compare two segmentations (here manual
and predicted) [2].

The Adam optimizer [17] with default Keras [4] settings
for 150 epochs was found to work well for convergence. The
initial learning rate was set at 10~ and reduced by a factor
of 10 every 50 epochs. These settings were found by visu-
ally inspecting the Dice score on the validation set for the
first fold only. Convergence was defined successful when
the Dice score had plateaued (i.e., no increase anymore
due to a sufficient number of epochs and an appropriate
decay scheme, and no decrease yet, which could point to
over-fitting). In a second experiment, the most promising
loss function was chosen to work directly forward on the
localization output. Finally, pixel-wise accuracy, precision
and recall, and the Dice score were calculated for each stage
individually and with or without localization outliers.

Third molar classification

The third step (Fig. 2—bottom) automatically classifies the
lower left third molar into its developmental stage. Hence,
given the bounding box, the task is to classify the ROI into
one of 10 developmental stages. First, experiments were
conducted with the manual ROIs and segmentations with
two CNNs: a simple ad hoc CNN with 10 layers and the
more complex DenseNet201 [12] (as it was used in [24]).
Both CNNs process the information in a similar way and
with the same principles as explained in the previous section
for U-Net. Before final classification—in this case multi-
class staging—informative image features should have been
derived. The more complex the CNN, the more complex

Table 1 Quantitative results of the automated detection

patterns it could detect in the input images but the more
data is generally needed in order to detect generalized
features [ 1]. Comparing the results of the simple CNN with
the results of DenseNet201 shedded light on the interplay
between these two aspects for this particular dataset.

Apart from the CNN used for classification, experiments
were conducted with three types of input, as a way to
incorporate the available information: the ROI only (NO),
and the ROI and segmentations concatenated (CO) or mul-
tiplied (MU). Finally, the most promising of those methods
trained on manual ROIs and segmentations was chosen and
staging accuracy, MAE and LWK on the predicted ROIs
and segmentations from the previous steps for each stage
individually with and without localization outliers were
reported. These are frequently used metrics when evaluating
staging performance and their definition can be foundin [5].

For all experiments, the parameters of the CNN were
optimized with respect to the CE loss function for the
training set using stochastic gradient descent (SGD) for 150
epochs. The initial learning rate was set at 10~ and reduced
by a factor of 10 every 50 epochs.

Results

The reported results were based on fivefold cross-
validation of the complete procedure. For third molar
segmentation and staging, the effect of different parameter
setups was studied, using the manual input (ROI and
segmentation) as training information. Subsequently, for the
optimal parameter setup, results of working with manual
information were compared with results obtained when
using the output(s) of the automated three-step procedure.

Third molar localization
The automated localization, including extracting and storing

of the rectangular ROI, took 2.08 s on average per image. In
Table 1, the localization results are given. The geometrical

Metric | Stage — 0 1 2 3 4 5 6 7 8 9 All All*

MED (pix.) mean 77 89 56 52 48 47 57 52 58 62 60 63
std 30 35 31 24 25 22 36 26 33 24 32 47
min 16 20 12 14 6 3 14 20 8 14 3 3
max 137 142 23 125 108 95 199 108 188 178 188 492

MAE (pix.) mean 96 112 68 65 60 59 73 68 75 79 75 79
std 38 45 37 32 30 30 48 35 46 42 41 59
min 18 28 16 15 8 3 I8 21 9 16 3 3
max 177 197 143 147 121 133 254 149 266 230 266 620

“Wrong” cases are excluded from the results. Only the last column corresponds to the average performance with inclusion of wrong cases
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Fig.3 Qualitative examples of detection (top row) and corresponding
manual full segmentation (bottom row). The left column in each big
box corresponds to the manual detection and the right column corre-
sponds to the automated detection. The left two columns correspond to
a“wrong” automated detection. In this case, the corresponding manual

center of the third molar was localized with a MAE of 79
pixels and a MED of 63 pixels. There was a trend for the
detection algorithm to work better for the middle stages.
There were 393 good, 3 poor, and 4 wrong localizations.
In Fig. 3, one example of each is shown. Poor localizations
were possible because of the following reasons: (i) the
correct cell (i.e., the left side of the patient) is misclassified
and the coordinates are predicted relative to the wrong cell;
(i1) the regression prediction is not bounded to the cell and,
hence, it may lead to the coordinates located far from the
correct cell.

Third molar segmentation

The automated segmentation, including storing the seg-
mentation masks, took 0.13 s per image on average. In
Table 2, the segmentation results are given for both the man-
ual ROIs and the automatically predicted ROIs from the
previous step. All cases were included in the calculation.

Table2 Quantitative results of the automated segmentation

o"r I
i a8
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segmentation results in an empty ROIL. The middle two columns cor-
respond to a “poor” detection, where only part of the segmentation is
retained within the automatically detected ROI. The right two columns
correspond to a “good” detection since the entire segmentation is
captured

Considering the manual ROIs, the linear combination (CS)
of cross-entropy (CE) with soft Dice (SD) loss performed
slightly superior compared with the single losses (left side
of Table 2). The use of this loss function for the predicted
ROIs revealed a slight decrease compared with the perfor-
mance on manual ROIs (right side of Table 2). Zooming
in on the results for each stage individually highlights an
inferior performance for stage 0. In Fig. 4, segmentation
results are illustrated for each stage, per quartile of the Dice
score on the predicted ROIs.

Third molar staging

The automated staging, including combining the ROI and
segmentation mask, took 0.51 s per image on average. In
Table 3, the staging results are given for manual ROIs with
manual segmentations and the automatically predicted ROIs
with predicted segmentations from the previous steps. All
cases were included in the calculation and the segmentation

Exp. — Manual ROIs

Loss — CE SD CS CS

Predicted ROIs

Metric | Stage — All All All 0 1 2 3 4 5 6 7 8 9 All
Accuracy (%) mean 99 99 99 99 99 99 99 100 99 99 99 99 99 99
Precision (%) mean 95 95 95 88 95 92 97 97 95 96 95 96 96 95
Recall (%) mean 94 94 95 87 92 97 94 95 90 96 94 93 93 93
Dice (%) mean 94 94 94 85 93 94 95 96 91 96 95 93 93 93
std 7 7 7 19 4 4 3 2 16 3 3 15 15 11
min 0 0 8 0 80 82 88 92 17 84 83 2 1 0
max 99 99 99 100 98 100 99 98 98 98 100 98 100 100

On the manual ROIs and corresponding segmentations, three different loss functions (i.e., cross-entropy (CE), soft Dice (SD) are tested and their
sum (CS)) and the overall result are reported. For CS, the results are analyzed for the predicted ROIs both overall and for each stage separately
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Fig.4 Qualitative segmentation
examples for each of the 10
developmental stages (rows:
ordered top-bottom stage
O-stage 9). Left three, middle
three, and right three columns
are the results for the first,
second, and third quartile of the
Dice score using the predicted
segmentations, respectively. The
manual ROI is given first,
followed by the automatically
predicted ROI, and finally the
predicted ROI multiplied by the
pre d segmentation. The
blue contour of the predicted
segmentation is overlaid on the
red contour of the manual
segmentation. When only blue is
visible, the delineation is
(almost) perfect. The resulting
fully automated stage prediction
is annotated in white, while red
indicates the manual stage when
the predicted stage was
incorrect. Although the ROI was
localized and the third molar
segmented successfully in most
cases, this was not true for the
ROI in the first row, second
column. It can be assumed that
the automated segmentation is
more difficult for the initial third
molar stages because they lack
(or present minimal) calcified
tooth parts

masks were combined with the detected ROIs in the
following ways: (i) concatenation (CO); (ii) multiplication
(MU); (iii) no combination (NO); hence, only the detected
ROI is used. Looking at the results on the manual ROIs
with manual segmentations (left side of Table 3), there was
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Table 3 Quantitative results of the automated staging
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a clear increase in performance when the segmentation is
used (CO and MU compared with NO). MU seemed to
deliver the most promising results. Using this method for
the staging on predicted ROIs with predicted segmentations
showed a drop in overall staging performance (right side of

Exp. — Manual segm’s Predicted segmentations
Method - NO  CO MU MU
Metric | Stage — All All All 0 1 2 3 4 5 6 7 8 9 All
Accuracy (%)  mean 55 57 60 85 85 63 45 50 43 65 20 35 45 54
MAE (stages) mean 0.62 058 051 055 025 0.62 060 054 075 067 120 078 098 0.69
std 090 082 079 .75 073 123 058 059 080 1.02 LI5S 068 133 108
max 6 7 8 9 4 7 2 2 3 3 7 2 7 9
LWK (%) mean 081 0.83 0384 / / / / / / / / / / 0.79

On the manual ROIs and corresponding manual segmentations, three different combination types are tested (i.e., no combination and thus only use
of ROI (NO), concatenation (CO), and multiplication (MU; this type of combination is performed in Fig. 4)) and the overall result are reported.
For MU, the results are analyzed for the predicted ROIs with corresponding predicted segmentations both overall and for each stage separately
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Table 3) compared with manual results. Zooming in on the
results for each stage individually highlights the superior
performance for lower stages. In Table 4, the results for MU
for fully automated predictions are presented as a confusion
matrix. In Fig. 4, the staging output is illustrated for the
segmentation examples.

Discussion
Situation of findings in literature

Automated methods for skeletal age estimation have been
used for over a decade [40]. Recently, the RSNA Pediatric
Bone Age Challenge using hand radiographs demonstrated
that different approaches to process the images can render
similar results [10]. Although localization and segmentation
seemed to be commonly used in the automated approaches,
stage classification—as is done by human observers—was
not described by most automated systems. Nonetheless,
one might hypothesize that adding the stage classification
step might further ameliorate age estimation performance.
Starting from the stage classification, the automated method
may only need to interpret and further classify the sequence
of developmental changes within the considered stage,
which might reduce the computational burden of the
automated system.

With a stage classification accuracy of 54 %, an MAE of
0.69 stages, and a LWK of 0.79, the current fully automated
system for stage classification performed inferior compared
with respectively 61%, 0.53 stages and 0.84 reported
for the semi-automated system proposed by Merdietio
et al. [24]. They only automated the final step (i.e., stage
classification) while tooth localization and segmentation
were done manually, and where the latter is generally

considered tedious and prone to observer variability. More
specifically, the fully automated system took 2.72 s to
compute on average. This is substantially faster than
manual staging with or without qualitative segmentations,
respectively taking more than 2 min or 10 min. However,
further optimization of all steps in the automated system
is recommended before its final application in forensic age
estimation practice.

Moreover, before being applied in practice, the next
step that needs to be added to the proposed automated
system is the age estimation step itself. Regarding skeletal
age assessment, the lowest MAE reached in the RSNA
challenge was 4.26 months (= 0.36 years) [10], based
on the automated assessment of a hand-wrist radiograph.
Assessing hand-wrist MRI, Tang et al. [39] reported MAEs
of 0.13 years for males and 0.08 for females. However, their
study population was very small, with only 79 individuals.
Moreover, they only included participants between 12 and
17 years old, while in forensic age estimation studies, a
sufficient portion of the study population should be well
over 18. Unfortunately, also the population of the RSNA
challenge only included a very small portion of adults. By
contrast, Stern et al. [38] studied hand-wrist MRIs of males
between 13 and 25 years old. They reported an MAE of (.34
years in their total population, and 0.53 years in participants
< 18 years. Note that the reported MAEs in [10, 38, 39]
were errors between the automatically estimated age and
the bone age determined by radiologists. Conversely, in
forensic age estimation, the errors between estimated age
and chronological age are relevant. In their pilot paper, Stern
et al. [36] reported an MAE of 0.85 years compared with
chronological age, when assessing hand-wrist MRI. More
recently, Stern et al. [37] combined hand-wrist MRI with
clavicles and third molars MRI, obtaining an MAE of 1.01
years. The larger error in the more recent paper might seem

Table4 Cross tabulation of allocated stages by the fully automated system (rows) and by the human observers as a consensus stage (columns)

Manual
0 1 2 3 4 5 6 7 8 9
Automated 0 0.85 0.10 0 0 0 0 0 0.025 0 0
1 0.075 085 0.05 0 0 0 0 0 0 0
2 0 0 0.625 0.2 0.05 0.025 0 0 0 0.025
3 0 0.025 0.25 045 0.25 0.05 0 0 0 0
4 0 0 0.025 0.3 0.5 0.4 0 0 0 0
5 0.05 0.025 0.025 0.05 0.2 0.425 0 0.025 0 0.025
6 0 0 0 0 0 0.05 0.65 0.225 0.15 0
7 0 0 0 0 0 0.025 0.15 0.2 0.325 0.2
8 0 0 0 0 0 0.025 0.1 0.3 0.35 0.3
9 0.025 0 0.025 0 0 0 0.1 0.225 0.175 0.45

Normalized by the total number of samples N =400 as to represent fractions

@ Springer




Int J Legal Med

unexpected but can be explained by differences in study
population: N = 56 and age 13-19 years in [36], N = 322
and age 13-25 years in [37]. Thus, the latter study is more
relevant to forensic age estimation. Moreover, it is the only
one presenting a fully automated system for dental age
estimation in adolescents and young adults, albeit embedded
in the multi-factorial system. Unfortunately, the studies by
Stern et al. only included men, which poses their major
shortcoming.

Limitations and future prospects

The proposed three-step procedure for fully automated
staging of the lower left third molar has some shortcomings,
which lend themselves for improvement and should be
addressed in future studies. First, the OPGs were of different
sizes and resolutions. Therefore, the OPGs have white and
black spaces due to resampling and cropping (in all figures
shown as all-white spaces for illustrative purposes). This
strategy might be considered suboptimal and may have
led to incorrect predictions further downstream (e.g., the
“wrong” localization in Fig. 3). Second, the ROIs used in
this work were quite large and not aligned, as opposed
to the ones used by De Tobel et al. [S] and Merdietio
et al. [24]. This was necessary to alleviate poor localization
performance and retain sufficient segmentation area within
the ROI (as to reduce the number of “wrong” and “poor”
localizations in Fig. 3). Although a similar performance
was obtained (note the results for manual segmentations
using the MU method in Table 3), which justified our
choice, a better localization step is necessary and may
lead to an improved performance due to expected superior
segmentations (e.g., partly false segmentation in Fig. 4—top
left).

In work by Unterpirker at al. [41], a localization error
of 3.55 £ 2.62 mm was reported when detecting third
molars as landmarks on MRI and using random regression
forests (RRFs). A further optimization of the currently
used localization step might be to predict the third molar’s
location based on anatomical landmarks of other structures.
To achieve this, skeletal landmarks seem more suitable than
dental landmarks, since the former are broadly constant
between individuals (e.g., the presence of the inferior
alveolar nerve and the foramen mentale), while the latter
are highly variable (e.g., extractions, restorations, tooth
movement). In recent work, Vinayalingam et al. [42] use
the location of the inferior alveolar nerve relative to the
roots of lower third molars to study risk assessment of
third molar removal. In another study by Ebner et al.
[7], a two-step procedure was proposed with a landmark
localization algorithm also using RRFs in hand MRL
Their two-step procedure included a coarse RRF estimation
followed by a refined estimation of the landmark. Large

anatomical variations were found on radius and ulna,
creating the highest mean error of the evaluated hand
MRI. The landmark was chosen based on a constraint on
the surrounding structures. This process could however
have limitations when applied to third molars, due to the
large anatomical variation. Hence, choosing a consistent
anatomical landmark will affect the localization process and
its quest is left for future research.

In light of stage classification, only simple combinations
of concatenation and multiplication were tested regarding
the combination of the ROI with segmentation information,
following the research by Merdietio et al. [24]. It may
well be that more advanced strategies lead to superior
performance compared with the early-fusion strategy
explored in this work [15]. Discerning adjacent stages—
especially near the end of development (stages 7 to 9)—
remains a challenging task, even for an automated deep
learning approach. Nonetheless, those final stages occur
around the age of 18, making them especially relevant in
forensic age estimation, when minors need to be discerned
from adults. Thus, further optimization of the classification
step is desirable, which can only be achieved by adding
more training data. This will affect the learning process for
stage classification directly, as well as indirect improvement
due to related ameliorations in the automated segmentation.

It is clear that multiple factors may have led to an
inferior performance compared with the results in Merdietio
et al. [24] with all manual information. However, given
that the entire workflow of detecting, segmenting, and
staging a third molar has been automated, we believe
these results are promising and ready to be used before
integrating the obtained third molar stage into an age
assessment model. An interesting part of future research
will be to transfer this procedure to all third molars
(ie., 18, 28, and 48), and possibly to other developing
permanent teeth in younger individuals. Thus, increasing
the number of age indicators, which in the end might
increase age estimation performance. Similarly, in older
individuals, several degenerative changes (e.g., secondary
dentin, periodontosis, root resorption) might be detected
automatically, and their information might be combined
automatically to derive an age estimate.

Thus, future research should focus on complementing
the proposed three-step procedure with an age estimation,
rendering a comprehensive four-step procedure. The ref-
erence population for such a study needs to represent all
relevant age categories uniformly. Recommendations state
that at least ten individuals per sex per age category of
1 year need to be included [32]. However, to train a deep
CNN for age estimation, the reference population should
be as large as possible. For instance, BoneXpert was based
on 1559 hand/wrist radiographs [40]. Although the num-
bers of cases per age category were not specified, the graphs
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in their original paper reflect a more or less uniform age
distribution.

Conclusion

g this work, we proposed and validated a fully automated
three-step procedure for third molar staging, directly
starting from OPGs. The automated system outputs a third
molar’s stage in under 3 s, which is substantially faster than
manual stage allocation by experts. Taking into account the
limited dataset size, this fully automated approach shows
promising results compared with manual staging.
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