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Abstract

The purpose of this investigation is to study the effect of contact between tool and composite
on wecar rate of the tool shoulder and temperature in FSW process. Wear rate was investigated
from weight loss of the tocl shoulder after each the welding process of compaosites. Temperature
was measured to reveal the relationship between temperature and wear phenomenon. Visual
and microstructure studies are utilized to observe the topography in the each tool surface wear
phenomenon. FSW process was done at 1080 RPM rotational speed with translafional velocity
of 5.652 cm/s produces a low wear rate. The elevated temperature showed 269.9 °C at 5 wt.%
SiC, 212 °C at 7.5 wi.% SiC and 258.3 °C at 10 wt.% SiC, at 1080 RPM rotational speed with the
translational speed 5.652 cm/s on advancing side. Higher elevated temperature decreases the
wear rate, This study explains that butt joint process produced high femperature at advancing
side than refreating side in each SiC particle composition. Visual and microstructure study
mention that at operating speed of 1080 RPM fewer adhesive layer is found and the
measurement for the thickness shows value of 0.2331 mm.
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1.0 INTRODUCTION

Friction stirwelding (FSW) was invented by The Welding
Institute (TWI) of Cambridge, England in 1991 [1]. FSW
process is a solid-state joining technique, this method
has grown rapidly in a wide variety of industries such
as: railway, aerospace and transportation industries.
FSW process often used on low melling point metal
alloys such as aluminium [2-6], copper [7], titanium [8-
?] and eveniron [10-12] and its alloys.

The FSW process has three phenomena: heatfing
generation from friction of tool shoulder and work
metals, plastic deformation, and forging. The tool
shoulder is a non consumable rotating tool, consisting
of a probe and shoulder. The shoulder of the tool is
forced against the plates. The rotating tool shoulder
causes friction and heating of the work piece which in
turn  lowers their mechanical strength. The
microstructure of a friction stirs weld is unlike fusion
weld in that no solidification products are present and
the grains in the weld region are equiaxed and highly
refined [13].

Some researcher have been investigated of the tool
wear in the FSW process [14-15] but that occurs in the

FSW process to join the Metal Matix Composite
materials is rarely found [13,16-24], especidlly today
where the FSW process for composites more widely
used.

To improve the productivity and efficiency of FSW, a
study to determine the wear rate of the tool shoulder
in the FSW process of MMC is needed. Wear of the tool
shoulder reduced the quality of FSW joining.
Controlling wear is done by determining the efficient
parameters and the suitable tool material to join the
composite material. This study is investigating the
effect of rotational speed on the wear rate of the tool
shoulder in the FSW process for AlSi-wt% SiC
composite. In this research also observed effect of the
gain in heat (elevated temperature) generated from
the FSW process.

2.0 EXPERIMENTAL

The FSW process was conducted on the modified
miling machine. The translational speed moved on
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the x-axis of miling machine. Rotational speed was
varied with translational velocity that works effectively
on each of them. The parameter is used to determine
the effective translational speed of the welding
parameters on every varation each the rotational
speed : 808 RPM (7.065 cm / s); 1080 RPM (5.642 cm /
s); and 1540 RPM (4.329 cm / s).

AlSi-SiC composites are joined in this study, with
variations of SiC percentage 5 wt.%; 7.5 wt.%; and 10
wt.%. This composites were produced by semisolid stir
casting method in the previous research. The
composite  material used is plate-shaped  with
dimensions (p =54 cm; =4 cm; and t =5 mm). Tool
material is AlSI D2. Tool specifications with a pin-
shaped conical with dimension (lista) = 50 mm, (lshoulder)
=16 mm, (lsn) = 4 mm, and the diameter of specimens
‘dshouldc:] =20 mm, {dp:’n end) =2 mMm and {dpin bc:sc} =4.14
mm.

The FSW method that used in this research is the
parameter process of joining AlSI-SIC composites with
appropriate parameters already mentioned above.
The temperature of FSW was measured on the surface
of the plate in every welding process. Temperature
datas were collected by data aquisition. After each
welding process some tests were performed include:
weight loss, visual observations and microstructure of
tool soulder. The weight loss of tool shoulder was
evaluated to calculate the wear rate of ool shoulder.
Microstructure was done to observe adhesive layer
that sticks to the surface of the tool at every rotational
speed parameter.

Figure 1. Schematic of temperature measurement

Welding temperatures were measured on each side
of every compaosites, 2 sensor were placed on the
advancing side (T2,74), another 2 were placed on the
retreating side (T1,73). Tl, T2 sensor was placed at a
distance 1.8 cm from the initial welds. 13,74 were
placed at a distance 3.6 cm from the initial welds as
shown on Figure 1. Visual (macro) study show which
tool was the thickest one. Microstructure study to
support the macro study and to show the topography
of the surface in every surface of the tool. The
microstructure  examination were also used for
showing the microstructure of the tool after the
welding process then calculating the thickness of
adhesive layer.

3.0 RESULTS AND DISCUSSION

3.1 Tool Weight Loss Measurement

The data were obtained after the measurement,
showed the relationship between wear rate and
number of welds, also showed the relationship
between wear rate and the rotational speed of the
respective percentage of SiC. Figure 2a showed the
wear rate on each number of weld. The rotational
speed is increased then the wear rate decreased
[18,25]. The different wear rate on each number of
weld because of the different materials, those are AlSi-
5 wt.% SIC, AlSi-7.5 wt.% SiC and AlSi-10 wt.% SiC. The
different percentage of SiC is shown in Figure 2b.
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Figure 2 Wear rate diagram (a) wear rate vs number of weld
(b) wear rate wvs rotational speed.

In the second weld process the wear rate has
positive value. It can be concluded that at second
weld, adhesive layer on the surface of tool decreased
because it contacted with silicone carbides on every
side of this material. the previous study was mentioned
that the silicone carbide dispersed evenly [26]. It
caused friction in the adhesive layer after first weld
and became abrasive wear. Best weld parameters
were found at 1080 RPM of rotational speed with 5.652
cm/s of translational speed.

3.2 Elevated Temperature Measurement

The temperatures were measured during the welding
process of AlSI-SIC composites with the arrangement
on the plate T1, T2 at a distance 1.8 cm from the initial
weld distance and T3, T4 at a distance of 3.6 cm from
the initial weld distance. T1, T3 were placed on the
retreating side and T2, T4 were placed on the
advancing side.
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Figure 3 Relationship diagram between elevated
temperature and distance of welding AlSi-5 wt.% SiC
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Figure 4 Elevated temperature wvs distance diagram
composite AlSI-5 wi% SIC on [a) retreating side [b)
advancing side

The highest peak temperature measured on each
composite was at 1080 RPM of rotational speed with
5.652 cm/s translational speed. Higher temperatures
decrease the yield strength of the material surface
and improve the continuity and thickness of the
protective oxidation layer on the surface, the friction
occurred and reduced the direct coniact between
the metal [25]. Figure 3 until Figure 8, the temperature
showed at 0 cm weld distance, temperatures were in
the range of 30-50°C.

At 1.8 cm from the initial weld position or tool position
isin the center between the sensors T1 and T2. The high
temperature was on Tl(retreating side) and T2
(advancing side), than T3 and T4 were lower. Tl and
T2 decrease after passing half way as well as 13 and
T4 increase, the tool was at distance 3.6 cm or tool
position was on between T3 and T4, showed that 73
retreating side) and T4 (advancing side) were higher
than T1 and T2. The temperature at 1080 RPM of

rotational speed has the highest temperature at
advancing side for butt joint welding [27].
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Figure 7 Relationship diagram between elevated
temperature and distance of welding AlSi-10 wi.% SiC
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3.3 Microstructure and Topography Study
Visual and microstructure test was conducted to

determine the wear phenomenon as a result of
adhesive layer on the tool surface.

() (b)
Figure ¥ Micostructure of AlSI D2 tool steel (a) before
hardening (b) after hardening

Figure 9 shows the microstructure of the tool steel (a)
before hardening and (b) after hardening. Carbides
have a larger size after hardening treatment. Tool
Material that didn't harden the carbides were formed
along the ferrite matrix [28], but after hardening visible
light colored was a martensite structure [29]. It made
the improvement of hardness, when the hardness
increase, the wear phenomenon decreases.

Figure 10 and 11 shows the adhesive layer that sticks
to the surface of the tool at 808 RPM rotational speed.
Existing adhesive layer evenly spread over the entire
surface of the tool such as in the shoulder, the angle
between the pin and the shoulder and also at pin
head.

Figure 10 Topography of surface at 808 RPM rotational
speed

speed

Figure 12 Topography of surface at 1080 RPM rotational
speed
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Figure 13 Microstructure each point at 1080 RPM rotational
speed

Figure 14 Topography of surface at 1540 RPM rotational
speed

Camposite Layer
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Figure 15 Microstructure each point at 1540 RPM rotational
speed

Adhesive layer as shown in Figure 12 and Figure13
attached to the tool with 1080 RPM rotational speed
look thin on the surface of the tool. The wear rate on
this tool was the thinnest compared with the other.

Figure 14 and Figure 15 showed the adhesive layers
at some point which are thick on three areas: right and
left angle between tool and pin, and alsc at the pin
head, there is a hollow at the adhesive layer on the
left side of angle so the adhesive layers can not define
by its look.

The thickness of adhesive layer on each cutting tool
was shown in Figure 16, there was less adhesive layer
at 1080 RPM rotational speed with the value of 0.2231
mm.
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Figure 16 The thickness of adhesive layer each tool

4.0 CONCLUSION

These study can be concluded that the smallest wear
rate was in the tool at 1080 rom of rotational speed
with 7.065 cm/s of translational speed. Adhesive wear
appeared In the first weld for the composition of 5
wt.% SiC showed the highest value of wear rate, then
the second weld for the composition of 7.5 wt.% SiC
wear rate decreases. The third weld for composition of
10w1t.% SiC wear rate rises back. A11080 RPM rotational
speed for 7.5 w.i% SIC composition has good
mechanical properties. Then the tool weight
decreased and adhesive layer reduced. The
temperature measurement also showed higher at
advancing side. The microstructure and topography
image showed that 1080 ropm of rotational speed has
less adhesive layer on every surface and the thickness
was calculated, it showed less thickness.
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