

Contents lists available at ScienceDirect

Atmospheric Pollution Research

journal homepage: www.elsevier.com/locate/apr

Chemical speciation of water-soluble ionic components in $PM_{2.5}$ derived from peatland fires in Sumatra Island

Yusuke Fujii^{a,*}, Haryono Setiyo Huboyo^b, Susumu Tohno^c, Tomoaki Okuda^d, Syafrudin^b

^a Department of Sustainable System Sciences, Graduate School of Humanities and Sustainable System Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku,

Sakai, Osaka, 599-8531, Japan

^b Department of Environmental Engineering, Universitas Diponegoro, Semarang, 50275, Indonesia

^c Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

^d Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, 223-8522, Japan

ARTICLE INFO

Keywords: Peatland fire Indonesia PM_{2.5} Biomass burning Source profile Haze

ABSTRACT

We conducted a field study to characterize water-soluble ionic species in PM2.5 from peatland fires using groundbased samplings at fire sources and receptor sites in the Riau Province, Sumatra, Indonesia. We determined the concentrations of PM2.5 mass, water-soluble ions, and some chemical elements. Through PM2.5 field samplings at three peatland fire sources, we have shown that the mass fractions of typical peatland fire water-soluble ionic components tend to differ between peatland fire sources. Thus, our results indicate that PM2.5 source profiles of water-soluble ionic components for peatland fire must be selected with extreme caution if applied to a receptor model. From the viewpoint of ionic composition of each peatland fire sample, Cl^- and NH_4^+ were consistently dominant anions and cations, respectively, for all peatland fire samples, i.e., NH₄Cl was a consistently dominant component. Through field samplings of the ambient PM2.5 in Pekanbaru during peatland fire-induced haze and non-haze periods, we found differences in PM2.5 mass and total water-soluble ionic component concentrations between haze and non-haze samples. Four components, $C_2O_4^{2-}$, NO_3^{-} , SO_4^{2-} , and NH_4^+ , showed highly elevated levels during haze periods. Since these four ions are recognized as the major secondarily formed aerosol components, the increased total concentrations of water-soluble ionic components during haze periods can mainly be derived from the gas-to-aerosol conversion process. The ionic compositions of haze samples at receptor sites are obviously different from those at peatland fire source samples. In particular, NH₄Cl, which is characteristic of peatland fire PM2.5 sources, is low at sites during haze periods.

1. Introduction

Biomass burning (BB), which covers forest and peatland fires, burning of agricultural waste, and use of biofuels for cooking, is a major source of primary aerosol particles in Southeast Asia (Akagi et al., 2011; Stockwell et al., 2015). In Indonesia, haze caused by smoke from peatland fires is a frequent dry season occurrence each year. These fires are caused by a range of activities, such as land clearing by companies and small-scale farmers, unintentional escaped fires, and other activities (Tacconi, 2016). Fires are more pronounced during El Niño years owing to the severe drought conditions that lead to biomass dryness (Page et al., 2002; Huijnen et al., 2016). Generally, 80 %–90% of BB aerosols comprises particulate matter 2.5 µm or smaller in aerodynamic diameter (PM_{2.5}; Reid et al., 2005). The dense haze in Indonesia worsens the domestic air quality, and transported haze affects air quality in surrounding countries, such as Malaysia and Singapore (Betha et al., 2014; Behera and Balasubramanian, 2014; Engling et al., 2014; Fujii et al., 2015b, 2016; 2017; He et al., 2010; Pavagadhi et al., 2013; See et al., 2006). This haze has caused serious air pollution in the Southeast Asia, leading to a reduced visibility, adverse health impacts (Harrison et al., 2009; Koplitz et al., 2016), and economic losses (e.g., World Bank, 2016). Furthermore, the large volume of carbon dioxide associated with the strong and continuous haze is a global climate change threat (Page et al., 2002). Additionally, smoke aerosols affect regional climate by reducing the incoming solar radiation at the surface, absorbing radiation in the atmosphere, altering cloud properties, and possibly changing the precipitation patterns.

The transboundary haze phenomenon, associated with the Indonesian peatland fires, is an international issue to be solved. The Association of Southeast Asian Nations (ASEAN) agreement on

* Corresponding author.

E-mail address: y-fujii@hs.osakafu-u.ac.jp (Y. Fujii).

https://doi.org/10.1016/j.apr.2019.02.009

Received 30 November 2018; Received in revised form 10 February 2019; Accepted 16 February 2019 Available online 19 February 2019

1309-1042/ © 2019 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. All rights reserved.

Peer review under responsibility of Turkish National Committee for Air Pollution Research and Control.

transboundary haze pollution was signed in 2002 by 10 ASEAN member nation governments to mitigate Indonesian peatland fire aerosol impacts, and was finally ratified by the Indonesian parliament in 2014. This agreement can be supported and implemented through an effective strategy and international framework based on the latest scientific knowledge, such as physicochemical speciation of fire aerosols and their human health risks with accurate source apportionments at the source and receptor sites. Chemical speciation of aerosols from Indonesian peatland fires have been conducted at receptor sites in Malaysia (e.g., Fujii et al., 2015b, 2016; Sulong et al., 2017) and Singapore (e.g., Betha et al., 2014; Engling et al., 2014; See et al., 2006; Urbančok et al., 2017). On the contrary, data regarding the chemical characteristics of peatland fire smoke at sources in Kalimantan (Betha et al., 2013; Hayasaka et al., 2014; Jayarathne et al., 2018; Stockwell et al., 2016) and Sumatra (Fujii et al., 2014, 2015a; See et al., 2007) are limited, and little has been reported on the comprehensive chemical characterization of fire smoke for health risk analysis and source speciation among the various BB types.

Sumatra's Riau Province is a primary peatland fire hotspot, and organic carbon from fires there accounted for ~70% of $PM_{2.5}$ mass (Fujii et al., 2014). Additionally, the organic compounds were identified quantitatively in $PM_{2.5}$ to specify potential source indicators of peatland fires (Fujii et al., 2015a). However, these analyses were performed only for seven samples and the chemical properties of watersoluble inorganic ions and metals for the remaining 30% of $PM_{2.5}$ mass have not been specified. Therefore, an integrated analysis with chemical speciation of inorganic components for additional samples is required to improve peatland fire source identification reliability.

Herein, $PM_{2.5}$ emitted from Indonesian peatland fires was characterized with a focus on water-soluble ionic components. This was based on ground samplings of $PM_{2.5}$ near fire sources in the Riau Province, Sumatra, Indonesia. We highlighted differences in $PM_{2.5}$ source profiles among some Indonesian peatland fire sites. Furthermore, we determined the characteristics of the water-soluble ionic components in ambient $PM_{2.5}$ away from the fire source during periods of peatland fire-induced haze.

2. Materials and methods

Table S1 shows details on samplings on peatland fire sources, which were conducted in the Siak, Kampar, and Payung Sekaki districts of Riau Province as shown in Fig. S1. We also conducted background samplings in Siak district for comparison, and conducted peatland fire-induced haze and non-haze samplings in the city of Pekanbaru (Fig. S1). In this study, background samplings are defined as samplings in the non-peatland fire days around Siak. During our ambient $PM_{2.5}$ sampling periods from September 11 to 16 in 2015 in Pekanbaru, haze occurred as shown in Fig. S2, and we regarded these samples as haze samples.

We used a PM2.5 sampler (ChemComb model 3500 speciation sampling cartridge, Thermo) equipped with two volatile organic compound denuders to reduce the organic gas artifacts to continuously collect PM_{2.5} on 47 mm polytetrafluoroethylene (PTFE) filters for 3-4 h (peatland fire source) or 12 h (background, haze, and non-haze) at a flow rate of 10 L min⁻¹. A 47 mm ϕ quartz fiber (backup) filter was placed after the PTFE (main) filter for each sampling to confirm gas absorption and/or desorption effects from the PTFE filter. We collected PM_{2.5} at several peatland fire sites (~5 m away from peatland fire hotspots) on 13 occasions and at a background site (Siak) on two occasions. Additionally, we collected ambient PM2.5 samples for haze and non-haze in Pekanbaru on six and three occasions, respectively. After sampling, we determined the concentrations of PM2.5 mass, water-soluble ions, and some chemical elements in the main (PTFE) filter samples. Some water-soluble ion concentrations related to gas absorption and/or desorption were determined for the backup (quartz fiber) filters. Based on the water-soluble ion results, as shown in Fig. S3, we found that gas absorption and/or desorption effects were low in this

study. The average mass ratios of backup to main filter values for each ionic component at peatland fire source were $C_2O_4^{2-} = -0$, $Cl^- = 0.049$, $NO_3^- = 0.10$, $SO_4^{2-} = 0.062$, and $NH_4^+ = 0.045$. Thus, we did not perform corrections of water-soluble ions for the main filter samples using backup filter values.

To determine $PM_{2.5}$ mass concentrations, we weighed the PTFE filter using a microbalance (ME-5-F, Sartorius) with a sensitivity of ± 1 µg in a stable environment of 20°C–23 °C and 30 %–40% RH both before and after sampling. We used the PTFE filters to quantify water-soluble ions using ion chromatography (IC) (HIC-10A, Shimadzu and ICS-2000, Dionex). Each filter was extracted by ultrasonic agitation in 4 mL of deionized water for 20 min, and the extract was filtered through a PTFE syringe filter (pore size: 0.45 µm) and analyzed using IC. In this study, we analyzed four anions ($C_2O_4^{2-}$, Cl⁻, NO₃⁻, and SO₄²⁻) and five cations (Na⁺, NH₄⁺, K⁺, Ca²⁺, and Mg²⁺). We analyzed three elements (Cl, S, and K) on the PTFE filters using an energy-dispersive X-ray fluorescence (EDXRF) spectrometer (EDXL300, Rigaku). A detailed description of the quantification procedure, method detection limit, precision, and accuracy can be found in Okuda et al. (2013, 2014).

3. Results and discussion

3.1. Comparison of the species concentrations quantified by both IC and EDXRF

We compared the concentrations of Cl⁻, SO₄²⁻, and K⁺ quantified by IC with those of Cl, S, and K quantified by EDXRF for internal quality assurance of the data (Fig. S4). The Cl^-/Cl and K^+/K ratios for all quantified samples were 0.91 \pm 0.21 (average \pm standard deviation) and 1.07 \pm 0.23, respectively, which shows good agreement between the Cl and K concentrations quantified by IC and EDXRF. However, mass concentrations of S determined using IC $(SO_4^{2-}/3)$ were clearly lower than those determined by EDXRF. The S concentration ratios between IC and EDXRF for peatland fire source, non-haze, and haze samples were 0.53 \pm 0.13, 0.68 \pm 0.14, and 0.62 \pm 0.084 (unit: µg μg^{-1}), respectively. It should be noted that EDXRF determined PM_{2.5} total elemental concentration whereas IC determined the water-soluble fraction. The discrepancy between S concentrations determined using IC and EDXRF may be due to the presence of water-insoluble S compounds other than sulfate in PM2.5 (Yamasoe et al., 2000). In this study, Ca^{2+} and Mg^{2+} concentrations of all samples were below the method detection limit.

3.2. Chemical composition of peatland fire and background PM_{2.5} in Siak

In this section, we discuss the $PM_{2.5}$ chemical characterization of peatland fire sources in Siak compared with that of background PM2.5 in the same district. The average PM2.5 concentration near the peatland fire sources was $1100 \,\mu g \, m^{-3}$, which is much higher than that of the background $(70 \,\mu g \,m^{-3})$, as shown in Table S2. The significant differences in the total concentrations of water-soluble ionic components between peatland fire and background samples are also shown in Table S2. Fig. 1 shows that Cl^- , NO_3^- , SO_4^{2-} , and NH_4^+ concentrations at the peatland fire sources are consistently higher than the background, with remarkable differences in Cl^- and NH_4^+ . K^+ has been extensively used as BB indicator (Chuang et al., 2013); however, K⁺ concentrations in PM2.5 between peatland fire and background samples in Siak were comparable. K⁺ has a reported boiling temperature of approximately 760 °C (Chuang et al., 2013). Thus, this result is because Indonesian peatland fires are in a smoldering phase with a slow and low-temperature form of burning, as shown in our previous research (Fujii et al., 2015a).

Table 1 and Fig. S5 show the mass fraction of water-soluble ionic components in $PM_{2.5}$. The mass fractions of total water-soluble ions (the sum of quantified water-soluble ions) in $PM_{2.5}$ for peatland fire are lower than for the background. The mass fractions for each water-

Fig. 1. Concentrations of PM_{2.5} and water-soluble ionic components at Indonesian peatland fire aerosol (IPF) source and background aerosol (BKG) sources in Siak (SIAK).

Table 1

Results of speciation of water-soluble ionic components in PM_{2.5} for Indonesian peatland fire aerosols (IPF) in the Siak (SIAK), Kampar (KMP), and Payung Sekaki (PS) districts, and background aerosols (BKG) in Siak.

compound	IPF_SIAK		IPF_KMP		IPF_PS		IPF_ALL		BKG_SIAK-1	BKG_SIAK-2
	range	$av \pm sd$	range	$av \pm sd$	range	$av \pm sd$	range	$av \pm sd$		
PM _{2.5} [μg m ⁻³]										
PM _{2.5}	520-2200	1100 ± 660	450-1200	$820~\pm~310$	280-670	380 ± 190	280-2200	810 ± 530	54	87
$Ions [mg g^{-1} PM_{2.5}]$										
$C_2O_4^{2-}$	0.17-0.78	0.40 ± 0.26	0.28 - 1.2	0.73 ± 0.38	0.62-1.8	0.93 ± 0.59	0.17-1.8	0.66 ± 0.45	0.99	4.6
Cl ⁻	3.0-6.2	4.8 ± 1.2	5.2-60	29 ± 23	9.0-12	10 ± 1.5	3.0-60	14 ± 16	1.3	1.3
NO ₃ ⁻	0.36-1.1	0.73 ± 0.30	0.73-2.3	1.5 ± 0.72	1.6 - 3.1	2.1 ± 0.68	0.36-3.1	1.4 ± 0.80	6.5	5.5
SO4 ²⁻	2.8-12	7.1 ± 4.2	3.0-6.2	4.5 ± 1.4	3.8-5.9	4.9 ± 1.1	2.8-12	5.6 ± 2.9	16	24
Na ⁺	BL-0.087	-	BL (all)	-	BL (all)	-	BL-0.087	-	1.1	0.90
NH4 ⁺	2.7-9.0	5.9 ± 2.5	4.5-41	21 ± 16	9.0-12	10 ± 1.3	2.7-41	12 ± 10	7.7	12
K ⁺	BL-1.5	-	BL-2.8	-	BL (all)	-	BL-2.8	-	11	7.70
Total ions	9.1-27	19 ± 8.2	14-110	58 ± 38	24–31	28 ± 3.2	9.1–110	34 ± 26	45	56

Sample ID

Fig. 2. Percentage of anion and cation contribution to total PM_{2.5} ions based on equivalent concentrations at Indonesian peatland fire (IPF) and background (BKG) sources in Siak (SIAK).

soluble ionic component $(C_2O_4^{2-}, NO_3^{-}, SO_4^{2-}, Na^+, and K^+)$ at peatland fire sources are also lower than for the background. On the contrary, only the Cl⁻ mass fraction is remarkably higher for peatland fire than for the background.

Fig. 2 shows the anion and cation contribution percentage in the total ions in PM_{2.5} (equivalent concentration base) for peatland fire and background aerosols. The average equivalent ratios of total anions to cations for peatland fire and background aerosols are 1.1 (standard deviation = 0.10) and 1.4, respectively. Cl⁻ and SO₄²⁻ are the dominant peatland fire species, accounting for 47% and 46% of total anions on average, respectively. NH₄⁺ is the dominant cation, accounting for an average of 98% of total cations. SO₄²⁻ and NO₃⁻ are the dominant background aerosol anion species (SO₄²⁻: 68% and NO₃⁻: 17%) and NH₄⁺ and K⁺ are the dominant cations (NH₄⁺: 65% and K⁺: 30%). These results suggest that the dominant ionic compounds in PM_{2.5} for peatland fire aerosols are NH₄Cl and (NH₄)₂SO₄ (the equivalent ratio of NH₄⁺ to the sum of Cl⁻ and SO₄²⁻ = 1.1 ± 0.090). For the background aerosols, it is considered that one of dominant ionic compounds in PM_{2.5} is (NH₄)₂SO₄.

3.3. Differences in ionic compositions of $PM_{2.5}$ at several peatland fire sources

To determine the differences in PM_{2.5} source profiles of Indonesian peatland fire focusing on water-soluble ionic components among fire sites, we conducted PM_{2.5} samplings at three peatland fire locations (Siak, Kampar, and Payung Sekaki). The total mass fractions of the quantified water-soluble ionic components in PM_{2.5} in Siak, Kampar, and Payung Sekaki were $1.9 \pm 0.82\%$, $5.8 \pm 3.8\%$, and $2.8 \pm 0.32\%$, respectively (Table 1), which showed higher fractions in Kampar than in other sites (Fig. S6). Interestingly, the mass fraction of SO₄²⁻ in total ions appears to decrease as the mass fraction of total ions in PM_{2.5} for peatland fire increases (Pearson correlation coefficient r = -0.67, p value < 0.05), whereas the Cl⁻ mass fraction increases (r = 0.72, p < 0.05) as shown in Fig. 3. Differences in biomass or combustion temperature in those fires may contribute to the opposite trends for SO₄²⁻ and Cl⁻.

See et al. (2007) reported that the average total mass fraction of

Fig. 3. Plot of total $PM_{2.5}$ ion fraction vs. SO_4^{2-} and Cl^- fraction in total ions for peatland fire samples.

quantified water-soluble ionic components in $PM_{2.5}$ collected in Riau, Sumatra Island in 2005 was 10%. Jayarathne et al. (2018) reported that it was 1.1% in Kalimantan Island in 2015. Our data fall within the range determined by these studies.

Fig. 4 shows PM_{2.5} source profiles for typical water-soluble ionic components (Cl⁻, SO₄²⁻, and NH₄⁺) in different peatland fire sites. Table 1 shows the detailed information on the other water-soluble ionic components in this study. The average mass fractions of three typical PM_{2.5} ionic components for peatland fire aerosols in Siak and Kampar from this study decrease in the order of SO₄²⁻ > NH₄⁺ > Cl⁻ and Cl⁻ > NH₄⁺ > SO₄²⁻, respectively. The average mass fractions in both Payung Sekaki (this study) and Kalimantan (Jayarathne et al., 2018) decrease in the order of NH₄⁺ > Cl⁻ > SO₄²⁻, which shows the

Fig. 4. Comparison of $PM_{2.5}$ source profiles for typical water-soluble ionic components at different Indonesian peatland fire (IPF) locations (SIAK = Siak, KMP = Kampar, and PS = Payung Sekaki). *Data for Kalimantan was obtained from Javarathne et al. (2018).

differences among peatland fire spots. This may be due to the type of biomass burned or combustion temperature as previously mentioned. Thus, our results show that $PM_{2.5}$ source profile of water-soluble ionic components for peatland fire must be selected with extreme caution if applied to a receptor model, such as chemical mass balance or source-oriented chemical transport model as an emission inventory.

Regarding the ion composition results for each peatland fire sample (Fig. 5), Cl⁻ and NH₄⁺ are consistently dominant anions (Cl⁻: 62% on average) and cations (NH₄⁺: 98% on average), respectively, for all peatland fire samples. For some data especially in Siak, SO₄²⁻ is also a dominant anion; however, these trends are not consistent with other results, especially those from Kampar. Our results show that Indonesian peatland fire aerosols are characterized by a consistently dominant composition of NH₄Cl in PM_{2.5} at the source in terms of water-soluble ionic components; however, in some cases, (NH₄)₂SO₄ appears to be dominant.

3.4. Effects of peatland fires on ambient PM_{2.5}

To clarify the effects of peatland fires on ambient $PM_{2.5}$ water-soluble ionic components, we conducted ambient $PM_{2.5}$ samplings in Pekanbaru during peatland fire-induced haze periods. For comparison, we conducted three $PM_{2.5}$ samplings during non-haze periods in Pekanbaru.

Fig. 6 shows variations in the concentrations of $PM_{2.5}$ mass and water-soluble ionic components. $PM_{2.5}$ concentrations during haze

Fig. 5. $PM_{2.5}$ anion and cation weight percentage distributions based on equivalent concentrations at Indonesian peatland fire (IPF) sources in Siak (SIAK), Kampar (KMP), and PS (Payung Sekaki).

periods (270 ± 61 µg m⁻³) were significantly higher than that during non-haze periods (43 ± 36 µg m⁻³). Significant differences in the total concentrations of water-soluble ionic components are also observed between haze (33 ± 6.5 µg m⁻³) and non-haze (5.5 ± 2.6 µg m⁻³) samples. In particular, average concentrations of $C_2O_4^{2-}$, NO_3^{-} , SO_4^{2-} , and NH_4^+ during the haze periods were 4.2, 4.5, 7.3, and 7.8 times higher than those during the non-haze periods. $C_2O_4^{2-}$ is widely recognized as a tracer of secondary aerosols (Golly et al., 2019) as well as NH₄NO₃ and (NH₄)₂SO₄. Additionally, $C_2O_4^{2-}$ and NO₃⁻ concentrations for peatland fire aerosols in Siak are comparable to those for the background, as shown in Fig. 1. Thus, the increased total concentrations of water-soluble ionic components during haze periods may have been induced by peatland fires with secondary aerosol formation processes.

In the previous section, we demonstrated that peatland fire sources emit high concentrations of Cl⁻ (Table S2). However, differences in Cl⁻ concentrations between haze and non-haze samples in Pekanbaru are smaller than those of C₂O₄²⁻, NO₃⁻, SO₄²⁻, and NH₄⁺. Therefore, haze samples have obviously different water-soluble ionic compositions than those of peatland fire samples, and patterns of ion balance of haze samples are similar to those of background aerosols, as shown in Fig. 7, i.e., abundant NH₄Cl, which is characteristic of PM_{2.5} at peatland fire sources, is obviously low during haze periods. This could be because NH₄Cl is thermodynamically unstable as well as NH₄NO₃ and formed through reversible phase equilibrium with precursor gases, such as NH₃ and HCl under normal ambient conditions (Behera et al., 2013; Pio and Harrison, 1987; Tang et al., 2016). Thus, our results show that peatland fires trigger haze conditions under high gaseous concentrations of NH₃, as described in Whitburn et al. (2016), and HCl in ambient air around a peatland fire source.

4. Conclusion

We conducted a field study to characterize water-soluble ionic species in $PM_{2.5}$ emitted from peatland fires using ground-based samplings at fire sources and receptor sites in the Riau Province, Sumatra, Indonesia. We determined the concentrations of $PM_{2.5}$ mass, water-soluble ions, and some chemical elements. The main conclusions are as follows:

- 1. $PM_{2.5}$ at peatland fire sources are characterized by a consistently dominant NH_4Cl composition in terms of water-soluble ionic components. However, the mass fractions of typical water-soluble ionic components, as well as those of total quantified water-soluble ionic components, for peatland fires (Cl^- , SO_4^{2-} , and NH_4^+) in $PM_{2.5}$ tend to differ between peatland fire sources. Thus, our results indicate that $PM_{2.5}$ source profiles of water-soluble ionic components for peatland fire must be selected with extreme caution if applied to a receptor model, such as chemical mass balance or source-oriented chemical transport model as an emission inventory.
- 2. During the peatland fire-induced haze periods, four water-soluble ionic components, $C_2O_4^{2-}$, NO_3^{-} , SO_4^{2-} , and NH_4^+ , were highly elevated. Since these four ions are widely recognized as the major secondarily formed aerosol components, the increased total concentrations of water-soluble ionic components during haze periods can mainly be derived from the gas-to-aerosol conversion process. On the contrary, an abundance of NH_4Cl , which is characteristic of peatland fire $PM_{2.5}$ sources, is obviously low at receptor sites during haze periods. This could be because NH_4Cl is thermodynamically unstable.
- 3. Further studies based on the chemical characterization of fresh and aged peatland fire aerosols are needed to fully understand the transformation process via long-range transportation. Controlling factors to determine peatland fire $PM_{2.5}$ chemical compositions should be clarified (e.g., using controlled-laboratory burning experiments) to obtain a reliable source profile and accurate emission

Fig. 6. Variabilities of PM2.5 and water-soluble ion concentrations during Indonesian peatland fire (IPF)-induced haze (HAZE) and non-haze (NHAZE) periods.

Fig. 7. $PM_{2.5}$ anion and cation weight percentage distributions based on average equivalent concentrations for Indonesian peatland fire (IPF) source, haze (HAZE), and non-haze (NHAZE) samples. IPF source samples were collected in Siak (SIAK), Kampar (KMP), and Payung Sekaki (PS). Haze and non-haze samples were collected in Pekanbaru (PKB).

inventory.

Acknowledgment

This study was supported by Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Republic of Indonesia (Grant Number.: DIPA-023.04.1.673453/2015). We also appreciate the financial support by Japan Society for the Promotion of Science (JSPS) Kakenhi Grant Numbers 15H02589 and 18K18204.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apr.2019.02.009.

References

Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., Wennberg, P.O., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11 (9), 4039–4072.

Behera, S.N., Balasubramanian, R., 2014. Influence of biomass burning on temporal and diurnal variations of acidic gases, particulate nitrate, and sulfate in a tropical urban

Y. Fujii, et al.

- Behera, S.N., Sharma, M., Aneja, V.P., Balasubramanian, R., 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20 (11), 8092–8131.
- Betha, R., Pradani, M., Lestari, P., Joshi, U.M., Reid, J.S., Balasubramanian, R., 2013. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 122, 571–578.
- Betha, R., Behera, S.N., Balasubramanian, R., 2014. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 48 (8), 4327–4335.
- Chuang, M.T., Chou, C.C.K., Sopajaree, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee, C.T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmos. Environ. 78, 72–81.
- Engling, G., He, J., Betha, R., Balasubramanian, R., 2014. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling. Atmos. Chem. Phys. 14 (15), 8043–8054.
- Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P., Mizohata, A., Huboyo, H.S., 2014. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ. 87, 164–169.
- Fujii, Y., Kawamoto, H., Tohno, S., Oda, M., Iriana, W., Lestari, P., 2015a. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): identification of organic compounds. Atmos. Environ. 110, 1–7.
- Fujii, Y., Tohno, S., Amil, N., Latif, M.T., Oda, M., Matsumoto, J., Mizohata, A., 2015b. Annual variations of carbonaceous PM_{2.5} in Malaysia: influence by Indonesian peatland fires. Atmos. Chem. Phys. 15 (23), 13319–13329.
- Fujii, Y., Mahmud, M., Oda, M., Tohno, S., Matsumoto, J., Mizohata, A., 2016. A key indicator of transboundary particulate matter pollution derived from Indonesian peatland fires in Malaysia. Aerosol Air Qual. Res. 16, 69–78.
- Fujii, Y., Tohno, S., Amil, N., Latif, M.T., 2017. Quantitative assessment of source contributions to PM_{2.5} on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire. Atmos. Environ. 171, 111–117.
- Golly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S., Rangognio, J., Chrétien, E., Vagnot, M.-P., Robic, P.-Y., Besombes, J.-L., Jaffrezo, J.-L., 2019. Organic markers and OC source apportionment for seasonal variations of PM_{2.5} at 5 rural sites in France. Atmos. Environ. 198, 142–157.
- Harrison, M.E., Page, S.E., Limin, S.H., 2009. The global impact of Indonesian forest fires. Biologist 56, 156–163.
- Hayasaka, H., Noguchi, I., Putra, E.I., Yulianti, N., Vadrevu, K., 2014. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ. Pollut. 195, 257–266.
- He, J., Zielinska, B., Balasubramanian, R., 2010. Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmos. Chem. Phys. 10 (23), 11401–11413.
- Huijnen, V., Wooster, M.J., Kaiser, J.W., Gaveau, D.L.A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., van Weele, M., 2016. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886. https://doi. org/10.1039/srep26886.
- Jayarathne, T., Stockwell, C.E., Gilbert, A.A., Daugherty, K., Cochrane, M.A., Ryan, K.C., Putra, E.I., Saharjo, B.H., Nurhayati, A.D., Albar, I., Yokelson, R.J., Stone, E.A., 2018. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 18 (4), 2585–2600.
- Koplitz, S.N., Mickley, L.J., Marlier, M.E., Buonocore, J.J., Kim, P.S., Liu, T., Sulprizio, M.P., DeFries, R.S., Jacob, D.J., Schwartz, J., Pongsiri, M., Myers, S.S., 2016. Public health impacts of the severe haze in Equatorial Asia in September-October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023.

Okuda, T., Fujimori, E., Hatoya, K., Takada, H., Kumata, H., Nakajima, F., Hatakeyama,

S., Uchida, M., Tanaka, S., He, K., Ma, Y., Haraguchi, H., 2013. Rapid and simple determination of multi-elements in aerosol samples collected on quartz fiber filters by using EDXRF coupled with fundamental parameter quantification technique. Aerosol Air Qual. Res. 13 (6), 1864–1876.

- Okuda, T., Schauer, J.J., Shafer, M.M., 2014. Improved methods for elemental analysis of atmospheric aerosols for evaluating human health impacts of aerosols in East Asia. Atmos. Environ. 97, 552–555.
- Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.-D.V., Jaya, A., Limin, S., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420 (6911), 61–65.
- Pavagadhi, S., Betha, R., Venkatesan, S., Balasubramanian, R., Hande, M.P., 2013. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environ. Sci. Pollut. Res. 20 (4), 2569–2578.
- Pio, C.A., Harrison, R.M., 1987. The equilibrium of ammonium chloride aerosol with gaseous hydrochloric acid and ammonia under tropospheric conditions. Atmos. Environ. 21 (5), 1243–1246.
- Reid, J.S., Koppmann, R., Eck, T.F., Eleuterio, D.P., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5 (3), 799–825.
- See, S.W., Balasubramanian, R., Wang, W., 2006. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J. Geophys. Res. 11, D10S08. https://doi.org/10.1029/ 2005JD006180.
- See, S.W., Balasubramanian, R., Rianawati, E., Karthikeyan, S., Streets, D.G., 2007. Characterization and source apportionment of particulate matter ≤ 2.5 µm in Sumatra, Indonesia, during a recent peat fire episode. Environ. Sci. Technol. 41 (10), 3488–3494.
- Stockwell, C.E., Veres, P.R., Williams, J., Yokelson, R.J., 2015. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmos. Chem. Phys. 15 (2), 845–865.
- Stockwell, C.E., Jayarathne, T., Cochrane, M.A., Ryan, K.C., Putra, E.I., Saharjo, B.H., Nurhayati, A.D., Albar, I., Blake, D.R., Simpson, I.J., Stone, E.A., Yokelson, R.J., 2016. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 16 (18), 11711–11732.
- Sulong, N.A., Latif, M.T., Khan, M.F., Amil, N., Ashfold, M.J., Wahab, M.I.A., Chan, K.M., Sahani, M., 2017. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci. Total Environ. 601–602, 556–570.

Tacconi, L., 2016. Preventing fires and haze in Southeast Asia. Nature 6 (7), 640-643.

Tang, X., Zhang, X., Ci, Z., Guo, J., Wang, J., 2016. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: measurements and comparison with model. Atmos. Environ. 133, 123–134.

- Urbančok, D., Payne, A.J.R., Webster, R.D., 2017. Regional transport, source apportionment and health impact of PM₁₀ bound polycyclic aromatic hydrocarbons in Singapore's atmosphere. Environ. Pollut. 229, 984–993.
- Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., Coheur, P.-F., 2016. Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophys. Res. Lett. 43, 11007–11014.
- World Bank, 2016. The Cost of Fire: an Economic Analysis of Indonesia's 2015 Fire Crisis. Indonesia Sustainable Landscapes Knowledge; Note No. 1. World Bank Group, Washington, DC. http://documents.worldbank.org/curated/en/ 776101467990969768/pdf/103668-BRI-Cost-of-Fires-Knowledge-Note-PUBLIC-ADD-NEW-SERIES-Indonesia-Sustainable-Landscapes-Knowledge-Note.pdf.
- Yamasoe, M.A., Artaxo, P., Miguel, A.H., Allen, A.G., 2000. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: watersoluble species and trace elements. Atmos. Environ. 34 (10), 1641–1653.