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ABSTRACT

In recent many years, several models have been developed to analyze and predict the rain-
fall. In this paper an attempt has been made to get an alternative model for rainfall predic-
tion by combining two methods, the wavelet technique and Neural Network model. Wavelet
transformation has become popular because of its ability to concurrently deal with both the
spectral and the interim information contained within time series data. The wavelet decom-
position used in this paper is Maximal Overlap Discrete Wavelet Transform (MODWT). In
Neural Network layer, General Regression Neural Network (GRNN) is chosen to develop
the hybrid model. The combination of MODWT and GRNN is called Wavelet General Re-
gression Neural Network (WGRNN). The model developed is applied to the ten-daily rainfall
data in two regions of Central Java, Indonesia.
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1 Introduction

An accurate prediction of rainfall is one of the biggest challenges in the hydrological system,
although many progress in weather forecasting in recent decades. Prediction rainfall is closely
related to the agricultural sector, which contributes significantly to the nation’s economy (Nayak
et al., 2013). Neural network becomes an interesting approach in rainfall prediction because
of their highly nonlinearity, flexibility and data driven learning in building models without any
prior knowledge. Neural Network was a nonparametric model which employable in time series
modeling. It does not require various assumptions in the residual. Therefore, the main focus
considered on developing Neural Network is how to obtain residual as small as reasonably
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possible. Many researches have been found that this model have more accurate prediction
than parametric model. A specific class of Neural Network which does not need a training
procedure as in the back-propagation method is General Regression Neural Network (GRNN).
It has been used for a few applications in the water resources area, as in (Cigizoglu and
Alp, 2004) and (Cigizoglu and Alp, 2006).
Many applications showed that the resolutions of Neural Network model have been influenced
by determining input. Inexactitude of input selection or noise contained in input data, often
make the weighting inaccuracy. Wavelet decomposition analysis has given new tool as an
approaching of the problem. Wavelet transformation give a collection of wavelet coefficients.
Calculation of wavelet coefficients can be done by using Discrete Wavelet Transform (DWT)
proposed by (Mallat, 1998). Furthermore, (Yajnik and Mohan, 2009) used the DWT for ap-
proximation of a signal whereas (Nayak et al., 2013) made do this wavelet in predicting rainfall
data. In (Renaud et al., 2003), wavelet has been applied in time series field. The decompo-
sition method used to calculate wavelet coefficients was Maximal Overlap Discrete Wavelet
Transform (MODWT). The wavelet coefficients in various scale was determined by the level of
the decomposition.
Several approaches have been proposed for combining Neural Network and wavelet decom-
position. The model resulted from this technique is called Wavelet Neural Network (WNN).
In a general way, there were two methods of combining the wavelet decomposition and Neu-
ral Network. The first is using wavelet as as activation function (Minu et al., 2010). In the
second approximation, wavelet decomposition was used as preprocessing. Input model was
decomposed according to the detail coefficients and approximation coefficients. Furthermore,
processing is done by Neural Network and post-processing by the reconstruction (Al-Geelani
et al., 2013). In this paper, the second method is used. The forming model is applied to predict
rainfall in some regions in Central Java Indonesia. The regions chosen are the main rice plant
regions. Wavelet decomposition method used in this paper is MODWT, whereas GRNN is the
Neural Network architecture selected for processing unit. In the research before, (Kisi, 2011)
has been develop WGRNN model, but the wavelet decomposition method used was DWT.

2 General Regression Neural Network

Essentially, GRNN operations is based on the theory of nonlinear regression where the esti-
mate of the expected value of output is determined by the set of inputs. The output resulted
by GRNN model can be either multivariate or univariate. In terms of the application of time
series data, the output is univariate. Equation (1) summarize the logical of GRNN in nonlinear
regression term (Specht, 1991):

E [y |X ] =

∞∫
−∞

yf (X, y) dy

∞∫
−∞

f (X, y) dy

(2.1)

where y is the output predicted by GRNN, X is vector containing p predictor variables as input
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model (X1, X2, . . . , Xp), whereas E[y|X] is the expected value of output y if given input X, and
f(X, y) is the probability density function of X and y.

Figure 1: The design of GRNN in nonlinear regression term

The GRNN construction in nonlinear regression term is described in figure 1. The input vari-
ables are the vector (X1, X2, . . . , Xp), i.e the independent variables with p factors. The out-
put resulted denoted by y. In time series term, the input variables become the past values,
X = (Xt−1, Xt−2, . . . , Xt−p). The order p is determined before. The output resulted Xt is the
future prediction. The topology of GRNN proposed by (Specht, 1991) consist of four layers:
input layer, pattern layer, summation layer and output layer. The task of the first layer is receive
the information. There is no data processing in the layer. The first layer is fully joined to the
second, the pattern layer. The total number of patterns equals to the number of input units in
the first layer. The pattern neuron i derive data from input neuron and it count the output by
the transfer function:

θi = e−(X−Ui)
′(X−Ui)/2σ2

(2.2)

where X is the input vector of predictor variables, Ui is training vector represented by pattern
neuron i, and s is smoothing parameter. Each neuron in pattern layer is then resulting output
θi. Output of the neuron pattern is then forwarded to the third layer called summation layer. In
this layer, output of all of the patterns neuron is then added. There are two types of summa-
tion formed, simple arithmetic summation and weighted summation (Specht, 1991). In GRNN
topology, there is separate processing unit which perform simple arithmetic summation and
weighted summation, which is expressed in the following mathematical equations.

SS =
∑
i

θi (2.3)

SW =
∑
i

wiθi (2.4)

Neuron which is formed from simple arithmetic summation is called denominator whereas neu-
ron which is formed from weighted summation is called numerator. The two summations were
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obtained through learning process under supervision. The resulting sum by the summation
neuron successively sent to the fourth layer, namely the output layer. The output neuron then
formed the following division to get the regression output GRNN:

X̂t =
SW

SS
(2.5)

The GRNN does not require an iterative training procedure as does the FFNN model. The local
minimum problem was not faced in GRNN simulations (Kisi, 2011).

3 Wavelet Decomposition

Let X be an N dimensional vector whose elements are the real-valued time series {Xt : t =

0, . . . , N − 1} and {Wn : n = 0, . . . , N − 1} represent the DWT coefficients. It can be written
that W = WX, where W is a column vector of length N = 2J whose nth element is the nth
DWT coefficient Wn, and W is an N ×N real-valued matrix defining the DWT and satisfying
WTW = IN . The elements of the vector W is then decomposed into J+1 subvectors. The first
J subvectors are denoted by Wj , j = 1, . . . , J, and the jth such subvector contains all of the
DWT coefficients for scale tj . Wj is a column vector with N/2j elements. The final subvector is
denoted as Vj and contains just the scaling coefficient WN−1. The vector W can be written as

W =
[
W1 W2 . . . WJ VJ

]′
. By the orthonormality, i.e. X = WTW and ‖ W ‖2=‖ X ‖2,

X can be written as:

X =

J∑
j=1

WT
j Wj + VT

J VJ (3.1)

where Wj and VJ are matrices by partitioning the rows of W commensurate with the partitioning
of W into W1, . . . ,WJ and VJ . Thus the (N/2) × N matrix W1 is formed from the n = 0 up to
n = (N/2) − 1 rows of W; the (N/4) × N matrix W2 is formed from the n = N/2 up to
n = (3N/4) − 1 rows; and so forth, until the 1×N matrices WJ and VJ which are the last two
rows of W.
Pyramid algorithm proposed by (Mallat, 1998), was an algorithm that allows W to be factored
in terms of very sparse matrices using linear filtering. This algorithm make uses of a wavelet
filter and a scaling filter. A filter {hl : l = 0, ..., L − 1} of even width L (implying h0 = 0 and
hL−1 �= 0) is called wavelet filter if

L−1∑
l=0

hl = 0 and

∞∑
l=−∞

hlhl+2n =

{
1, if n = 0

0, if n �= 0
(3.2)

The scaling filter is defined in terms of the wavelet filter through

gl ≡ (−1)l+1hL−1−l

This filter satisfies the conditions

L−1∑
l=0

glhl+2n =

{
1, if n = 0

0, if n �= 0
and

L−1∑
l=0

glhl+2n = 0, for all n (3.3)
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Filtering by DWT cannot be done on any sample size, which cannot be expressed in the form
2J where J is a positive integer. (Percival and Walden, 2000) showed that wavelet decompo-
sition called Maximal Overlap Discrete Wavelet Transform (MODWT ), a modification version
of Discrete Wavelet Transform (DWT ), was well-defined in any sample size n. In MODWT ,
wavelet coefficients in each level is always the same, so it is more appropriate in time series
modeling than DWT. The prediction of time series is modeled linearly based on wavelet coeffi-
cients resulted from the decomposition before. The model resulted can be constructed in this
equation:

X̂t =

J∑
j=1

Aj∑
k=1

(âj,kwj,t−k + b̂j,kvj,t−k) (3.4)

The J symbol shows the level of decomposition, whereas Aj is the number of coefficients in
each level. The next problem is how to determine the optimal lags be input of MODWT model
in time series. If the number of lags in each level is the same, that is Aj = A in each level j,
so the number of variables be input are 2AJ . If the scaling coefficient included in the model is
just the last level, (vJ , t− k) so the equation in (3.4) will be

X̂t =

J∑
j=1

Aj∑
k=1

(âj,kwj,t−k) +

AJ+1∑
k=1

âJ+1,kvJ,t−k (3.5)

In (Murtagh et al., 2004), detail coefficients wj,t−k and scaling coefficients vJ,t−k resulted from
MODWT transformation which important considered to predict the value in time t are wj,t−2jk

and vJ,t−2Jk. It can be defined by this equation:

X̂t =

J∑
j=1

Aj∑
k=1

âj,kwj,t−2jk +

AJ+1∑
k=1

âJ+1,kvJ,t−2Jk (3.6)

In this case the decomposition level J and the number of coefficients in each level Aj were
chosen by user.

4 Wavelet General Regression Neural Network

The Wavelet General Regression Neural Network (WGRNN) is a combination of wavelet de-
composition and GRNN model. In this hybrid model, input of GRNN are the detail coefficients
and scaling coefficients resulted from MODWT decomposition. In this case, we use the design
explained in figure (1), but the input are the independent variables in equation (3.4) or is in
equation (3.5). The MODWT decomposition is used to decompose the actual data at first up to
desired level. The next step is to select the detail coefficients and scaling coefficients used as
input. Lags of each coefficient are selected by multiscale technique proposed by citeRen.03.
GRNN architecture is now applied for the selected input. By the GRNN procedure described
before, the network is then work by using all of the four layer processing to obtain output.

X̂t =
S̃W

S̃S

(4.1)
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where
S̃S =

∑
i

θ̃i (4.2)

S̃W =
∑
i

wiθ̃i (4.3)

and
θ̃i = e

−(X̃−Ui)
′
(X̃−Ui)

/
2σ2

(4.4)

X̃ = (wj,t−2jk, vJ,t−2Jk), i.e the detail coefficients and scaling coefficients of MODWT. The
roadmap of developing WGRNN model is shown in figure (2).

Figure 2: Roadmap of developing WGRNN model

In developing WGRNN model, the desired maximal level and the number of coefficients in
each level are selected as appropriate as possible with the length of data. More the number
is chosen, more the data is sliced. In GRNN processing, the input data is divided into two
parts. The first is training data and the remaining is testing. The optimal parameter is obtained
through the performance of the testing.

5 Rainfall Prediction

The data used in this paper are the ten-daily rainfall data in two regions of Central Java, Indone-
sia. The first is the rainfall data in ZOM 136 Cokrotulung, Musuk, Klaten and the second is in
ZOM 146 Balepanjang, Tawangmangu, Karanganyar. All of the data are from January 2010 to
December 2014. The length of the data is 180, respectively. The first 150 data as training and
the last 30 data as testing. The first stage is decomposing data via MODWT. The model devel-
oped is it by (Murtagh et al., 2004) as in equation (3.6). In this step, the optimal level and the
optimal number of coefficients in each level was obtained automatically by the computational
programming constructed. Through the length of data reason, the maximal level chosen is 3
and the maximal number in each level is 6. All the computational programming in this section
is done with Matlab routine, especially is wmtsa toolkit for Matlab. The MODWT decomposition
resulting the optimal level and the number of coefficients in each level. The results of the both
data analysis are showed in table (1).
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Table 1: Input decomposition by MODWT

criteria ZOM 136 ZOM 146
RMSE training 53.0248 103.6343
the optimal J 4 3
the optimal Aj 6 3
RMSE testing 87.5016 73.0038

The table (1) shows that, for the first data, ZOM 136, the optimal level is 4 and the number
of coefficients in each level is 6. The total number of input resulted from this construction is
30. In the second data, ZOM 146, the optimal level is 3 and the number of coefficients in each
level is 3. The total number of input resulted from this construction is 12. The second stage is
using the input resulted before to processing in GRNN layer. In this layer, the optimal spread
is obtained automatically by computational programming. The results of predict in-sample with
training data and predict out-sample with testing data of WGRNN model is showed in table (2).

Table 2: Predict in-sample and predict out-sample of WGRNN model

criteria ZOM 136 ZOM 146
RMSE training 27.8586 53.4430
RMSE testing 63.8004 81.0513
optimal spread 0.01 0.01

Table (2) shows that in the first data, WGRNN model can improve both in-sample prediction
with training data and out-sample prediction with testing data. The proposed model can reduce
the RMSE of in-sample prediction from 53.0248 up to 27.8586, it is about 47.46%. It also repair
the RMSE of out-sample prediction from 87.5016 to 63.8004, about 27.09%. In the second
data, WGRNN model just make a better in-sample prediction compared with MODWT model,
but poor in out-sample prediction. The value of RMSE of in-sample prediction by MODWT
is 103.6343, whereas RMSE of in-sample prediction resulted by WGRNN is 53.4430, it is go
down about 48.43%. Unhappily, WGRNN is not success to obtain a magnificent out-sample
prediction. The RMSE of out-sample prediction resulted is 81.0513. It is higher but not too bad
than one by MODWT, which the value is 73.0038. The difference of the both values is about
9.93%.
Figure 3 and figure 4 show the model performance of both in-sample and out-sample prediction
of WGRNN model in ZOM 136. In figure 3, it can be seen that although in some points have a
wide difference with the actual, but broadly speaking that the in-sample prediction of WGRNN
model is very accurate. The model output closely follows the true data. In each observation
point, the difference of actual and the prediction is small enough. The error range of the model
is small enough. Figure 4 shows the power of out-sample prediction of WGRNN model. It is
the higher performance compared with one another. In some points, out-sample predictions
give almost perfect forecasting. The predictions are very close to the actual. Although in
some observations the out-sample prediction is still rather far from the native but overall, the
forecasting of WGRNN model yields a resemble prediction with the actual.
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Figure 3: Predict in-sample of ZOM 136 by WGRNN

Figure 4: Predict out-sample of ZOM 136 by WGRNN

Figure 5 and figure 6 show the model performance of both in-sample and out-sample prediction
of WGRNN model in ZOM 146. Figure 5 shows the power of in-sample prediction of WGRNN
model. It make a wonderful result. The output is very closely follows the actual. In each
observation point, from beginning to the end, the prediction has an ability to abreast of the
actual. The error range of the model is very small, indicating that they all perform adequately.
Figure 6 shows the out-sample prediction of WGRNN model. It is the higher performance
compared with one another. In some points of forecasting, out-sample predictions give almost
perfect forecasting but in some others the out-sample prediction is far from the actual. Overall,
the forecasting of WGRNN model still yields a good prediction, because the pattern of the step
ahead data is still can be followed by the forecasting.

6 Conclusion

The new design which combining wavelet decomposition and neural network in seasonal time
series prediction has been developed. The wavelet decomposition exerted was MODWT,
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Figure 5: Predict in-sample of ZOM 146 with WGRNN model

Figure 6: Predict out-sample of ZOM 146 with WGRNN model

whereas a class of neural network model used was GRNN. The proposed model was ap-
plied in rainfall prediction. The data used are the ten-daily rainfall data in two regions of Central
Java, Indonesia. In the two data observed, the resulting model made an excellent accuracy
in both in-sample predictions, better than one produced by just MODWT prediction. In ZOM
136, the out-sample prediction of the proposed model was still better result than MODWT, but
on the contrary in ZOM 146. Overall, the proposed model can made into a good reference for
modeling seasonal time series, especially for forecasting the rainfall data.
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