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In this paper, we design bi-objective model predictive controller for inventory management in supply chains
without any delay in production or shipments. The objectives used are obtained from model predictive control
and economic model predictive control. Adaptive Weighted Sum (AWS) method is used to design a bi-objective
optimization problem by combining these two control strategies and weighting each of the respective strategy
based on a subjective perspective. The acquired control is then compared to model predictive control and
economic model predictive control in a numerical simulation. Based on the results from the simulation, it can
be seen that the control obtained through AWS method could stabilize a system with more cost-effective inputs
when it is compared with model predictive control. The results also show that the control can stabilize a wider
range of initial state when it is compared to economic model predictive control.
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1. INTRODUCTION
Control theory has been a peculiar area of research, espe-
cially in its application within supply chains management.1�2

An important consideration in process control is the stability of
the closed-loop system under the proposed control. Despite that,
the stability of rolling horizon optimization management has not
been researched sufficiently.

Model predictive control (MPC) is a rolling horizon optimiza-
tion control method with guaranteed stability properties.3 Over
the past decade, many different frameworks for control manage-
ment have been studied.4–6 In spite of being a fairly mature field,
MPC has trouble in accounting for the economic costs the control
would impose. The recently developed economic model predic-
tive control (EMPC),7�8 on the other hand, fails to account for the
stability of the system for the sake of optimizing the economic
costs required for the system to operate.

Multiple, possibly conflicting, objective functions often present
when one is designing a control. For example, one may want
to maximize the performance of a system while minimizing its
cost. The traditional approach in formulating multiobjective opti-
mization problems is by using a weighted-sum approach. Despite
its existence, the approach has drawn many criticisms in regards
to its drawbacks.9 A new method recently has been proposed in
2005, a method that is called Adaptive Weighted Sum (AWS)
method.

In this paper, we analyze the utilization of AWS method devel-
oped by Kim and De Weck10 and its application in designing a

∗Author to whom correspondence should be addressed.

biobjective control method as presented by Subramanian, Rawl-
ings, and Maravelias.11 The control method presented is able to
simultaneously account for the stability of a system and the eco-
nomic costs imposed by the operation of the process in a supply
chain dynamic with delays present. Here, we design a biobjective
control for a supply chain with no shipment/production delays.
The obtained control is applied on a two-node, single product
supply chain in a numerical simulation. The results of proposed
control is compared with MPC and EMPC.

2. MATHEMATICAL MODELING OF SUPPLY
CHAINS MANAGEMENT

We consider the following linear model

x�k+1�= Ax�k�+Bu�k�+Bdds (1)

in which x ∈ �n is the system state, u ∈ �m is the manipulated
input, and ds ∈ �d is the disturbance to the system. We assume
that the system �A�B� is stabilizable.
The states and inputs are constrained as follows:

x ∈�� u ∈ � (2)

The optimal steady state problem for the nominal demand ds is
defined as:11

min
x�u

l�x�u�

s.t. x= Ax+Bu+Bdds�

x ∈�� u ∈ �

(3)
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in which l�x�u� is the stage cost of implementing input u
from state x. The optimal steady state acquired is denoted by
�xs�us�ds�.

The states in this model consist of inventory and backo-
rder. The inputs consist of shipments, productions, and orders.
Because there are no delays in this system, there is no need to
remodel the mathematical system with additional states and rede-
fine the parameters.

In order to ensure the closed-loop stability of the controller,
we follow the method presented by Subramanian, Rawlings, and
Maravelias11 as we make the following assumptions:

Assumption 1. The constraint set � is convex and closed. The
constraint set � is convex and compact. The optimal steady state
�xs�us�ds� is such that xs ∈� and us ∈ �.

Assumption 2. There exists �xs�us�ds� and �s so that
(a) �xs�us�ds � is a unique solution of (3),
(b) The multiplier �s is such that �xs�us�ds � uniquely solves (4)

min
x�u

lE�x�u�−�T
s �x− �Ax+Bu+Bdd��

s	t x ∈�� u ∈ �
(4)

(c) The system x�k+1� = Ax�k�+Bu�k�+Bdds is strictly dis-
sipative with respect to the supply rate s�x�u� = lE�x�u�−
lE�xs�us� and storage function ��x�= �T

s x. That is, there exists
a positive definite function 
�·� such that for all �x�u� ∈�×�:

�T
s �Ax+Bu+Bdds −x� ≤−
�x−xs �+ s�x�u� (5)

3. BIOBJECTIVE MODEL PREDICTIVE
CONTROLLER DESIGN

In this paper, we use a biobjective stage cost, which is a weighted
sum of the economic stage cost used in EMPC and the tracking
stage cost used in MPC. The bi-objective stage cost is:

l�x�u�= �

sE
lE�x�u�+ �1−��

sT
lT �x�u� zt� (6)

in which the parameter �∈ �0�1� is a relative weighting provided
to the economic and tracking stage costs. The function lE�x�u�
is the economic cost of the system. Assuming that the economic
cost is linear, the stage cost is defined as:

lE�x�j��u�j��= qT x�j�+ rT u�j� (7)

where q ′ and r ′ are vectors which represents the effect of the
current state and input to the economic cost of the system. The
function and lT �x�u� zt� is a tracking stage cost which penalizes
deviations from a chosen steady-state zt = �xt �ut�. The tracking
stage cost is defined as:

lT �x�k��u�k�� zt �

= �x�k�−xt �
T Q�x�k�−xt �+ �u�k�−ut �

T R�u�k�−ut � (8)

in which matrices Q and R are positive semi-definite matrices
which guides and maintain states and inputs to their respective
steady-state.

The parameters sT , sE are scaling parameters obtained using
the utopia and nadir points of the individual stage costs.10 Denote
z= �x�u�. We solve

zE = argmin
z∈X×U

lE�x�u�� zT = argmin
z∈X×U

lT �x�u� zt� (9)

The utopia point is the best possible costs that can be attained
for both the cost functions:

J U = �lE�zE�� lT �zT � zt�� ∈ �2 (10)

The nadir point is the cost attained by one stage cost at the
optimal solution of the other stage cost:

J N = �lE�zT �� lT �zE� zt �� ∈ �2 (11)

The parameters sT , sE are then defined as:

�sE� sT �= J N −J U (12)

In this section we will use the terminal constraint formulation
as the centralized MPC problem.11 The problem is defined as
follows:

min
u�0��u�1�� 			�u�N−1�

VN �u�0��u�1�� 	 	 	 �u�N −1��x0�

s.t x�0� = x0

x�j+1� = Ax�j�+Bu�j�+Bdd

x�j� ∈�

u�j� ∈ �

x�N �= xs

j ∈ �0�1� 	 	 	 �N −1


(13)

in which the cost function VN �u�0��u�1�� 	 	 	 �u�N − 1��x0� is
the sum of stage costs

VN �u�0��u�1�� 	 	 	 �u�N −1��x0�=
N−1∑
j=0

l�x�j��u�j�� (14)

The control horizon is denoted by N .
The control is obtained by computing u�0��u�1�� 	 	 	 �u�N −

1� which optimally minimizes (13). For computational purposes,
one could divide the optimization problem into N problems
by individually searching for u�j� which minimizes l�x�j +
1��u�j��.

The control law ��x� is the first input in the optimal solution to
optimization problem (13). The admissible region �N is given by

�N �= �x ∈ X � ∃ �u�0��u�1�� 	 	 	 �u�N −1�� ∈ �N �

s.t (13) is feasible
 (15)

According to Subramanian, Rawlings, and Maravelias,11 as
long as Assumption 1 and 2 hold, we can ensure the exponential
stability for the controller that solves problem (13). We use the
theorem for Lyapunov function with terminal constraint, which
states that the steady-state solution of the closed loop system
x�k+ 1� = Ax�k�+B��x�+Bdds is asymptotically stable with
�N as the region of attraction. The Lyapunov function is8

Ṽ �x�= V 0
N �x�+�T

s �x−xs�−NlE�xs�us� (16)

4. RESULTS AND DISCUSSION
In this section, we will observe the biobjective control as stated
in (13) under a numerical simulation. The following results of
the simulation then will be compared to MPC and EMPC.

As shown in Figure 1, we use a two-stage, single-product sup-
ply chain with a retailer and a manufacturer. The manufacturing
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Manufacturer
Node 2

Retailer Node 1

Fig. 1. Two-stage supply chain.

delay and the shipment delay are assumed to be nonexistent. The
retailer responds to customer demand Dm by shipping S1 units
to the customer and ordering O1 to the manufacturer. These deci-
sions are based on the retailer’s inventory and backorder. Sim-
ilarly, the manufacturer responds to retailer’s orders by making
shipments S2 and production O2. The dynamics for the supply
chain is:

⎡
⎢⎢⎣

Iv1�k+1�
BO1�k+1�
Iv2�k+1�
BO2�k+1�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Iv1�k�

BO1�k�
Iv2�k�
BO2�k�

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
−1 0 1 0
−1 0 0 0
0 0 −1 1
0 1 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S1�k�

O1�k�
S2�k�
O2�k�

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦Dm

(17)

The input constraints consist of non-negativity and the max-
imum production/shipping between nodes. Similarly, the state
constraints consist of non-negativity constraints and the maxi-
mum inventory/backorder capacity. The constraints of this system
are represented as: ⎡

⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦≤ u�k�≤

⎡
⎢⎢⎣
60
60
60
60

⎤
⎥⎥⎦ (18)

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦≤ x�k�≤

⎡
⎢⎢⎣
50
50
50
50

⎤
⎥⎥⎦ (19)

The parameters used are Q = 10−1diag�1�1�1�1��R =
diag�1�1�1�1��xt = �35�0�40�0��ut = �10�10�10�10�. The
economic costs are �30�5�20�5�� r = �20�1�10�150�. The nom-
inal demand is ds = 10.
In this section we use the control in (13) as the centralized

MPC optimization problem. We obtain the following stage cost:

l�x�u� = �

1	85×103
�q ′x+ r ′u�+ 1−�

282	5
��x−xt �

′
Q�x−xt �

+ �u−ut �
′
R�u−ut�� (20)

in which � ∈ �0�1�.
In Figure 2, we plot the closed-loop response for three different

values of � (0.2, 0.6, and 1). Alongside, we plot the response

= 0 .2

= 0 .6

= 1

Fig. 2. Comparison of closed-loop response using an MPC stage cost and a biobjective stage cost for different values of �.
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Table I. Economic cost of implementing controller.

� Bi-objective (×104� MPC (×104� EMPC (×104�

0.2 6�9467 7�3862 6�3440
0.6 4�2897 4�9515 4�2324
1 3�2735 4�2305 3�2735

for MPC which tracks to the same steady state. That is, we use
the stage cost as lT �x�u� zs� in which zs is the steady state of the
biobjective formulation.

From Figure 2, we could observe how biobjective MPC could
stabilize a system as effective as MPC. The amount of inven-
tory stocked in MPC is bigger than the amount of inventory in
biobjective MPC, noticeably so in biobjective MPC where � is
closer to 1. When � is closer to 0, the biobjective control puts
more focus on stabilizing the system rather than minimizing eco-
nomic costs. When � is closer to 1, the control focuses more
on economically optimizing the system, less on stabilizing the
system.

In Table I, we compare the economic cost incurred in using
biobjective MPC (l�x�u��, MPC to the steady state of the biob-
jective MPC (lT �x�u� zs��, and EMPC (lE�x�u�� with the termi-
nal constraint of the steady state of the biobjective MPC. Here,
we observe how under three different values of �, biobjective
MPC managed to stabilize the system on a lower economic cost
when compared to MPC. We could also observe how EMPC,
despite being able to stabilize the system on the lowest economic
cost, fails to represent the perspective of the system manager to
be prepared on unwanted risks and damages. Biobjective MPC
is able to stabilize the system with lesser risks than EMPC.

5. CONCLUDING REMARKS
The purpose of this paper is to demonstrate a possible control
design which can capture a system manager’s subjective per-
spective under a single parameter. In the bi-objective MPC, the
control is less prepared to face unpredicted disturbance if it is

too focused on minimizing costs. Consequently, the bi-objective
control is more prepared to face unprecedented risks if it focuses
more on stabilizing the system, imposing more operational costs
to the system. The exponential stability ensured the asymptotical
stability of the bi-objective MPC as long as the required assump-
tions hold.

From the numerical simulation, we can observe that when eco-
nomic information is available to the controller, it follows an eco-
nomically attractive transient while stabilizing the steady state.
In other words, the bi-objective formulation is better than MPC
as it could stabilize to the steady state via a cost-effective tran-
sient. We can also observe how the bi-objective controller is able
to represent the risk-averse nature of a system manager better
when compared to EMPC. This makes bi-objective MPC more
desirable as using EMPC poses risks to the system.
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