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ABSTRACT: The accumulation of macrophages has been observed around lesions of the brain in patients with Minamata disease.
In this condition, mercury has been detected histochemically in macrophages throughout the brain. However, the role of macro-
phages in the neurotoxicity of methylmercury (MeHg) and the molecular mechanisms of their response to MeHg exposure remain
to be elucidated. Here, we investigated how MeHg affects the expression of proinflammatory cytokines such as interleukin (IL)-6
and IL-8 in cultured human U937 macrophages. Compared with controls, IL-6 and IL-8 mRNA expression was maximally induced
in U937 macrophages after treatment with 10 uM MeHg for 6 h. The protein secretion of IL-6 and IL-8 was significantly stimulated
by MeHg in U937 macrophages. Results from luciferase reporter assay indicated functional activation of nuclear factor kappa B
and the involvement of subunit RelA and p50 in MeHg-induced IL-6 and IL-8 activation, which was confirmed by siRNA
knockdown experiments. MeHg exposure at 4 uM also significantly induced IL-8 expression in U-87 MG cells at mRNA and protein
level, indicating that IL-8 induction might be a general mode of action of MeHg treatment among different cell types. These re-
sults indicate a possible involvement of an early inflammatory response, including IL-6 and IL-8 expression in the pathogenesis of
MeHg. N-acetyl-L-cysteine suppressed MeHg-induced activation of IL-6 and IL-8 mRNA expression in U937 macrophages, indicat-
ing the effectiveness of N-acetyl-L.-cysteine as a therapeutic drug in MeHg-induced inflammation. Copyright © 2016 John Wiley &
Sons, Ltd.
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Introduction

In patients with Minamata disease, accumulation of macrophages
was observed around lesions in the brain. Histochemistry shows
mercury to be widely distributed in the cerebrum and cerebellum,
particularly in macrophages and glial cells (Okabe & Takeuchi,
1980; Takeuchi et al, 1989). These observations indicate the
involvement of macrophages responding to the exposure of
methylmercury (MeHg) in the pathophysiology of MeHg exposure
in the brain.

Macrophages are one of the potent modulators of central ner-
vous system (CNS) repair and regeneration (Hu et al,, 2015; Murray
& Wynn, 2011; Prinz & Priller, 2014). Depending on the degree of
homeostatic disturbances, leukocytes will be recruited from the
bloodstream. Peripherally derived macrophages and perivascular
macrophages will also participate in the inflammatory response.
After brain injury has occurred, microglia and/or peripherally de-
rived monocytes and macrophages may acquire an anti-
inflammatory phenotype, which causes them to remove cell debris
and promote regeneration.

Brain injury and neurodegenerative disorders are associated
with acute and chronic brain inflammation (Whitney et al,
2009). Inflammation is a complex cellular and molecular re-
sponse to stress or injury that attempts to defend against insults,
to clear dead and damaged cells and to return the affected area
to a normal state. Therefore, clarification of the role of

inflammation due to mercury compounds is important for
understanding the pathophysiology of acute and chronic expo-
sure to MeHg. Upregulation of certain inflammatory chemokines
(eg. CCL2, CCL4 and CCL7) was detected in MeHg-exposed
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mouse cerebellum using DNA microarray analysis (Hwang et al.,
2011). The role of MCP-1 (also known as CCL2) as a possible
neuroprotective alert system in brain deficits due to MeHg intox-
ication has been reported (Godefroy et al, 2012). A previous re-
port showed that treatment with inorganic mercury (InHg)
induced proinflammatory cytokines such as tumor necrosis fac-
tor « and interleukin (IL}-1f in the murine macrophage cell line
J774A01 (Kim et al, 2002). Moreover, exposure to MeHg, InHg
or ethylmercury increased the expression of tumor necrosis fac-
tor « and IL-1f in lipopolysaccharide-activated peripheral blood
mononuclear cells (Gardner et al, 2009) and decreased expres-
sion of IL-6 in liver of lipopolysaccharide-exposed mice (Kim &
Sharma, 2005). However, only a few studies reported the direct
effect of MeHg on inflammatory signaling in phagocytes, and
particularly in infiltrated macrophages.

Several studies indicated that IL-6 expression was activated by
MeHg exposure. For example, microglial reactions induced by
non-cytotoxic MeHg have been reported to have possible neuro-
protective effects via interactions with astrocytes (Eskes et al.,
2002). Challenge of rat C6 glioma cells, human U251HF glioma
cells or human retina pigment epithelial (ARPE-19) cells with
MeHg, led to increased release of IL-6 (Chang, 2007; Chang &
Tsai, 2009). In the current study, we investigated whether IL-6
expression was stimulated by MeHg in macrophages and if the
activation of IL-6 expression by MeHg occurs as a general
phenomenon.

The chemokine IL-8 (also known as CXCL8) is reported to have
various roles in the health and pathology of the CNS (Semple
et al, 2010}, and one important function of IL-8 is the induction
of chemotaxis in its target cells (e.g. monocytes and neutrophils).
In addition, Purkinje neurons in mouse cerebellar slices were re-
ported to respond to CXCL8 and CXCL1 treatment with a transient
increase in calcium, neurotransmitter release and impaired long-
term depression (Giovannelli et al, 1998). Puma et al. (2001) re-
ported that CXCL8 modulates calcium channel excitability through
CXCR2 on rat septal neurons, indicating that CXCL8/CXCR2 signal-
ing has a critical role beyond neutrophil chemoattraction through-
out the adult brain. Regarding the relationship between IL-8
expression and mercury compound, Migdal and co-authors
(2010a,b) reported that the induction of IL-8 by thimerosal and
ethylmercury was mediated via reactive oxygen species and cal-
cium signaling in U937 dendritic cells, but this activation was not
observed in the presence of MeHg and InHg. Accordingly, these
observations indicate a need to study the effects of MeHg on in-
flammatory responses such as IL-6 and IL-8 expressions in macro-
phages and their molecular mechanisms.

Nuclear factor kappa B (NF-kB) is a highly regulated transcription
factor that controls the expression of many genes involved in
inflammation, including IL-6 (Murakami & Hirano, 2012) and IL-8
(Yamamoto et al, 2008). In addition, activation of the MCP-1 by
MeHg through RelA was reported in human 1321N1 astrocytoma
cells (Kim et al,, 2012).

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcrip-
tion factor that functions as the key of the redox homeostatic gene
regulation. Certain Nrf2-requlated genes were reported to be in-
volved in controlling inflammation via NF-kB (Li et al., 2008). Zhang
etal. (2005) indicated that Nrf2 caused only weak induction of IL-8
transcription, but significantly increased the half-life of IL-8 mRNA
in human mesangial cells and aortic endothelial cells. From the
viewpoint of MeHg toxicity, Nrf2 expression was reported to be ac-
tivated by MeHg and had a protective role against MeHg toxicity
(Ni et al, 2010; Toyama et al., 2007, 2011).

N-acetyl-L-cysteine (NAC), the acetylated precursor of L-gysteine,
is a sulfhydryl-containing antioxidant, which has been used for the
treatment of heavy metal toxicity and can act as an anti- inflamma-
tory agent (Samuni et al., 2013). It reduces reactive oxygen species
level by raising intracellular glutathione concentrations and/or
playing directly as a free radical scavenger, and inhibits activation
of transcription factors in upstream signaling, which is important
for inflammatory and oxidative stress responses. NAC was used
tomodulate peripheral and CNS inflammatory pathways and cyto-
kine levels in neuropsychiatric disorders (Samuni et al., 2013). Fur-
thermore, NAC was reported to act as a chelating agent for
mercury and accelerates urinary excretion of MeHg in mice (Aremu
et al, 2008), and suppressed the MeHg-activated MCP-1 and IL-6
expressions in U-87 MG cells (Muniroh et al, 2015).

Human U937 cell line is an established cell model to differenti-
ate into macrophage cell types by treatment with phorbol ester
12-O-tetradecanoylphorbol-13-acetate (TPA), and the resulting
U937-derived macrophages are a well characterized model of
the mammalian cellular response to various inflammatory stimuli
(Vogel et al, 2007; Yamamoto et al, 2008). Astrocytes play an
important role in the neurotoxicity of MeHg (Farina et al., 2011; No-
guchi et al, 2013), and are known to produce a wide variety of cy-
tokines and chemokines during the process of CNS inflammation
(Whitney et al., 2009). The U-87 MG glioblastoma/astrocytoma cell
line is widely used as an in vitro model of astrocytes (Maresca et al,
2015; Muniroh et al,, 2015). Therefore, we tested whether MeHg-
activated IL-8 expression is a general effect of MeHg exposure by
using U-87 MG cells next to U937 macrophages.

MeHg is well known to cause neuronal cell death and there are
many studies concerning the mechanisms of cell death caused by
MeHg (Farina et al, 2011). On the other hand, the molecular re-
sponses and the effects of MeHg at low concentrations where no
obvious cell death occurred are not well understood. Based on
the above, we investigated the inflammatory responses to the
non-cytotoxic concentration of MeHg by examining the effects
on IL-6 and IL-8 expressions in U937 macrophages. In addition,
we also examined the involvement of NF-kB and Nrf2 during tran-
scriptional activation of the cytokines to elucidate the underlying
signaling pathways.

Materials and methods

Cell culture and methylmercury treatment

The human U937 and U-87 MG cell lines were purchased from
Sumitomo Dainippon Pharma (Osaka, Japan). The U937 cells was
grown in RPMI 1640 medium (Sigma-Aldrich, St Louis, MO, USA)
supplemented with 10% heat-inactivated fetal bovine serum
(FBS; SAFC Biosciences, Lenexa, KS, USA), and were maintained at
37°C in a humidified 5% CO, atmosphere. Differentiation of
U937 monocytes (initial concentration: 2x10° cells ml™") to
macrophages was initiated by the addition of TPA (Wako Pure
Chemical Industries, Osaka, Japan) into the regular medium at a fi-
nal concentration of 10nM and allowed to proceed for 48 h. TPA
stock solution (10 mM) was dissolved in dimethyl sulfoxide and
stored at —80 °C. Further dilutions of TPA were made in cell culture
medium immediately before use. The final dimethyl sulfoxide con-
centration did not exceed 0.1% (w/v). The U-87 MG cells were
grown in Eagle's minimum essential medium supplemented with
penicillin (100U mli™ ), streptomycin (100 ug ml~") and 10% heat-
inactivated FBS. An initial concentration of 1x 10° cells ml™' was
used for each experiment.
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Cells were incubated with MeHg for the periods indicated.
MeHg chloride was obtained from Tokyo Chemical Industry Co.
Ltd (Tokyo, Japan). MeHg stock solution (10 mM) was dissolved in
Dulbecco’s phosphate-buffered saline (Sigma-Aldrich, St. Louis,
MO, USA) with L-cysteine (Cys; Hg/Cys=1:1} and kept at —80°C.
The solution was diluted with regular medium immediately before
use. NAC (Wako Pure Chemical Industries) was diluted with RPMI
1640 medium without FBS immediately before use. U937 macro-
phages were exposed to MeHg in the presence of 5 mM NAC.

Cytotoxicity

Experiments were performed at an initial concentration of 2 x 10°
cells ml~'. U937 macrophages were treated with MeHd@R(O-
100 uM) for 24h. Cell proliferation was determined using a WST-
8 Cell Counting kit (Wako Pure Chemical Industries, Osaka, Japan)
according to the manufacturer's instructions. Values represent
the mean + SEM of four experiments.

Analysis of mRNA expression

mRNA level was analyzed as previously described protocol (Yama-
moto et al., 2012). Total RNA from U937 macrophages and U-87
MG cells was isolated using an RNeasy Plus Mini kit (Qiagen, Tokyo,
Japan), which includes removal of genomic DNA contamination
before cDNA synthesis. Samples were collected from three sepa-
rate culture experiments. cDNAs were synthesized from total
RNA (1 pg) using QuantiTect Reverse Transcription (Qiagen).

Expressed genes were detected quantitatively using a
LightCycler instrument (Roche Diagnostics Japan, Tokyo, Japan)
with LightCycler FastStart DNA Master”* SYBR Green | (Roche Di-
agnostics) according to the manufacturer's instructions. The
primers for each gene were designed and synthesized on the basis
of data from the National Center for Biotechnology Information,
using Premier Biosoft software (Palo Alto, CA, USA) or Primer3
(httpy/frodo.wimitedu/primer3/), such that the targets were 80-
300bp in length (Sigma-Aldrich Japan, Hokkaido, Japan). The
primer sequences used were: f-actin, forward (5-3), ACC CCG
TGC TGC TGA CC, reverse (5-3), CCA GAG GCG TAC AGG GAT
AGG IL-6, forward (5-3'), GAA CTC CTT CTC CAC AAG CG, reverse
(5-3"), TIT TCT GCC AGT GCC TCT TT; IL-8, forward (5-3'), GAC
ATA CTC CAA ACC TTT CC, reverse (5-3'), CTT CTC CAC AAC CCT
CTG.

Polymerase chain reaction (PCR) amplification was performed in
a total volume of 20 ul containing cDNA and each primer (0.5 uM).
The PCR cycling conditions were 95°C for 10 min followed by
45 cycles of 95°C for 105, 60°C for 10s and 72°C for 15s. The
fluorescent product at the end of the 72 °C extension period was
determined. All PCR assays were performed at least three times.
The data obtained were analyzed using the LightCycler analysis
software. To confirm the amplification specificity, we subjected
the PCR products to melting curve analysis. Threshold cycle values
of the target genes were normalized to those of the internal
control genes. The relative expression in each sample to that of
the control sample was calculated according to the 27**“Tmethod
(Livak & Schmittgen, 2001).

Cytokine protein quantification

ILl-6 and IL-8 protein levels were measured in cell supernatants
collected at 12h of incubation from MeHg-treated U937
macrophages and U-87 MG cells. Cytokine concentrations were

assessed by enzyme-inked immunosorbent assay (ELISA; R&D
Systems, Minneapolis, MN, USA) according to the manufacturer's
instructions. The minimum detectable concentrations of IL-6 and
IL-8 are typically less than 0.7 and 3.5 pg ml~ ', respectively.

Ludferase reporter assay and knockdown of nuclear factor-xB
and nuclear factor-erythroid 2-related factor 2 with siRNA

The luciferase reporter assay was performed as described previ-
ously (V@@el et al, 2014). For transient transfection of U937 macro-
phages, cells were plated in RPMI 1640 with 10% FBS and TPA for
2 days. NF«B luciferase reporter was from Clontech Laboratories
(Mountain View, CA, USA). Transfection of plasmid DNA into
U937 cells was performed via Nucleofector technology. Briefly,
10°U937 cells were resuspended in Nucleofector Solution V
(100 ul; Lonza, Basel, Switzerland) and nucleofected with plasmid
DNA (1ug) or siRNA (3pg) using program V-001, which is
preprogrammed into the Nucleofector device. After nucleofection,
the cells were immediately mixed with pre-warmed RPMI 1640
medium (500 ul) and transferred into six-well plates containing
RPMI 1640 medium (1.5ml well™"). Twenty-four hours after
transfection, cells were treated with MeHg for 6 h. To control the
transfection efficiency, the cells were co-transfected with
B-galactosidase reporter construct (0.1ug well ™). Luciferase
activity was measured using the Luciferase Reporter Assay System
(Promega, Madison, WI, USA) with a luminometer (Lumit LB
9501/16; Berthold Technologies, Pittsburgh, PA, USA). Relative light
units were normalized to f-galactosidase activity.

Nrf2 reporter assay was conducted according to the protocol for
NF-xB. U937 macrophages were treated with 10uM MeHg or
10 uM tert-Butylhydroquinone (EMD Millipore, Billerica, MA, USA)
as a positive control for Nif2 activation (Li et al, 2005).

siRNA to target human RelA, RelB, p50 and a negative
control siRNA  were synthesized by Qiagen (RelA: 5-
AAGATCAATGGCTACACAGGA-3', RelB: 5-GGAUUUGCCGAAUUA
ACAA-3', p50: 5~“GACGCCATCTATGACAGTAAA-3" and a negative
.:ntml siRNA [catalog no. 10272280]). The Nrf2 siRNA was
purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA).

Western blot analysis

Western blot analysis of Nrf2 expression in the nuclear was
conducted as previousl'escribed (Yamamoto et al., 2012). Briefly,
nuclear proteins were extracted using the NE-PER Nudear and
Cytoplasmic Extraction Reagents (Pierce, Rockford, IL, USA). Cells
were harvested by scraping after washing with phosphate-
buffered saline. For nuclear protein extraction, 0.1 mM EDTA with
Protease Inhibitor Cocktail (Pierce) was added to the extraction so-
lution. Nuclear protein extracts were stored at — 80 °C until use. The
protein concentration was determined with a BCA Protein Assay
Kit (Pierce).

The protein sample solution (final concentration 0.6-
12mg ml~") was mixed with Tris-glycine sodium dodecyl sulfate
sample buffer (Invitrogen, Carlsbad, CA, USA) and 5mM DTT, left
to stand for 30min at room temperature, then resolved on a
4-12% Tris-glycine gel in Tris-glycine sodium dodecyl sulfate
running buffer (Invitrogen). After gel electrophoresis, the protein
was transferred on to PVDF membranes (Invitrogen) and
immunolabeled with Nrf2 antibody (sc722; Santa Cruz Biotechnol-
ogy, Dallas, TX, USA) at 4 °C for overnight with gently shaking. The
specific reaction was detected using a Western Breeze
Immunodetection Kit (Invitrogen). Alkaline phosphatase was used
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Figure 1. Cytotoxicity of MeHg in U937 macrophages. U937 macro-

phages were treated with MeHg (0-100pM) for 24 h. Values represent
the mean =+ SEM of four experiments. MeHg, methylmercury.
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as a secondary antibody and immunoreactive bands were
visualized by Light Capture (AE-6971; Atto, Tokyo, Japan) with an
enhanced chemiluminescent substrate, CDP-star. All western
blottings were conducted using four samples of cells to confirm
the reproducibility of the results. Western blot images were
analyzed using computerized densitometry software (Atto).

Statistical analysis

All values are expressed as the mean & SEM. Statistical analyses
were conducted using the Mann-Whitney U-test. The level of
significance is indicated by *P < 0.05.

Results

Cytotoxicity

The relative ratios of dead cells following exposure to various con-
centrations of MeHg (0-100 uM) are shown in Fig. 1. Cell viability
declined less than 100% after exposure to more than 10 uM MeHg
for 24h. In the presence of 10 uM MeHg for 6h, cell viability was
almost 100% (data not shown).
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Figure 2.

Effects of MeHg on IL-6 and IL-8 mRMNA expression. U937 macrophages were treated for 3, 6 and 24 hwith 1 or 10 uM MeHg. mRNA expression of

IL-6 (A), IL-8 (B) of U937 macrophages were analyzed by real-time polymerase chain reaction. Values represent the mean 4+ SEM of three experiments. Level
of significance is indicated by *P < 0.05. Ctrl, control; IL, interleukin; MeHg, methylmercury.
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Effect of methylmercury on interleukin-6 and -8 mRNA ex-
pression in U937 macrophages

We tested whether MeHg-activated IL-6 expression in U937 mac-
rophages was the same as those in other cells. Significant activa-
tion of IL-6 mRNA expression (8.1-fold) was observed after 6 h of
treatment in U937 macrophages (Fig. 2A). IL-8 mRNA expression
was also significantly upregulated 2.3, 5.4 and 4.5-fold at 3, 6 and
24 h of treatment in the presence of 10 uM MeHg, and 2.7-fold at
24 h of treatment with 1 uM MeHg in U937 macrophages, respec-
tively (Fig. 2B).

Effect of methylmercury on interleukin-6 and -8 protein
secretion in U937 macrophages

To confirm the activation of IL-6 and IL-8 expression at the protein
level, we conducted ELISA on supernatants from 10uM
MeHg-treated U937 macrophages collected after 12 h incubation.
The result showed that protein secretions of IL-6 and IL-8 were
significantly (1.5- and 2.6-fold) stimulated by MeHg, respectively
(Fig. 3A,B).

Effect of methylmercury on interleukin-8 mRNA and protein
expressions in U-87 MG cells

At non-cytotoxic concentration of 4 uM MeHg, we observed a sig-
nificant induction of IL-6 and MCP-1 expressions in U-87 MG cells
as a model of astrocytes (Muniroh et al., 2015). Astrocytes are also
known to secrete IL-8 and have various physiological roles in the
brain (Hesselgesser & Horuk, 1999). Therefore, we tested whether
the IL-8 expression was activated in the presence of MeHg in U-
87 MG cells. The IL-8 mRNA expression in U-87 MG cells was signif-
icantly upregulated 11.0-, 86.6- and 3.6-fold at 3, 6 and 24 h of
treatment in the presence of 4 uM MeHg, and 3.2-fold at 24 h of
treatment with 1 uM MeHg in U-87 MG cells, respectively (Fig. 4A;
Muniroh et al., 2015). IL-8 mRNA expressions peaked at 6 h in the
presence of MeHg in U-87 MG cells similar to findings in U937
macrophages.

We conducted ELISA using supernatants from 4 uM MeHg-
treated U-87 MG cells collected after 12h incubation. The result
shows that the protein secretion of IL-8 is significantly (9.7-fold)
stimulated by MeHg (Fig. 4B).

Nudear factor-kB luciferase reporter activity in
methylmercury-treated U937 macrophages

To clarify the molecular mechanism involved in the MeHg-induced
IL-6 and IL-8 expressions, we performed luciferase reporter assays.
To confirm the functional activation of NF-kB, a luciferase reporter
assay containing the NF-kB consensus element was performed
(Fig. 5). Significant activation of NF«B (4.8-fold) was observed in
U937 macrophages after 6h of exposure to 10 uM MeHg. This re-
sult indicates there is possible involvement of NF«B activation in
the induction of IL-6 and IL-8 gene expression in the presence of
MeHg.

Effect of RelA, RelB and p50 knockdown with siRNA on
methylmercury-induced interleukin-6 and -8 expressions in
U937 macrophages

To investigate the involvement of NF-kB subunits in MeHg-
induced IL-6 and IL-8 expressions, we knocked down the RelA, RelB

NN
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5 -
0 1 A J
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Figure 3. Effects of MeHg on IL-6 and IL-8 protein secretion in U937 mac-
rophages. Cells were treated with 10 pM MeHg for 12 h and protein levels
of IL-6 (A) and IL-8 (B) of U937 macrophages were determined by
enzyme-linked immunosorbent assay of the culture supematants. Values
represent the mean & SEM of three experiments. Level of significance is in-
dicated by *P < 0.05. Ctrl, control; IL, interleukin; MeHg, methylmercury.

and p50 by siRNA in U937 macrophages. The requirement of RelB
for the regulation and expression of IL-8 induced by dioxin for in-
stance has been shown previously (Vogel et al, 2007). Compared
to control siRNA treated cells, the expressions of RelA, RelB and
p50 mRNA were downregulated as 35.3, 36.7 and 33.3%, respec-
tively (Fig. 6A). In the RelA and p50 knockdown cells, activation
of 10 uM MeHg-induced IL-6 and IL-8 expression were significantly
suppressed, whereas this inhibition was not observed in RelB
knockdown cells (Fig. 6B). This result indicates that the activation
of IL-6 and IL-8 expression by MeHg is at least in part through RelA
and p50.

Suppression of interleukin-6 and -8 mRNA expressions by
N-acetyl-L-cysteine in methylmercury-treated U937
macrophages

We have observed the addition of NAC suppressed the MeHg-
induced activation of MCP-1 and IL-6 expressions in U-87 MG cells
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Figure 5. MF-«B luciferase reporter activity in U937 macrophages. Cells
were treated with 10 uM MeHg for 6 h. Values represent the mean 4 SEM
of three experiments. Level of significance is indicated by *F < 0.05. Ctrl,
control; MeHg, methylmercury; NF-kB, nuclear factor kappaB.

(Muniroh et al, 2015). Therefore, we examined whether activation
of MeHg-induced IL-6 and IL-8 mRNA expression in U937 macro-
phages at 6 h was suppressed in the presence of NAC. As a result,
activation of IL-6 and IL-8 mRNA expression in the presence of
10 uM MeHg was completely blocked by 5 mM NAC (Fig. 7AB).

Suppression of Nif2 protein expression by N-acetyl-L-cysteine
in methylmercury-treated U937 macrophages

Nrf2 expression was reported to be activated by MeHg and had a
protective role against MeHg toxicity (Ni et al., 2010; Toyama et al.,
2007, 2011). Western blot analysis indicated that Nrf2 expression in
the nucleus was activated in the presence of 10 uM MeHg at 6 h,
and its activation was completely suppressed by 5mM NAC
(Fig. 8).

N2 luciferase reporter activity in methylmercury-treated
U937 macrophages

To investigate the functional activation of Nrf2 in the presence of
MeHg, a luciferase reporter assay containing the Nrf2 consensus el-
ement was performed (Fig. 9). Significant activation of Nrf2 was
observed after 6h of exposure to 10uM MeHg (1.7-fold) and
10 uM tert-Butylhydroquinone (3.5-fold; Fig. 9; Li et al, 2005) in
U937 macrophages, respectively. This result indicates that the pos-
sible involvement of Nrf2 expression in induction of IL-6 and IL-8
gene expression by MeHg.

Effect of Nrf2 knockdown with siRNA on
methylmercury-induced interleukin-6 and -8 expressions in
U937 macrophages

To confirm the involvement of Nrf2 in MeHg-induced IL-6and IL-8
expressions, we knocked down the Nrf2 by siRNA in U937 macro-
phages. Compared to control siRNA-treated cells, the expressions
of Nrf2 mRNA were downregulated by 30.3% (Fig. 10A). No signif-
icant suppression of MeHg-induced IL-6 and IL-8 mRNA activation
was observed in the Nrf2 knockdown cells, indicating that the ac-
tivation of IL-6 and IL-8 expression by MeHg is not through the
Nrf2 pathway (Fig. 10B).

Discussion

In this study, 10 uM MeHg at a non-cytotoxic dose was shown to
activate transient expression of IL-6 and IL-8 in U937
macrophages (Figs. 2 and 3). In an acute case of Minamata
disease, total mercury concentrations were 4.6-24.8, 22.6-68.2
and 30-388ugg " in the brain, kidney and liver, respectively
(Okabe & Takeuchi, 1980). In the brains of 12 patients with acute
Minamata disease, the average MeHg concentration was
5ugg " in one patient, the MeHg concentration was 1ugg "
even after 14years of exposure. The average MeHg concentra-
tion in the brain of patients with severe Minamata disease was
0.7ugg ' over periods of 1.3-18years (Takeuchi et al, 1989).
The biological half-life of MeHg in the brain tends to be longer
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Suppression of IL-6 and IL-8 mRMNA expressions by NAC in MeHg-treated U937 macrophages. U937 macrophages were treated with 10 pM MeHg

with or without 5 mM MAC for 6 h. mRNA expression of IL-6 (A) and IL-8 (B) of cells were analyzed by real-time polymerase chain reaction. Values represent
the mean + SEM of three experiments. Level of significance is indicated by *P < 0.05. IL, interleukin; MeHg, methylmercury; NAC, N-acetyl-L-cysteine.

than those of other tissues such as kidney and liver are. Mercury
concentration in hair of patients with Minamata disease was
reported to reach 700pug g“ (Kitamura, 1968), which come-
sponds to 2.8ugg " in blood, assuming a ratio of 250 : 1 be-
tween hair and blood (Mahaffey, 2005). In addition, mercury
concentration in blood of patients was reported to reach about
4ugml~" in MeHg poisoning in Irag (Bakir et al, 1973). There-
fore, the concentration of MeHg required to induce the activa-
tion of IL-6 and IL-8 cytokines in macrophages in the present
study are likely to be relevant in vivo. Recently, we observed
the infiltration of macrophages with CD204 expression in the
brain of MeHg-exposed KK-Ay mice (Yamamoto et al, 2014).
These observations indicate the importance of understanding
the time-dependent responses of macrophages against MeHg
exposure to clarify the pathophysiology of MeHg neurotoxicity.

The current study is the first to report the direct exposure of
MeHg-induced activation of IL-6 expression in macrophages. Many
studies indicated that IL-6 release was activated by MeHg
exposure in various cells, including astrocytes. We also observed
the activation of IL-6 expression by MeHg in U-87 MG cells
(Muniroh et al, 2015). Noguchi et al. (2013) reported that possible
involvement of IL-6 was the protection of neurons against MeHg
exposure. IL-6 was reported to influence macrophage recruitment
and proliferation in the injured brain (Leskovar et al, 2000). Basset
and co-workers (2012) reported that MeHg inhibited IL-6 expres-
sion treated with PAM(3), a TLR1/2 agonist, in a co-culture of mi-
croglia cells and astrocytes. Accordingly, the activation of IL-6
expression by MeHg can have a general effect, and might be
involved in many processes of MeHg toxicity, including protection
against MeHg exposure.
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To our knowledge, the present study is the first report regarding
the dose- and time-dependent activation of IL-8 expression by
MeHg. Migdal et al. reported that the significant IL-8 secretion
was not observed in the presence of MeHg or InHg in U937 den-
dritic model cells (Migdal et al, 2010a,b). The present study
showed that the peak of IL-8 mRNA expression occurred at 6 h

M. Yamamoto et al.

after MeHg exposure. We measured IL-8 secretion at 12 h after
treatment of U937-derived macrophages whereas Migdal et al.
(2010a,b) measured IL-8 secretion at 24 and 48 h after treatment
of U937-derived dendritic cells. The different culture and cell type
condition (dendritic cells vs. macrophages) as well as time of treat-
ment may explain the discrepancy between the data by Migdal
et al. (2010a,b) and the current study. Involvement of IL-8 expres-
sion in many neurological disorders has been reported
(Hesselgesser & Horuk, 1999). An initial macrophage activation oc-
curs when early warning signals trigger monocyte recruitment
(Murray & Wynn, 2011). Beyond the initial activation of macro-
phages, cooperative actions of multiple cytokine networks in-
crease the output of monocytes driving inflammatory responses.
In addition to the contribution in the recruitment of monocytes
and macrophages to the injured areas in MeHg-exposed tissues,
activation of the IL-8 signaling pathway may be involved in many
processes of MeHg toxicity such as peripheral neuropathy.

We addressed the involvement of transcription factors as part of
a mechanistic analysis for MeHg-induced IL-6 and IL-8 expressions.
The production of IL-8 can be induced by a wide range of stimuli,
including arsenite, through an NF-xB-dependent pathway
(Yamamoto et al, 2008). In this study, we showed for the first time
that the functional expression of p50 is required to medicate the
induction of IL-6 and IL-8 expression by MeHg. The RelA and p50
are critical factors to mediate induction of cytokines regulated
via the canonical NF-xB signaling pathway (Basak et al., 2008).

The relationship between Nrf2 and NF-xB is not well character-
ized but the identification of NF-kB-binding sites in the promater
region of the Nrf2 gene suggests a cross-talk between these two
regulators of inflammatory and oxidative cellular processes
(Sandberg et al, 2014). The results in this study indicated that
activation of NF-xB and Nrf2 are the events that occurred at the
same time in the presence of MeHg, but the involvement of these
pathways in the activation of IL-6 and IL-8 expressions by MeHg
were different.

In this study, the addition of NAC suppressed the MeHg-
stimulated cytokine expressions. NAC is known to suppress toxicity
of MeHg and other heavy metals such as arsenic (Aremu et al,
2008; Ghaniet al, 2014; Samuni et al,, 2013). We have reported that
NAC suppressed the MeHg-induced cytokine production through
both inhibition of reactive oxygen species as well as extracellular
chelation of MeHg in U-87 MG cells (Muniroh et al., 2015). Both
mechanisms may work independently or in concert to suppress
MeHg-induced IL-6 and IL-8 expressions in U937 macrophages.
In recent years, clinical trials have employed NAC as an adjunctive
treatment of neuropsychiatric disorders, and NAC was proven
beneficial as it improved clinical outcome (Samuni et al, 2013).
The published reports on the ability of NAC to cross the blood-
brain barrier are contradictory (Samuni et al, 2013). Giustarini
et al. (2012) reported that N-acetylcysteine ethyl ester (NACET)
increased the lipophilicity of NAC, thus greatly improving its
pharmacokinetics. NACET was rapidly absorbed in rats after oral
administration but reached low concentration in plasma. After oral
administration of NACET in rats, NACET caused an increase in
glutathione content of most tissues examined, including the brain.
If the MeHg-activated IL-6 or IL-8 expressions in macrophages
show harmful effects around the microenvironment in the brain,
the NACET may be a useful therapeutic drug to suppress the
inappropriate expression of these cytokines in acute cases.

Cell infiltration in the wall of blood vessels were not detected in
acute and subacute cases, but a small number of phagocytes con-
taining pigmentary granules was found occasionally in subchronic
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and chronic cases (Takeuchi, 1968). Pathological analyses are very
useful to understand the pathophysiology of disease, but in some
cases, they may indicate the late stage of the pathogenesis or be a
consequence of the pathological condition. The findings of the
present study suggest that transiently activated macrophages pro-
ducing IL-6 and IL-8 may have a critical role in the recruitment of
immunocompetent cells such as monocytes and macrophages in
time-dependent pathogenesis of MeHg exposure. Moreover, the
activation of IL-8 expression in U-87 MG cells suggests that IL-8 ac-
tivation may be a common alert system after MeHg exposure as
described for MCP-1 (Godefroy et al,, 2012). Future studies to iden-
tify the important role of IL-6 and IL-8 activation after exposure to
MeHg in vivo are warranted.
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