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Abstract – The utilization of mechatronics, robotics, and control systems has been widely spread 

in many areas over the last few decades. Robotics research is widely used for industrial purposes 

such as wheeled robots and manipulators, but nowadays many researchers have incorporated 

biomimetic science, often called biorobotics. This paper presents a preliminary research in the 

field of biorobotics with a robot salamander model that can walk in straight walking using a 

central pattern generator (CPG). This robot model uses a legged locomotion system that has 18 

degrees of freedom (DOF). The CPG based locomotion model is developed for controlling the gait 

cycle when the robot walks. The motions of joint angle inputs resulted from CPG model is 

simulated using SimMechanics 3D Animation and implemented on the proposed salamander robot 

for straight walking. Based on the result in both virtual reality simulation and experimental work 

using CPG locomotion approach, the predefined joint angle inputs in salamander robot can be 

used to drive the robot. The proposed CPG locomotion can mimic the walking of a real 

salamander naturally in straight walk. Copyright © 2019 Praise Worthy Prize S.r.l. - All rights 

reserved. 
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I. Introduction 

When disasters such as flood, earthquake, tsunami, or 

landslide happen, people can be often found to be buried 

or trapped in an avalanche or ruin. In such a case, it is not 

possible to send people to enter the gaps or holes formed.  

Therefore, it is necessary to develop a system that can 

solve this problem. One alternative is a robot that can 

enter the hole/slit and move on land or in water bringing 

the camera to see the dangerous conditions. Based on this 

condition, salamander robot is chosen because the 

salamander is one of the amphibian reptiles that can 

move both on land and on water. In this study, the 

proposed salamander like-robot model adapts the same 

robot that has been researched in previous studies [1]-[4].  

It [1], [2], has 27 DOF: 11 DOF on the spine and four 

DOF on each leg [2]. It uses a servo motor as its actuator.  

The legged locomotion of the salamander like-robot is 

developed by using central pattern generator (CPG) 

method. The salamander robot [1]-[4] has been 

developed using two types of locomotion: terrestrial 

locomotion to walk on the land and aquatic locomotion 

to swim on the water. In this research, the proposed 

salamander robot only uses terrestrial locomotion 

because the research study focuses on the motion of 

straight walk on a floor or land. The swimming mode of 

the salamander like-robot will be developed in the future 

study. CPG Based locomotion has inspired scientists and 

engineers to build robots by mimicking the spinal cord of 

the animals. CPG is the key mechanism of generating 

adaptive and versatile locomotion in animals [5].  

CPG generates motion system instantly on a legged 

robot like spine based control system [6]. CPG based 

locomotion has been successfully implemented in legged 

robot research such as snake robot locomotion [6]-[9], 

hexapod robot [10]-[11], [19], robotic fish [5], [12]-[14], 

salamander robot [1]-[4], and quadruped robot [15], [20]. 

In this paper, the proposed of salamander like-robot uses 

a smaller number of DOF i.e. eight on the spine, three on 

each front leg and two on each rear leg. The 

simplification of the number of DOF is conducted to 

reduce the number of actuators so that the design 

becomes simpler and the salamander robot has a smaller 

dimension than the previously one as in [2]. This is 

conducted to meet the initial goal to create a salamander 

like-robot that is applicable for Search and Rescue (SAR) 

purpose. In this study, the governing equation of motion 

using a central pattern generator (CPG) has been 

developed for each robot on a straight walk. This paper 

proposes the CPG model of 18 DOF Salamanders like-

robots by dividing the salamander robot body into 

smaller segments that have been performed by [1]. In 

straight walk locomotion, the CPG model can be driven 

by using a sinusoidal wave. The proposed CPG based 

locomotion of the spinal cord of the robot is represented 

by eight links from head to tail model. Each left and right 

leg of the front has three DOFs that can determine the 

direction of the straight walk. Each DOF has two rear 

legs. Their movement is more passive than the robot's 

movement front legs. After building the CPG based 

locomotion, the results of the CPG model are 

implemented in 3D animation under the SimMechanics 
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of First Generation environments, such as in [16]. In 

order to verify the legged locomotion based on CPG 

model in 3D animation simulation, the CPG model is 

embedded on the robot salamander microcontroller using 

32 bit Arduino Due. The robot is tested on the straight 

walk gait as in 3D simulation. 

II. Salamander Robot Model 

II.1. 3D CAD Design 

In this paper, the development of 3D CAD model on 

the salamander like- robot has been conducted in parallel 

with robotic prototype assembly. 3D CAD design of the 

salamander like-robot model has been performed using 

SolidWorks computer-aided design (CAD) software. The 

SolidWorks CAD software has been selected because of 

its ease of use. The 3D CAD model and the prototype of 

salamander like-robot that have been developed can be 

shown in Fig. 1. The dimension of the salamander robot 

can be seen in Fig. 2.  

 

 
 

Fig. 1. 3D CAD assembly of  the proposed 18 DOF salamander robot 

 

 
 

Fig. 2. The dimension of the body links in the  

salamander robot (all units are in mm) 

 

It can be seen that the dimensions of the body part in 

the front legs and the rear legs are not similar. The 

forelimbs of the front legs have been used for the 

controller's place and the rear legs have been used for the 

battery’s place. The result of 3D salamander robot model 

from CAD software as shown in Fig. 1 has been exported 

in SimMechanics block diagram under 

MATLAB/Simulink environment using SimMichanics 

Link plugin. The plugin can be downloaded freely from 

the Mathworks website. The results of SimMechanics 

block diagram will be used as 3D animation of 

salamander robot motion. The 3D animation will 

visualize the motion of salamander robot on straight walk 

in 3D view environment. SimMechanics toolbox from 

MATLAB/Simulink software is a powerful tool for 3D 

animation purpose of a mechanical system. It can 

simulate the motion of mechanical system by giving it 

with the joint input in 3D view environment. 

SimMechanics 3D animation had been successfully 

developed for 3D virtual of five DOF robotic hand on the 

previous works [17], [18]. The 3D animation of robotic 

hand can be driven by giving the revolute joint angle 

inputs for each finger in SimMechanics block diagram.  

This salamander like-robot model for 3D animation 

has used revolute joints to model the joint body of the 

proposed salamander robot in SimMechanics. 

II.2. Gait Cycle for Straight Walking Movement 

In Fig. 1, there is a shaft supporting the body of a 

salamander robot model between the two joints of the 

body and the front legs. This consideration is taken 

because the point serves as the front Central Pattern 

Generator (CPG) which becomes the reference on the 

straight walk. The point/CPG in the salamander robot 

model does not move against time. The kinematics 

equation of motion (EOM) is developed based on CPG 

legged locomotion, starting from the head to tail tip.  

When walking, the salamander form S-shape standing 

wave with a length of 1λ from head to tail tip. Two 

points that become the reference when performing 

straight walking movement are the center point of the 

connecting body of the front legs (front CPG) and the 

center point of the rear legs connecting body (rear CPG).  

The movement of the front legs adjusts the body 

movements of the robot salamander. While the front 

body of the salamander robot leans to the right, the left 

front leg goes forward. When the front body of the 

salamander robot leans to the left, the left front leg 

retreats as it moves forward. The rear leg movement is 

the opposite movement of the front leg movement. When 

the left front leg steps back, the rear right leg steps back 

simultaneously, while the rear left leg moves with the tip 

of the foot forward. Both the front legs and rear legs have 

the same distance step. This same step makes the 

salamander robot to walk straightforward. 

III. CPG Based Locomotion Model 

In this section, the straightforward walk kinematics 

motion of the salamander robot is developed to 

determine the angles formed by each joint on the head, 

body, legs, and tail of the salamander robot. The front 

CPG has been used as a reference to the straightforward 

walking movement of salamander robot. The joint angles 

on the head, body, and tail can be shown by Fig. 3. The 

body angle on the front CPG has oscillated from θC1 to 

the centerline, as shown in Fig. 3.  
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