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ABSTRACT 

The rectangular hollow beam used for many constructions. Therefore, the buckling 

load prediction is neces-sary to convince those constructions would not be overdesign 

and prevented the failure. Within uses the finite element method, the result is more 

accurate for the rectangular hollow model. This study has investi-gated the hollows 

considering the variable of its profile size, length and thickness. The boundary condition 

used the free-fixed configuration to convince the critical loads occurred from axial 

compression. The goal of this study is to obtain the collapse behavior of each hollow 

size also the buckling load factor constant. The mode-shape consisted by wrinkled and 

Curved shape, it is depending to the rectangular hollow length. 
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1. INTRODUCTION 

The rectangular hollow is the basic component of structures. Several structures used the square 

and rectangular hollow as alternative component for the stiffener than the other profiles instead. 

However, the shape of hollow still has the damage problem especially the buckling 

phenomenon. The structures can be suddenly collapse due to buckle. The square and rectangular 
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hollow mostly used as the foundation of structure, for instance the leg of the oil platform, roof’s 

rib, ship construction, etc. The vertical axis orientations of the structures will give the 

compression loads to the hollow. 

An investigation of elastic buckling of steel column under axial compression who was 

investigated by Avcar. Where was the fixed-free and pinned-pinned conditions used on the 

investigation. The length variates from 2.75 to 3.5 meter of circle and rectangle cross section 

beam. The critical load comparison of Euler equation and FEM calculation which the most 

lowest difference is the rectangle cross section[1]. The most structural failure due to buckling is 

depending by its geometry. It is necessary to take the parameter by the cross-section size and 

non-dimensional slenderness and combination of the pressure[2]. To capture the large range of 

geometric variable, the value would be an aspect ratio. Shen et al investigated the interactive 

buckling behavior and the aspect ratio of the length and cross-section variable has been used 

on these models[3]. The cross section classification is consisted to be four procedure[4]. 

According this classification, the elastic and plastic ultimate resistance could be distinguished. 

The 4th classification was shown that the elastic ultimate resistance capacity only for the higher 

slenderness cross section. 

The geometry of the short body would fails as coincidence as its yield strength. The 

intermediate geometry would fails by the combination of yielding and buckling, however the 

several stresses were founded beyond the linear range of stress-strain curve. This geometry need 

the different calculation, there are the arc length method to solve the combination of yielding 

and buckling. The slender body always fails prior the yield point. Therefore, to predict the 

slender body still used the linear buckling analysis. The strength parameter of flexural material 

is depended by the yield strength. However, in the buckling phenomenon the yield strength 

cannot be a guarantee for the strength parameter, particularly on the slender body geometry. 

For the instance, the body instability occurred before the strength limit has reached[5]. 

2. MATERIAL AND LOAD CONDITION 

This section described the formulation to obtain the critical load factor for several hollow 

sections. Also, the model geometries and the boundary conditions will clarify the end condition. 

2.1. Buckling Load Prediction 

In this case, the eigenvalue extraction was used for estimate the buckling load. The buckling 

load estimation is obtained as a multiplier of the pattern if perturbation loads, which are added 

to a set of base state loads. The equation of equilibrium for the configuration during buckling 

is expressed as, 

∫ 𝑃 =
𝜕𝑣

𝜕𝑋

𝑎

𝑉𝐵 𝑑𝑉𝐵 = ∫ 𝑝. 𝑣
𝑎

𝑆𝐵 𝑑𝑆𝐵 + ∫ 𝑏. 𝑣
𝑎

𝑆𝐵 𝑑𝑉𝐵          (1) 

where 𝑣 is an arbitrary virtual velocity field, p is the nominal traction on boundary SB of the 

body in the base state, b represents the body force per unit volume in the base state and VB is 

the volume that the body occupies in the base state. [6]  

According Yudo et al (2017). the buckling loads are then calculated as part of the second 

loads step/subcase, by solving an eigenvalue problem[7]  

{𝐾 + 𝜆𝐾𝐺  }𝑥 = 0           (2) 

where K and KG are the stiffness matrices, λ is the multiplying factor and x is the 

eigenvectors (mode shape). 

2.2. Buckling Critical Load Formulation 



The Collapse Behavior of the Rectangular Hollow Pipes under Compression Load 

http://www.iaeme.com/IJMET/index.asp 513 editor@iaeme.com 

There are the classical methods to predict the buckling loads. Euler’s critical load could be quite 

accurate on the truss. The variation of the structural design demanded a different kind of the 

structural component. The buckling load prediction of the pipes and the hollows are needed the 

finite element method. To record the buckling loads behavior for the non-truss body, the loads 

would be changed to non-dimensional loads. In this case the applied loads from the finite 

element were compared to the Euler’s loads. The buckling load curve consisted of the non-

dimensional load and the non-dimensional length of body. The reason to make this 

dimensionless curve is for the convenience to scale the body geometry. 

The free-fixed condition was used in this investigation. This condition expressed by Euler’s 

load equation as[8], 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2            (3) 

where Pcr is the critical load, E is the modulus of elasticity, I is the second moment of area, 

L is the length.  

2.3. Eigenvector Mode Shape  

The modes of the linear buckling analysis were provided the shape prediction in the critical 

load point. In this investigation, to obtained the modes were used the subspace-based eigenvalue 

extraction method. Where this method used due to smaller amount of eigenvalue. Thus, the 

Finite Element job process is more faster [9]. The equation as shown in Eq. 2.  

According Ádány, the subspace is consisted into four type [10]. Where the axial compressed 

buckling is categorized with G subspace. Because, compression load would be global buckling. 

Different with a bending load, which the buckle occurred on partial location. 

The eigenvalue not only the single number, however multiple number would be have a 

different shape along the increasing of its value. According Hearn, the eigenvalue could be 

combine with the critical load[11] as follows, 

𝝀𝟐 =
𝑷

𝑬𝑰
             (4) 

Thus, obtained with Euler’s equation, 

𝑷𝒏 =
𝝀𝟐𝝅𝟐𝑬𝑰

𝒍𝟐             (5) 

where λ is the eigenvalue (mode number). Actualy the critical value is increasing along the 

increase of the mode number. It could be described as shown, 

 

Figure 1: Mode Shape Visualization (Courtesy by Vurg Amit) 

2.4. Model Geometry and Material Properties 

The models geometry were considering the height and the wide of the hollow, also the thickness 

and the length. These value were dimensionless, thus the geometries can be scaled. The 
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comparison of the wide per height geometries were symbolized as a/b value, the a/t is the value 

of wide per thickness and l/a is the value of length per wide. The variable can be shown on the 

table 1, 

Table 1: Variable of rectangular hollow geometries 

a/b a/t 

1 

10 

20 

30 

40 

50 

2 

10 

20 

30 

40 

50 

where, the l/a are in the range of 10 to 70. 

Corresponding Euler’s formulation of buckling critical load. The material parameter used 

only the elastic modulus. In this case, steel material has 210 Gpa for it elastic modulus. The 

eigenvalue equation also shows this parameter. Thus, the elastic modulus is sufficient for 

calculation to obtain the buckling load factor.  

If the displacement vector of eigenvalue equation consisted with reaction force. According 

Gavin (2006) for a given stiffness matrix, the equation {p} = [K] {d} will produce a 

corresponding set of force vectors (in equilibrium). [12]  

2.5. Boundary Condition  

To define the boundary condition, loading and meshing are the important thing in finite element 

analysis. Any mistake in the planning of those things would be obtained the different result. 

These conditions were depending on the situation where the hollows were loaded. In this case 

the hollows were given free-fixed conditions, where the load points constrained axially by rigid 

body constrain, however shear stress will be occur. The end condition also gave the rigid 

constraint. This condition used to obtain the result as the compression load. The end condition 

constraint shown as, 

Translational   [
𝑥
𝑦
𝑧

] = [
0
0
0

]         (6) 

Rotational   [
𝑟𝑥
𝑟𝑦
𝑟𝑧

] = [
0
0
0

]         (7) 

Which the displacement constraint of the load vector shown as, 

Translational   [
𝑥
𝑦
𝑧

] = [
∞
∞
1

]         (8) 

Rotational   [
𝑟𝑥
𝑟𝑦
𝑟𝑧

] = [
∞
∞
∞

]         (9) 
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 (a)End condition of a/b=1                      (b)End condition of a/b=2 

Figure 2: Hollow’s end condition 

3. CALCULATION RESULTS AND DISCUSSION  

The aim of buckling analysis is to find the maximum pressure. This pressure is a threshold of 

collapsed or safe for the structure. Due to the bukle suddenly occurred and sometimes before 

the yield of material. Therefore, this discussion would be described the behaviour and 

relationship the buckling conditions by the hollow length and thickness consideration.  

3.1. Buckling Critical Load 

In the Finite Element analysis, the buckling critical load represented by the eigenvalues. This 

value could be generated from several modes. But, the first mode is preferred. The behaviour 

could be described by the relationship curve of pressure-thickness. For the square hollow 

depicted as follows, 

 

Figure 3: Pressure-Length Relation Curve of a/b=1 

In this sampe, the 100x100mm square hollow was used to represent a/b=1. This curve 

shown above described that along the increasing of the l/a, the critical loads were constant. 

Thus, the rest of length would be same critical load.  

Also, the behaviour was similar for the pressure-thickness curve. The curve would be shown 

as follows, 
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Figure 4: Pressure-Thickness Relation Curve of a/b=1 

The behaviour of the rectangular hollow similarly described as the square hollow. However, 

the critical load is smaller than the square hollow. This behaviour due to the rectangular hollow 

a bit more slender than the square one. The lateral location would be more unstable againts the 

pressure. It is described that the increasing of the slenderness, the critical load would smaller 

and lasted to be constant value. The curve of the rectangular hollow as shown by the figure 5 

and 6, 

 

Figure 5: Pressure-Length Relation Curve of a/b=2 

 

Figure 6: Pressure-Thickness Relation Curve of a/b=2 
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3.2. Load Factor 

After performed the linear buckling analysis, the critical load would be obtained from 

multiplying the eigenvalue. To convinced that the correct load, the eigenvalue must be valued 

as 1. This eigenvalue were appeared in the post-process interface and calculated with initial 

load to be buckling critical load. Thus, these critical loads compared with Euler’s critical load 

to make the critical loads to be a non-dimensional value. Then, the loads data were processed 

to the pressure-length and pressure-thickness relationship, these curves shown in figure 7 and 

8,  

 

Figure 7: Non-Dimensional Pressure-Length Relation Curve of a/b=1 

 

Figure 8: Non-Dimensional Pressure-Length Relation Curve of a/b=2 

The load factor which is provided by the curve above could be noted as n value (in Y axis) 

per l/a (dimensionless length in X axis). Where the n value consisted by several a/t 

(dimensionless thickness) of the hollow. This behavior shown that increasingly the length of 

hollow, the critical loads would be same value. If n value combined to Euler’s equation, n value 

is inversely proportional. Thus, the actual critical load would be decreased along the increasing 

of the hollow length. This formulation could be expressed as, 
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𝑃𝑐𝑟 = 𝑛 
𝜋2𝐸𝐼

(𝐾𝐿)2           (4) 

Where, the n value as load factor (in Y axis) per thickness (in X axis) curve. The K 

coefficient is K=1 if free-fixed of the hollow end condition, K=0.5 for another end condition. 

The n value represented by the curves as shown, 

 

Figure 8: Non-Dimensional Pressure-Thickness Relation Curve of a/b=1 

 

Figure 10: Non-Dimensional Pressure-Thickness Relation Curve of a/b=2 

The length curves above described that the behaviour of square and rectangular hollow 

almost similar. Along the increasing of a/t, in other words decreasing the thickness. Remember, 

the n value is inversely propotional to the actual critical load. The load factor fell constantly in 

the square hollow. 

3.3. Buckling Mode Shape  

Remember that the mode shape is not a real value. The value is a prediction of the hollow shape 

after passing the critical load. The shape behaviour could be represented by non-dimensional 

value. The curve shown as follows, 
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Figure 11: Non-Dimensional curve of Mode Shape 

The non-dimensional value represent the buckling shape behaviour. Which, the value is 

called AMPRES (Amplitude Resultant). According the analysis result, AMPRES < 1 and l/a < 

10 shown that the buckle shape was wrinkle. However the AMPRES >1 and l/a > 10 shown 

that buckle shape was curved.The both shape as shown as Fig 12. 

 

(a)Wrinkled shape                                             (b) Curved shape 

Figure 12: Two different shape behavior of the hollow 

4. CONCLUSION 

The calculation of square and rectangular hollow section, to find a buckling critical load has 

been finished by compared the Euler’s formulation and Finite Element analysis. These critical 

load result has been formed in the non-dimensional curve. This value is appropriate for the 

model geometry variable which formed in an aspect ratio. The non-dimensional curves would 

be convenienced to calculate an elastic buckling and its has a large number for the geometric 

variable. The geometric parameters is consisted by a/b=1 to 2 for the width and height ratio, 

a/t=10 to 50 for the thickness ratio, l/a=5 to 40 for the length ratio. The buckling behaviour of 

these hollow pipe could be concluded as follows, 

1. The non-dimensional critical load which called n value has been captured by the 
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n=0.54. For more detail, the non-dimensional curve provided the n value for the 

short body which is above of n=0.54. 

2. This investigation based on Euler’s equation. Euler’s critical load provided the 

material only for its elastic modulus. The new equation is valid for the material 
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which has E=210 GPa. Its can be concluded that along the increase of the hollow 

pipes geometry, the buckling critical load also increasing. Meanwhile, the yield 

parameter could not included for this formulation. Therefore, the hollow pipes load 

should a pure compression. For the instances, the thermal load could not be a 

parameter. 

3. The non-dimensional pressure-thickness curves are shown that along increasing of 

slenderness, the hollow pipes would shown an elastic behaviour. Which, the critical 

load above a/t=30 would be similar. 

4. Also the non-dimensional pressure-length curves are shown that along increasing 

the length of hollow pipes, the critical load would be decreasing and at l/a=20 the 

value is constant for a/b=1, also l/a=10 for a/b=2. This behaviour occurred due to 

the geometry of a/b=2 is more slender than a/b=1, which the a/b=1 has a higher 

value of the buckling critical load. 

5. The end condition has a different buckling critical value each other. The sample of 

this investigation used the free-fixed condition. For the pinned-pinned and fixed-

fixed end conditions has diverged in the half amount of the free-fixed condition. 

Therefore, K value is added for the new equation parameter. Which, K=1 for the 

free-fixed and K=0.5 for the fixed-fixed and pinned-pinned condition. 
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