Turnitin Originality Report

Processed on: 19-May-2021 2:56 PM WIB
ID: 1589392425
Word Count: 6321
Submitted: 1

EMJH checking By Adriyan

	Similarity by Source	
Similarity Index	Internet Sources:	N/A
O\%	Publications:	0%
Student Papers:	0%	

الهجلا الحادي و العشرون العدد الساسس المجلة الصحية لشرق المتوسط Knowledge, attitudes and practices of sweet food and beverage consumption and its association with dental caries among schoolchildren in Jazan, Saudi Arabia
F.A.Quadri,1H.Hendriyani,2A.Pramono3andM.Jafer1 المعـارف والاتجاهـات والممارسـات

 () فتى و 333 فتـاة)، وذلك باستخدام استثيان وفحوص سريريـة. فكان انتُـــار النتسوس
 عمومـأ فإن 83.5 \% مـن الفتيـان و 85.8 \% مـن الفتيـات كانت اتجاهاتهم نحو الاطعــة الحلوة سيئّة، وكان
 والاطفـال الذين لايهم اتجاهـات وممارسـات) OR 2.46; CI: 1.15-5.28 (Oانت أمهاتهم أقل تعليمّا كانوا (عى النوالي 13.52-4.50-7 أكثر عرضـة لتسوس الأسنان. تحتـاج جازان إلى برامـج لتعزيز الصحـة موجهـة توجيهاً جيداً The prevalence of dental decay is expected to rise in many developing countries due to the growing consumption of sugars. This study aimed to assess knowledge, attitudes and practices of sweet food and beverage consumption among schoolchildren in Jazan, Saudi Arabia and to determine the relationship with dental caries. In a cross-sectional, descriptive study 853 children aged 6-15 years (520 boys and 333 girls) were assessed by questionnaire and clinical examinations. Caries prevalence ($\geq 1 \mathrm{dft} / \mathrm{DMFT}$) was high (91.3%). While knowledge was generally good, 83.5% boys and 85.8% girls had poor attitudes to sweet foods and $>90 \%$ frequently consumed sweet foods/beverages. Multiple regression analysis showed that children whose mothers were less educated (OR 2.46; 95\% CI: 1.15-5.28) and children with poor dietary attitudes and practices (OR 4.05; 95\% CI: 2.33-7.03 and OR 7.80; 95\% CI: 4.50-13.52 respectively) were more likely to have dental caries. Welldirected health promotion programmes are needed in Jazan. Connaissances, attitudes et pratiques en matière de consommation d'aliments et de boissons sucrés et leur association avec les caries dentaires chez des écoliers de Jazan (Arabie saoudite) RÉSUMÉ Dans de nombreux pays en développement, la prévalence des caries dentaires devrait augmenter en raison de la consommation croissante de sucres. La présente étude visait à évaluer les connaissances, attitudes et pratiques en matière de consommation d'aliments et de boissons sucrés chez des
écoliers de Jazan (Arabie saoudite), et à déterminer leur lien avec les caries dentaires. Dans une étude descriptive et transversale, 853 enfants âgés de 6 à 15 ans (520 garçons et 333 filles) ont été évalués à l'aide d'un questionnaire et d'examens cliniques. La prévalence de caries ($1 \geq$ indice des dents cariées, absentes ou obturées) était forte ($91,3 \%$). Si le niveau de connaissances était élevé en général, 83,5 \% des garçons et 85,8 \% des filles avaient de mauvaises attitudes face aux aliments sucrés et plus de 90% en consommaient fréquemment. Une analyse de régression multiple a démontré que les enfants dont les mères avaient un niveau d'études plus faible (OR 2,46 ; IC à $95 \%: 1,15-5,28$) mais aussi ceux ayant de mauvaises attitudes et pratiques (OR 4,05 ; IC à 95% : $2,33-7,03$ et OR 7,80 ; IC à $95 \%: 4,50-13,52$ respectivement) étaient plus à risque de présenter des caries dentaires. Des programmes de promotion de la santé convenablement ciblés sont nécessaires à Jazan. 1Department of Preventive Dentistry, Jazan University, Jazan, Saudi Arabia (Correspondence to F.A. Quadri: faeq_ali@yahoo.com). 2Department of Nutrition, Polytechnic of Health Semarang, Ministry of Health, Indonesia. 3School of Nutrition Science, Faculty of Medicine and Center of Nutrition Research (CENURE), Diponegoro University, Semarang, Indonesia. Received: 24/11/14; accepted: 27/04/15 403 EMHJ • Vol. 21 No. 6 • 2015 Eastern Mediterranean Health Journal La Revue de Santé de la Méditerranée orientale Introduct ion According to the World Health Organization (WHO) dental caries is one of the most common oral diseases; epidemiological studies over the past 20 years have shown an alarmingly high prevalence in children and young adults $(1,2)$. Despite this awareness, a high prevalence of dental caries still exists in many countries worldwide, especially among deprived groups of the popula- tion (3). The prevalence of dental decay is expected to rise in many developing countries and this has been attributed to modernization and the growing con- sumption of dietary sugars (3). The association of sugar consumption and dental caries is well-established by a variety of research, including human studies, animal experiments and other observational studies (4), and a reduc- tion in caries scores has been observed with lower consumption of sugars $(4,5)$. Knowledge about the intake of sugar in early life is important for caries pre- vention in adulthood due to children's inclination towards sweet foods and beverages (6). Recognizing early child- hood food patterns and preferences is important, as it can influence the choice of nutrient intake in later life (7). For example, a higher intake of sugared soda drinks during school ages persists in adulthood when compared with those who started their consumption after the school years $(8,9)$. Gender differ- ences in terms of sweet food preferences were also reported in a large study of 8900 Danish schoolchildren and young adults (10). The distribution and severity of caries and related problems show dis- crepancies between countries and also across different regions within the same nation (3).In Saudi Arabia, despite the extensive network and free availability of dental health services, caries is a ma- jor oral health problem among schoolchildren $(11,12)$. A study in Riyadh showed that the prevalence of caries among schoolchildren was 77.7\% (13); 14 years later another study demon- strated a prevalence of 94.4% among a similar age group (12). Amin and Al Abad suggested that frequent exposure to cariogenic foods among school- children in Saudi Arabia is one of the main risk factors for dental decay (14). Hence, knowing the early dietary be- haviour among schoolchildren would help in developing oral health promo- tion programmes in order to prevent a future rise in the incidence of dental caries in Saudi Arabia $(15,16)$. Jazan region in Saudi Arabia is reported to have a high prevalence of caries among school-age children (17). The
current study, the first of its kind in Jazan, aimed to assess the knowledge, attitudes and practices of sweet food consumption among schoolchildren and to deter- mine its relationship to dental caries. Met hods Study setting The study was conducted in Jazan, which is located at the southern tip of Saudi Arabia bordering Yemen. The population is mostly Arab nationals with some expatriates. To maintain ho- mogeneity among the study population only Saudi nationals were included in the study. The dental examinations and the administration of the questionnaire was done in the school premises. Study design and sample size This was a cross-sectional, descriptive study using multistage random sam- pling. School-going children within the age range 6-15 years who agreed to participate were included in the study. The sample size was calculated with absolute precision (0.05), expected pro- portion (0.5) and estimated designed effect (1). The original sample size after calculation was targeted at 769 and 10% was added to allow for dropouts among the subjects participating in the study. At first, out of the 4 districts of Jazan region, 3 were randomly selected. In the second stage, a list of schools was obtained and 2 schools (1 boys' school and 1 girls' school) from each district were randomly selected: a total of 6 schools. In the third stage, an admission list of schoolchildren was obtained and those whose parents gave consent were recruited for the study. The total sample assessed was 853 , consisting of 520 boys and 333 girls. The study was approved by the research ethics committee at Jazan Uni- versity, Saudi Arabia. Official permission to approach the schools was obtained from the regional education office in Jazan. A signed consent was also taken from the parents for the participation of their children in the research study. Data collection Questionnaire The questionnaire was adapted from the original version prepared by Gib- son (18). The English version of the modified questionnaire was subjected to translation and reverse translation in the local language by bilingual den- tists who were fluent in both English and Arabic. A convenience sample size of 20 children was randomly selected and the questionnaire was subjected to validity and reliability tests. To check the reliability of the questionnaire a test-retest procedure and a measure of internal consistency using Cronbach alpha coefficient was calculated (19). The questionnaire was found to be consistent as the minimum value of 0.70 was obtained. The interview was conducted by trained and calibrated dentists (kappa $=0.78 ; 95 \%$ confidence interval (CI): 0.53-0.93). Questionnaires for children aged 6-8 years were completed on a one- to-one interview basis with the parents. Older children completed the question- naire themselves and parents or peers of the children were asked to help if the children had difficulty in understanding the questions. Data regarding sociodemographic variables included المجلا الحادي و العشرون العدد الساس المجلة الصحية لثرق المتوسط 404 current residence, age in years, parental education, parental occupation and family income. Children's knowledge was assessed by answering 15 questions regarding knowledge about sweet foods that are related to poor oral health. Re- sponses were coded as true or false. Dietary attitude was assessed with 10 questions about attitudes to sweet foods and beverages, with responses scored on a 4-point Likert scale [strongly agree (score 3), agree (score 2), disagree (score 1) or strongly disagree (score 0)]. Therefore, the maximum score was 30 and the minimum score was 0 . All items of the questionnaire were phrased in a positive direction. Practice of sweet food consumption was assessed by questions about the frequency with which certain food items or food groups were consumed. Children were asked about the frequency of consumption of a list of 8 foods/beverages, with 7 re- sponse options. They were subsequent- ly
merged into 2 groups: "frequently" (score 1) (response options: more than once a day, once a day, 3-6 times a week or 1-2 times a week) and "rarely" (score 0) (response options: every 2 weeks, once a month or never). Therefore, the maximum score was 8 and the mini- mum score was 0 . Caries examination Specific days for the clinical examina- tions were selected and the schoolchil- dren were examined by trained and calibrated dentists. The examination was under light-emitting diode light, with standard infection control meas- ures implemented such as the use of gloves, masks and disposable diag- nostic instruments. Caries status was scored using the WHO recommended method for assessing decayed/missing/filled teeth for deciduous (dft) and permanent (DMFT) teeth. Children obtaining a dft/DMFT score of 0 were classified as caries-free and those who had ≥ 1 carious teeth were classified as caries active (20). Data management and processing All data information was analysed using SPSS, version 21. The chi-squared test at 5\% significance was used for assessing the association between independent variables (education of mother and fa- ther, occupational status of mother and father, family income, knowledge status, attitude status and practice status) and the dependent variable (caries status). Logistic regression was performed to determine the risk factor for dental car- ies after adjusting for covariates. For multivariate analysis, the attitude scores were grouped into "good attitude" (agree and agree very much) and "poor attitude" (disagree and disagree very much) and the consumption practices scores were grouped into "frequently" (1-2 times/week, 3-6 times/week, once a day, more than once a day) and "rarely" (every 2 weeks and once a month). Odds ratios (OR) with 95% CI were also recorded for all variables investigated in the regression logistic analysis. Results Sample characteristics The sample contained 520 boys (61.0\%) and 333 girls (39.0\%). The sample distribution according to age and sociodemographic variables by sex is shown in Table 1. It can be seen that 54.9% of the schoolchildren in the study were aged between 6-9 years, 13.4% were between $10-12$ years and 31.8% were between $13-15$ years. The educa- tion level of parents revealed that 89.2% of mothers and 74.6% of fathers were educated from elementary until high school. Most of the fathers were self- employed (65.9%) and 87.7% were cat- egorized as having a high family income, although data on family expenses were not collected. Comparing the distribu- tion of income between the sexes, it was observed that 5.4% of girls and 16.7% of boys were from low-income families (Table 1), which was a significant differ- ence (x2 test; $\mathrm{P}<0.001$). Dietary knowledge Twelve out of 15 questions on knowl- edge about sweet foods and beverages were answered correctly by more than 60% of the study sample (Table 2). Three questions were answered incor- rectly by a majority of respondents: 71.7% of boys and 72.9% of girls had poor knowledge in distinguishing between various forms of sweet foods (question no. 3); 65.9% of boys and 66.9% of girls did not know which drinks contained more sweeteners (question no. 4); and 56.1% of boys and 70.8% of girls thought soft drinks were healthier than fruit juice (question no. 6). Dietary attitudes and practices The percentage of boys and girls who preferred soft drinks to mineral water were 83.5% and 85.8% respectively. These results were consistent with their answers about choosing soft drinks rather than mineral water in the dietary knowledge analysis. As many as 94.2% of boys and 93.4% of girls preferred sweets to plain bread, and 86.6% of boys and 96.1% of girls did not prefer eating snacks with less sugar (Table 3). The self-reported data about daily intake of sweet foods and beverages revealed that both sexes frequently con- sumed fruit juice (with sugar), soft drinks, sweets/candy, jam, honey, milk with sugar, chocolate and ice
cream (Table 4). Among both boys and girls, > 90\% of the children reported that they frequently consumed soft drinks, sweets, milk with sugar and chocolate. The mean and standard deviation (SD) scores of dietary attitude for boys and girls was 20.2 (SD 1.9) and 19.5 (SD 1.5) respectively (Figure 1). The mean scores of dietary practice for boys and girls were 8.2 (SD 0.9) and 7.3 (SD 0.8) respectively. A significant difference was observed between males and females in attitude scores ($\mathrm{t}=$ 4.834; $P=0.001$) as well as in practice scores $405 \mathrm{EMHJ} \bullet$ Vol. 21 No. $6 \bullet$ 2015 Eastern Mediterranean Health Journal La Revue de Santé de la Méditerranée orientale Table 1 Distribution of the studied schoolchildren according to age and sociodemographic variables, by sex
Sociodemographic variables Boys $(n=520)$ Girls ($n=333$) Total ($n=853$) No. \% No. \% No. \% Age (years) 6-9 28053.818856 .546854 .9 10-12 $5410.46018 .011413 .413-1518635.88525 .527131 .8$ Mother's education Basic education (elementary or high school) 47691.528585 .6 761 89.2 High education (college) 448.54814 .49210 .8 Father's education Basic education (elementary or high school) 37872.725877 .5 636 74.6 High education (college) 14227.37522 .5217 25.4 Mother's occupation Employee (government or private) 8716.76619 .815317 .9 Unemployed (housewife) 43383.326780 .270082 .1 Father's occupation Government employee 17032.712136 .329134 .1 Private employee 350 67.321263 .7562 65.9 Family income Low 8716.7185 .4105 12.3 High 43383.331594 .6748 87.7 Table 2 Knowledge about sweet foods and beverages among the studied schoolchildren, by sex Item Girls ($n=333$) Dietary knowledge of sweet foods and beverages Boys ($n=520$) False True False True No. \% No. \% No. \% No. \% Taste of food related to oral health 10631.822768 .218235 .0338 Source of sweet taste of food 63 18.927081 .113225 .4658 Forms of sweet food 24373.09027 .0373 71.7147 Sweetened drinks 22367.011033 .034366 .0177 Which contains more sugar: Mineral water vs fruit juice 226.631193 .4377 .1 483 Orange vs soft drinks 23670.99729 .129256 .2228 Apple vs sweets 4714.128685 .96512 .5455 Grapes vs jam 6419.226980 .89017 .3 430 Oats vs honey 278.130691 .95811 .2462 Plain bread vs milk with sugar 13039.020361 .013325 .6387 Rice vs tea with sugar 226.6311 93.4428 .1478 Potatoes vs chocolate 195.731494 .318 3.5 502 Carrot vs ice cream 20.633199 .461 .1514 Fried chicken vs lollypop 82.4325 97.6142 .7506 Kebab vs dates 8826.424573 .614527 .937565 .074 .6 28.334 .092 .943 .887 .582 .788 .874 .491 .996 .598 .997 .372 .1 ($\mathrm{t}=$ 2.998; $P=0.003$). Boys had sig- nificantly higher scores of both attitude and practice in consuming sweet foods and beverages compared with girls, in- dicating poorer attitudes and greater consumption (Figure 1). Dental caries status Of the examined schoolchildren 779 (91.3\%) were found to be caries 406 Table 3 Attitudes towards sweet foods and beverages among the studied schoolchildren, by sex Item Girls ($n=333$) Attitude toward sweet foods and beverages Boys (n = 520) سداسلا ددعلا نوشر علا و يدالحا دلجلما Agree very much Agree Disagree Disagree very Agree very much much Agree Disagree Disagree very much Prefer mineral water more than soft drinks Prefer eating plain bread more than sweets Rarely add sugar to my food or drinks Chewing gum should not be used every day Rarely eat sweets as snack Prefer milk with less sugar Prefer tea with less sugar Rarely eat ice cream as snack Prefer eating snacks with less sugar Clean mouth after eating sweet foods No. \% 00.020 .672 .2401 .20 .0000 .00 .0123 .6 00.020 .6 No. \% 3410.310 .3216 .41682613321320 No. \% 286 85.831193 .426378 .8 No. \% 133.9195 .74212 .6 No. \% 91.700 .013 2.3 No. \% 366.981 .5275 .2 No. \% 43483.549094 .243283 .2 No. 41 $2248 \% 7.94 .39 .350 .57 .80 .30 .916128422813648 .385 .368 .5$ predictor for caries status was attitude (OR 4.05; 95\% CI: 2.33-7.03). spectively than the children with good more likely to have dental caries rewith poor attitudes were significantly 2.46 ; 95\% CI: 1.15-5.28). Children mothers were better educated (OR tal caries compared with children whose educated were more likely to have den-7). Children whose mothers were less kept as independent variables (Table educational status of the mother were and practice of sweet intake and the as the dependent variable while attitude ducted whereby caries status was kept Logistic regression analysis was con- Logistic regression analysis tus (Table 5). education or father's occupational sta- mother's occupational status, father's but there were no associations with sex, ies status of their children ($P=0.049$), was significantly associated with the car- The educational status of the mother versus 72.5%) ($P<0.001$). to have poor dietary practices (96.4% with caries were significantly more likely 0.001) (Table 6). Similarly, children caries free (94.8% versus 73.8%) (P < when compared with those who were caries active had poor dietary attitudes More of the children who were cant ($P=0.471$). difference was not statistically signifi- caries than were female children, but the children were more affected with dental (92.2\%) of the girls (Table 5). Male active: 472 (90.8\%) of the boys and 307 طسوتلما قشرل ةيحصلا ڤلجلما EMHJ • Vol. 21 No. 6 • 2015 Eastern Mediterranean Health Journal La Revue de Santé de la Méditerranée orientale Table 4 Reported frequency of consumption sweet foods and beverages among the studied schoolchildren, by sex Food item Consumption of sweet foods and beverages Girls $(n=333)$ Frequently No. \% No. Rarely \% Frequently No. \% Boys ($n=520$) No. Rarely \% Fruit juice 28184.45215 .640377 .5117 22.5 Soft drinks 32697.972 .150697 .314 2.7 Sweets 32597.682 .4 50496.9163 .1 Jelly 27582.65827 .439075 .013025 .0 Honey 26178.4 7221.640277 .311822 .7 Milk with sugar 30892.5257 .548192 .539 7.5 Chocolate 32296.7113 .349895 .8224 .2 Ice cream 26780.266 19.837772 .514327 .5 more likely to be caries active, thus confirming this as one of the reasons for caries occurrence among the study sample. These percentages are higher than those reported from another Arab population study in Baghdad, Iraq (21). The high score in attitudes and practices of sweet foods and beverages consump- tion seen among schoolchildren in the Jazan region could be due to easy access to these items. Most of the Arab nations have experienced a massive growth in their economy in recent decades and this has been shown to have a strong association with elevated consumption of refined sugars among the populations (22). This high per capita sugar con- sumption among the rich nations has led to a rise in caries occurrence (23). In accordance with the findings of the current study, previous studies in other countries have also shown a strong as- sociation between consumption of sugared foods/beverages and increased rates of caries (24-27). The attitude of schoolchildren in Jazan towards sweet food consumption was in accordance with the study of Ahmed et al. in Iraq, in which 12-year-old schoolchildren preferred sugared snacks or drinks to their regular meals (21). The reported frequency of consum- ing sweet foods and beverages, which
included soft drinks, sweets, jam, honey, milk with sugar, chocolate and ice cream, was also observed to be high in our study (> 90% of children consumed these frequently, i.e. once a day, once a day or 3-6 times a week). Therefore, it could be said that the schoolchildren in Saudi Arabia are quite familiar with non-traditional forms of food and bev- erages. A previous study in Saudi Arabia reported that the adoption of a so-called "Westernized" diet with a high sugar content, without the implementation of proper prevention strategies, could lead to a rise in dental caries among the population (11). Our study also found that a high proportion of schoolchildren were caries active (91.3%). This agrees with figures from Peterson et al., who in their review of the global burden of oral diseases reported that dental caries was the main oral health problem affecting almost 90% of schoolchildren through- out the world (2). Our finding is also 20 (1.9) 19 (1.5) 8 (0.9) 7 (0.8) Attitude Practice Attitude Practice Male Female Figure 1 Mean and standard deviation scores on attitudes and practices towards consumption of sweet foods and beverages, by sex (independent t-test for differences between boys and girls, $\mathrm{P}<0.05$) (boys المجلا الحادي و العشرون العدد الساس المجلة الصحية لشرق المتوسط 408 (433 = 520, girls n = 333 Table 5 Association of sociodemographic factors and caries status among the studied schoolchildren Variable Caries activea No. \% Caries free No. \% P-valueb Total 779 91.3 74 8.7 Sex Boys 47290.848 9.2 0.471 Girls 307 92.2267 .8 Mother's education Basic education (elementary or high school) 70092.0618 .00 .049 High education (college) 7985.91314 .1 Mother's occupation Employee (government or private) 13990.8149 .2 0.818 Unemployed (housewife) 64091.4608 .6 Father's education Basic education (elementary or high school) 58592.0518 .00 .244 High education (college) 19489.423 10.6 Father's occupation Government employee 26691.4258 .60 .950 Private employee 51391.3498 .7 aBased on decayed/missing/filled teeth for deciduous (dft) and permanent (DMFT) teeth. Caries active $=\geq 1 \mathrm{dft} / \mathrm{DMFT}$; caries free $=0 \mathrm{dft} / \mathrm{DMFT}$. bChisquared test for association of sociodemographic variables and caries status. Table 6 Association of knowledge, attitudes and practices of sweet foods and beverages consumption with caries status among the studied schoolchildren Independent variable Caries activea Caries free P-valueb No. \% No. \% Dietary knowledge Poor Good Dietary attitudes Poor Good Dietary practices Poor Good 22089.855991 .9254910 .20 .3148 .167510494 .8 $3773.8375 .2<0.00126 .264713296 .42472 .5503 .6<0.00127 .5$ aBased on decayed/missing/filled teeth for deciduous (dft) and permanent (DMFT) teeth. Caries active $=\geq 1 \mathrm{dft} / \mathrm{DMFT}$; caries free $=0 \mathrm{dft} / \mathrm{DMFT}$. bChi-squared test for association of sociodemographic variables and caries status. Table 7 Multivariate logistic regression analysis of predictors of caries status among the studied schoolchildren Predictorsa Association with caries statusb B SE df P-value Adjusted OR 95\% CI Mother's education 0.9000 .39010 .0212 .46 Attitude to consumption of sweet foods and beverages Practice of consumption of sweet foods and beverages 1.398 $0.2822 .0540 .2811<0.0011<0.0014 .057 .801 .15-5.282 .33-7.03$ 4.50-13.52 aCaries predictors were coded as $1=$ good, $0=$ poor; bCaries status was coded as $1=$ caries free, $0=$ caries active. $\mathrm{SE}=$ standard error of beta; $\mathrm{OR}=$ odds ratio; $\mathrm{CI}=$ confidence interval; min. = minimum; max. = maximum. 409 EMHJ • Vol. 21 No. 6 • 2015 Eastern Mediterranean Health Journal La Revue de Santé de la Méditerranée orientale consistent with a study conducted by Zailai et al. in a similar population (in Jazan), whereby 89% of children were seen to be caries active (28). An ear- lier study conducted in Saudi Arabia by Amin and Al Abad found that 68.9\% of male primary-school children were suffering from dental caries (14). The high caries prevalence found among the children in the current study could
be attributed to many factors such as poor oral hygiene practice, excessive sweet consumption or inadequate visits to the dentist. The significant association of car- ies status with the educational level of mothers and lack of association with the working status of mothers, educa- tion of fathers, working status of fathers and sex ($P>0.05$) were in accordance with another study in the Middle East, in Iraq (21). Hence, better educated mothers have a positive influence on a child's oral health status. In addition, a strong association between caries status and both attitudes and practices of sug- ared food intake was found, suggesting consumption of higher than normal amounts of sugar among these children had increased the prevalence of dental References 1. 2. 3. 4. 5. 6. 7. caries $(5,29)$. This is a matter of great concern as increased sugar consump- tion could not only lead to dental car- ies but could also be a factor in other systemic diseases such as childhood obesity and diabetes. In contrast to the practices followed by these schoolchildren, the questions pertaining to knowledge were answered correctly, indicating that although the children possessed good knowledge their attitudes and practices towards risk factors leading to dental caries were poor. This calls for effective health pro- motion programmes in the region. It is important that the harmful effects of sugared foods and beverages are un- derstood by the children so that good habits can be implemented in their dietary practices at a younger age. The results of the current study add to the evidence that good dietary behaviour is a key aspect in preventing dental caries. They also stress that among the factors assessed-dietary knowledge, attitudes and practices-the best predictor for caries occurrence was the practice of sweet food consumption. Apart from the positive aspects of the study design, the study has some Bagramian RA, Garcia-Godoy F, Volpe AR. The global increase in dental caries. A pending public health crisis. Am J Dent. 2009 Feb;22(1):3-8. PMID:19281105 Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndi- aye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005 Sep;83(9):661-9.
PMID: 16211157 What is the burden of oral disease? Oral disease burdens and common risk factors [Internet]. Geneva: World Health Organi- zation http://www.who.int/oral_health/disease_burden/ global/en/, accessed 14 May 2015). Moynihan PJ. The role of diet and nutrition in the etiology and prevention of oral diseases. Bull World Health Organ. 2005 Sep;83(9):694-9. PMID:16211161 Marshall TA, Levy SM, Broffitt B, Warren JJ, Eichenberger-Gil- more JM, Burns TL, et al. Dental caries and beverage consump- tion in young children. Pediatrics. 2003 Sep;112(3 Pt 1):e184-91. PMID:12949310 Gambon DL, Brand HS, Veerman EC. Dental erosion in the 21st century: what is happening to nutritional habits and lifestyle in our society? Br Dent J. 2012 Jul;213(2):55-7. PMID:22836413 Skinner JD, Carruth BR, Bounds W, Ziegler P, Reidy K. Do food- related experiences in the first 2 years of life predict dietary 8. 9. 10. 11. 12. limitations. The evaluation of dental caries among the schoolchildren could have been done in a more comprehen- sive way. For example, we could have divided the carious lesions could into cavitated and non-cavitated and then checked the association with sugared food consumption. In conclusion, our results provide further evidence that poor dietary at- titude and practices of sweet food consumption are associated with active caries status among schoolchildren. We recommend that the impact of consumption of sweet foods and bever- ages in the country should be further investigated. The study suggests that there is a need for well-directed health promotion and health education pro- grammes among the schools in Jazan, Saudi Arabia. Acknowledgements Funding: The authors would like to acknowledge the research committee at the College of Dentistry, Jazan

Univer- sity for funding the study. Competing interests: None declared. variety in school-aged children? J Nutr Educ Behav. 2002 Nov-Dec;34(6):310-5. PMID:12556269 Kvaavik E, Andersen LF, Klepp KI. The stability of soft drinks intake from adolescence to adult age and the association between long-term consumption of soft drinks and life- style factors and body weight. Public Health Nutr. 2005 Apr;8(2):149-57. PMID:15877908 Fiorito LM, Marini M, Mitchell DC, Smiciklas-Wright H, Birch LL. Girls' early sweetened carbonated beverage intake predicts different patterns of beverage and nutrient intake across childhood and adolescence. J Am Diet Assoc. 2010 Apr;110(4):543-50. PMID:20338280 Allesen-Holm B, Frost M, Bredie W. Taste sensitivity and pref- erences in Danish school children. In: Delegate manual: 8th Pangborn Sensory Science Symposium. Copenhagen, Den- mark: University of Copenhagen; 2009:26-30. Gandeh MB, Milaat WA, Gandeh M, Milaat W. Dental caries among schoolchildren: report of a health education campaign in Jeddah, Saudi Arabia. East Mediterr Health J. 2000 Mar- May;6(2-3):396-401. PMID:11556029 Wazzan KA. Dental caries prevalence in 6-7 year old school children in Riyadh region: a comparative study with the 1987 Oral Health Survey of Saudi Arabia Phase I. Saudi Dent J. 2004;16:54-60. 410 13 المجلا الحادي و العشرون العدد الساس المجلة الصحية لشرق المنوسط. Akpata ES, al-Shammery AR, Saeed HI. Dental caries, sugar consumption and restorative dental care in 12-13-year-old children in Riyadh, Saudi Arabia. Community Dent Oral Epide- miol. 1992 Dec;20(6):343-6. PMID:1464229 14. Amin TT, AlAbad BM. Oral hygiene practices, dental knowl- edge, dietary habits and their relation to caries among male primary school children in Al Hassa, Saudi Arabia. Int J Dent Hyg. 2008 Nov;6(4):361-70. PMID:19138188 15. 16. 17. Tahmassebi JF, Duggal MS, Malik-Kotru G, Curzon ME. Soft drinks and dental health: a review of the current literature. J Dent. 2006 Jan;34(1):2-11. PMID:16157439 Lee JG, Messer LB. Intake of sweet drinks and sweet treats versus reported and observed caries experience. Eur Arch Pae- diatr Dent. 2010 Feb;11(1):5-17. PMID:20129028 Alzailai A, Quadri MFA, Nayeem M, Inamdar A, Tadakamadla S. Caries status of school children in Jazan city, KSA and its rela- tion with dental literacy of their parents. Journal of Oral Health Research. 2014;5(1):1-5. 18. 19. Gibson RS. Introduction. In: Gibson RS, editor. Principles of nutritional assessment. 2nd ed. New York: Oxford University Press; 2005. pp. 1-26. Tadakamadla SK, Quadri MFA, Pakpour AH, Zailai AM, Sayed ME, Mashyakhy M, et al. Reliability and validity of Arabic Rapid Estimate of Adult Literacy in Dentistry (AREALD-30) in Saudi Arabia. BMC Oral Health. 2014;14:120. PMID:25267119 20. Al-Hebshi NN, Abdulhaq A. Quadri MFA and Tobaigy FM. Salivary carriage of Candida species in relation to dental caries in a population of Saudi Arabian primary school children. The Saudi. J Dent Res. 2015;6(1):54-9. 21. Ahmed NA, Astrøm AN, Skaug N, Petersen PE. Dental caries prevalence and risk factors among 12-year old schoolchil- dren from Baghdad, Iraq: a post-war survey. Int Dent J. 2007 Feb;57(1):36-44. PMID:17378348 22. Petersen PE. Challenges to improvement of oral health in the 21st century-the approach of the WHO Global Oral Health Programme. Int Dent J. 2004 Dec;54(6) Suppl 1:329-43. PMID:15631094 23. Woodward M, Walker A. Sugar and dental caries: the evidence from 90 countries. Br Dent J. 1994 Apr 23;176(8):297-302. PMID:8186040 24. Ismail AI, Burt BA, Eklund SA. The cariogenicity of soft drinks in the United States. J Am Dent Assoc. 1984 Aug;109(2):241-5. PMID:6590604 25. Sohn W, Burt BA, Sowers MR. Carbonated soft drinks and dental caries in the primary dentition. J Dent Res. 2006 Mar;85(3):262-6. PMID:16498075 26. Armfield JM, Spencer AJ, Roberts-Thomson KF, Plastow K. Wa- ter fluoridation and the association of
sugar-sweetened bever- age consumption and dental caries in Australian children. Am J Public Health. 2013 Mar;103(3):494-500. PMID:23327241 27. Mattila ML, Rautava P, Sillanpää M, Paunio P. Caries in five- year-old children and associations with family-related factors. J Dent Res. 2000 Mar;79(3):875-81. PMID:10765963 28. Zailai AM, Quadri M, Nayeem M, Inamdar A, Tadakamadla SK. Caries status of school children in Jazan city, KSA and its relation with dental literacy of their parents. J Oral Health Res. 2014;5(1):1-6. 29. Iftikhar A, Zafar M, Kalar M. The relationship between snack- ing habits and dental caries in school children. Int J Collab Res Intern Med Public Health. 2012;4(12):1943-51. 411

