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Abstract: Change in gut microbiome diversity (the so-called dysbiosis) is correlated with insulin
resistance conditions. Exercise is typically the first management for people with type 2 diabetes
mellitus (T2DM), which is generally well-known for improving glucose regulation. The new prebi-
otics and probiotics, like synbiotics, designed to target specific diseases, require additional studies.
While the effectiveness of exercise combined with synbiotics seems promising, this review discuss-
es these agents’ possibility of increasing the gut microbiota’s diversity. Therefore, they could en-
hance short-chain fatty acids (SCFA). In particular, the synbiotic interaction on gut microbiota, the
exercise mechanism in improving gut microbiota, and the prospect of the synergistic effect of the
combination of synbiotic and exercise to improve insulin sensitivity are addressed.
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1. INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a serious disease in

Indonesia, as its prevalence is identified based on the doc-
tor's diagnosis of the population age ≥15 years, which has in-
creased to 2% in 2018 [1]. Indonesia is also one of the top
10 countries with many diagnosed and undiagnosed patients
with diabetes at present. It is estimated that as many as 16.6
million  people  will  suffer  from diabetes  by  2045  [2].  Be-
cause of the prevalence of diabetes, some studies concerning
diabetes  management  are  being  conducted,  including
lifestyle modification, medicinal plant identification, air pol-
lution  analysis,  and  their  possible  relations  to  biological
changes  in  diabetes  [3-5].

The gut microbiota and gut microbiome are interchange-
able terms and refer to the same thing. The gut microbiota is
defined as all organisms living in the gastrointestinal tract,
primarily  in  the large intestine,  and dominantly comprises
Bacteriodetes  and Firmicutes  (90%) [6-8].  The gut micro-
biome is a collective genome of all microorganisms inhabit-
ing the gut [9]. In contrast, human gut microbiota comprises
100 times more genes in the entire human body and acts to
synthesize essential amino acids and essential fatty acids for
the human body [10]. Human gut microbiota is flexible and
can adapt to dietary changes by shifting its flora composi-
tion and gene content [11].

Healthier individuals are considered as having a more di-
verse gut microbiome because of fewer pathogenic bacterial
species and their role in producing vitamins, essential nutri-
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ents by degrading complex polysaccharides and maintaining
gut motility and immune function [12, 13]. Several gut mi-
crobiomes contribute to undigested food component fermen-
tation, including fiber, which, in turn, change in the gut mi-
crobiome correlated with insulin resistance conditions [14].
Diabetic  conditions  in  mice  and  humans  have
lipopolysaccharides (LPS), a bacterial endotoxin produced
by gram-negative bacteria incrementally [15]. Toll-like re-
ceptors (TLRs), receptors for innate immunity, control gut
microbiota composition, and correlate with T2DM.

Exercise  is  typically  one  of  the  first  activities  recom-
mended  for  people  with  T2DM since  it  is  generally  well-
known  to  improve  glucose  regulation.  Exercise  also  has
been proposed to have an immunomodulatory role in down-
regulating  TLR4  expression,  thus  eventually  ameliorating
gut microbiota diversity. Some exercise modalities are rec-
ommended for individuals with T2DM, such as aerobic, re-
sistance, anaerobic-resistance training, and high-intensity in-
terval training. All of them exert a beneficial effect on the di-
abetic  condition,  although  the  optimal  amount  of  exercise
needs further investigation [16]. During exercise, physiologi-
cal changes occur. However, these changes are different in
abrupt exercise and habitual exercise [17, 18]. Abrupt exer-
cise exerts multiple effects on metabolite production and in-
flammatory mediators [17]. On the other hand, habitual exer-
cise has the beneficial effect of inducing Peroxisome prolif-
erator  activated  receptor  gamma  coactivator  1-alpha
(PGC-1α) which is the most dominant regulator of mitochon-
drial function. PGC-1α induction leads to diverse gut micro-
biota  through  mitochondrial  biogenesis  [18].  Exercise  has
previously been described as a modulator for gut microbiota
[19].

Prescriptions of prebiotics and probiotics do not seem to
be effective for improving chronic inflammation-related dis-
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eases,  including  diabetes.  Nevertheless,  a  recent  study  re-
vealed that probiotic treatment diversifies the gut composi-
tion and improves the Bacteriodetes/Firmicutes  ratio [20].
Furthermore, prebiotic intervention may alter the gut micro-
biota and intestinal permeability [21]. Thus, the new design
of prebiotics and probiotics, like that of synbiotics, a form
designed  to  target  specific  diseases,  requires  additional
studies. The effectiveness of exercise and the combination
of exercise and prescribed synbiotics seems promising. This
review discusses the possibility of combining probiotics, pre-
biotics, and exercise to increase gut microbiota diversity. In
particular, the interaction of synbiotics toward gut microbio-
ta, the exercise mechanism in improving gut microbiota, and
the prospect of the synergistic effect of the combination of
synbiotics and exercise to improve insulin sensitivity are ad-
dressed.

2. THE ROLE OF GUT MICROBIOTA AND TYPE 2
DIABETES MELLITUS

T2DM is associated with defective islet autophagy regu-
lation that potentially results from hepatic insulin resistance
[22]. Autophagy is defined as the degradation of the mito-
chondria and other cellular organelles to maintain homeosta-
sis and the islet’s normal architecture and function [23, 24].
Autophagy plays a role in regulating LPS levels and protect-
ing cells from LPS exposure [22]. Autophagy disruption oc-
curs in hyperglycemia by inhibiting transcription factor EB
(TFEB) nuclear translocation resulting in autophagy down-
regulation [25]. T2DM, which is characterized by having in-
sufficient insulin to uptake glucose into the cell, is a condi-
tion mediated by LPS leading to increase low-grade inflam-
mation through TLR4 signaling activation [9, 22]. Insulin re-
sistance-associated gut microbiota diversity might be influ-
enced  by  the  alteration  of  gut  microbiota,  thus  producing
serum  metabolome  characterized  by  increasing  LPS  and
BCAA biosynthesis and reducing BCAA transport into bac-
terial  cells,  methanogenesis,  and  pyruvate  oxidation  [26,
27].

3. EXERCISE-GUT MICROBIOTA INTERACTION
Exercise terminology is interchangeable with physical ac-

tivity. It is defined as all structured movement that increases
the energy used. Functionally speaking, exercise improves
blood glucose control in T2DM [28, 29]. Exercise’s effect
on improving diabetes is linked to increased glucose trans-
porter (GLUT)-4 content and amplification of insulin signal-
ing in muscle. These effects enhance GLUT-4 expression in
adipose tissue and skeletal muscle in the diabetic condition
[16, 30]. It has been speculated that exercise can alleviate in-
sulin resistance through gut microbiota composition diversi-
ty, such as enhancing Firmicutes phylum and short-chain fat-
ty acids (SCFAs) [7]. SCFAs are a product of gut microbial
fermentation of dietary fiber, which primarily comprises ace-
tate, propionate, and butyrate [31-33]. According to a previ-
ous review of 10 human and animal laboratory studies, exer-

cise per se modifies gut microbiota composition [8]. A previ-
ous study concluded that individuals who frequently exer-
cise,  showed  gut  microbiota  diversity  higher  than  control
subjects  with  a  low  body  mass  index  (BMI),  followed  by
control subjects with a high BMI [19].

It seems that exercise and gut microbiota have a bidirec-
tional interaction through mitochondrial genome regulation,
including (i) reactive oxygen and nitrogen species (RONS)
production, (ii) immune and enterochromaffin secretory in-
duction, (iii) functional gut modulation, and (iv) mitochon-
drial genetic variants and heteroplasmy [19]. Incidental exer-
cise induces some metabolites and inflammatory mediators,
reversing habitual exercise, suppressing basal pro-inflamma-
tory cytokines [17]. This might be linked to the microbiota
composition disruption product called LPS, which escalates
β-cell apoptosis. It also causes the molecular onset of insulin
resistance and hyperglycemia through nuclear factor kappa
B (NFκB) [34]. Exercise has a role in suppressing LPS (a li-
gand  for  TLR4)  levels.  Hence,  it  inhibits  TLRs  signaling
pathway  in  the  liver,  muscle,  and  adipose  tissue  [35,  36].
TLRs are a transmembrane receptor family that plays central
roles in innate immunity. Their activation (particularly TL-
R4) has been postulated to influence insulin resistance and
T2DM development [35, 37]. Exercise has been reported to
enhance intestinal and plasma acetic acid promoting the au-
tophagic mechanism in skeletal muscle via binding to the G-
protein-coupled receptor 43 (GPR43), which eventually en-
hances insulin sensitivity [38].

Unfortunately, the effect of exercise on gut microbiota in
T2DM needs additional studies. Relevant studies were con-
ducted  by  Velikonja  et  al.  and  Denou  et  al.  [13,  39].  A
metabolic syndrome was defined as the existence of at least
two  inclusion  criteria  of  metabolic  syndrome  (abdominal
obesity, obesity, hyperglycemia, and hypertension) associat-
ed with a low concentration of gut microbiota composition
and low SCFA composition [13]. Other studies revealed that
exercise  successfully  increased  the  gut  microbiota  of  the
mouse distal gut [19, 39-46]. The studies examining the ef-
fect  of  exercise  on  microbiota  abundance  are  quite  exten-
sive, as shown in Table 1. Some factors influencing gut mi-
crobiota composition include diet, stress, altitude, tempera-
ture, pollutants, noise, disease state, medications, host genet-
ics, and exercise [12, 32]. The duration of exercise needs fur-
ther study since a study by Taniguchi et al. concluded that a
short-period endurance exercise had little effect on gut mi-
crobiota diversity and composition in the elderly [47]. It is
well-established that gut microbiota disruption in diversity
or  composition  appears  in  such  conditions  as  obesity  and
T2DM [48]. Since the previous study revealed that improv-
ing the gut microbiota depended on BMI status [49], the ef-
fect  of  exercise  on  the  gut  microbiota  of  individuals  with
T2DM  still  needs  additional  study.  This  is  supported  by
Lambert et al., who concluded that the interaction between
exercise and gut microbiota composition in T2DM requires
further investigation [50].



The Prospect for Type 2 Diabetes Mellitus Combined with Exercise Current Diabetes Reviews, 2021, Vol. 17, No. 0   3

Table 1. Summary of the effects of exercise on gut microbiota.

Study Design Subject Intervention Duration of In-
tervention

Impact On Gut Microbiota/Re-
sults

Clarke et al.
(2014) [19] Cross-sectional study

Male rugby players with a mean
BMI 29.1 (n = 40); healthy male
controls with BMI ≤25 (n = 23),
and healthy male controls with

BMI >28 (n = 23).

- -

The gut microbiota diversity of the
athletes was significantly higher

compared with both control groups
and taxa identified in the gut micro-
biota of athletes; low BMI control
and high BMI control were 22, 11,

and nine phyla, respectively.

Lambert et al.
(2014) [69] Experimental study

Male db/+ mice comprised exer-
cised control (n = 10) and seden-

tary control (n = 10); type 2 diabet-
ic db/db (C57BL/KsJ-

leprdb/leprdb) comprised exercised
group (n = 10) and sedentary group

(n = 9).

Low-intensity treadmill
running 6 weeks

Exercise influenced the increase in
Bifidobacterium spp. In exercised

normal, but not in exercised diabet-
ic mice.

Allen et al.
(2015) [31] Experimental study

Male C57BL/6J mice comprised
forced treadmill running group (n =
10); voluntary wheel running (n =
10); and sedentary controls (n = 9).

Forced, moderate tread-
mill running and free ac-
cess to telemetered runn-

ing wheels
30 days

Exercise training influenced the
richness and evenness of bacterial
flora, except for Bacteroidetes and
Firmicutes (as the major bacterial

phyla in the gut).

Denou et al.
(2016) [39] Experimental study

Male C57BL/6 mice comprised: 1)
high-fat diet-induced obesity group

(n = 9); 2) High-fat diet-induced
obesity with exercise training (n =

7).

High-intensity interval
training (HIIT) 6 weeks

HIIT increased alpha diversity and
Bacteroidetes/Firmicutes ratio of

the distal gut and fecal microbiota.

Campbell et al.
(2016) [44] Experimental study

Male C57BL/6NTac mice were di-
vided: 1) lean sedentary; 2) diet-in-
duced obesity sedentary; 3) lean ex-
ercise; and diet-induced obesity ex-

ercise.

Free running wheel 12 weeks
Both lean and obese exercise

showed normal histology, whereas
the obese sedentary had villi twice

as wide as normal villi.

Palareti et al.
(2016) [70] Experimental study

Rats (n = 57) were assigned to:
1) Control

2) Sedentary
3) Light intensity trained
4) High-intensity trained

Each group was fed a standard and
high-fat diet.

Low- and high-intensity
training 12 weeks

Both low- and high-intensity-in-
duced a significant difference in in-

testinal microbiota with standard
chow, but there was no significant
difference in intestinal microbiota
in the groups fed a high-fat diet.

Taniguchi et al.
(2018) [47]

Randomized
crossover trial

Healthy elderly
(n = 33). Endurance exercise 5 weeks

There was no change in α-diversity
indices between the control period

and the exercise program.

Allen et al.
(2018) [41] Experimental study

C57B1/6N mice comprised the con-
trol group (n = 10) and the exercise

group (n = 10).
n/a 42 days

The exercise group had a higher
abundance of genera: Anaerostipes
spp, Akkermansia spp, Family Lach-

nospiraceae, and a lower preva-
lence of Prevotella spp. than the

control group.
Allen et al.
(2018) [49] Longitudinal study Lean females (n = 18) and obese fe-

males (n = 14). Endurance exercise 6 weeks SCFAs increased in lean but not in
obese subjects.

Brandt et al.
(2018) [43] Experimental study

Male C57BL/6N mice comprised:
1) untrained control group receiv-
ing standard rodent chow; 2) Un-

trained group receiving high-fat di-
et; 3) untrained group receiving
high-fat diet supplemented with
resveratrol; 4) exercise-trained

group and receiving high-fat diet.

Running wheel at an aver-
age of 50 km/week 16 weeks

Exercise successfully increased the
alpha diversity of gut microbiota

and had a higher abundance of Bac-
teroidetes than Firmicutes.

Zhao et al.
(2018) [46]

Randomized con-
trolled trial

Healthy amateur runners males (n
= 16) and females (n = 4). Endurance running Before and after

the marathon.
Special taxa from phylum to genus
were detected after running than be-

fore running.

(Table 1) contd....
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Study Design Subject Intervention Duration of In-
tervention

Impact On Gut Microbiota/Re-
sults

Lai et al. (2018)
[71] Experimental study

Male mice C57BL/6JNarl (n = 49)
were divided by:

1) High-fat diet group/H (n = 6)
2) High-fat diet-exercise group/HE

(n = 7)
3) Normal-fat diet/N (n = 7)
4) Normal-fat diet-exercise

group/NE (n = 6)
5) High-fat diet group receiving Fe-

cal Microbiota Transplantation
from HE (n = 7)

6) High-fat diet group receiving Fe-
cal Microbiota Transplantation

from NE (n = 7)
7) Normal-fat diet receiving Fecal
Microbiota Transplantation from

NE (n = 7)

Treadmill (18 m/min, 30
min/day, 5 days/week) 16 weeks Diet was more influential than exer-

cise in shaping the gut microbiota.

Ribeiro et al.
(2019) [72] Experimental study

Male C57BI/6 mice (n = 40) were
divided into:

1) The standard diet control group
2) The high-fat diet control group

3) Standard diet trained group
4) High-fat diet trained group.

Low-to-moderate training
(30 min/day, 5 days/week) 8 weeks

Low-to-moderate exercise was less
effective in modulating the compo-
sition of gut microbiota in mice fed

a high-fat diet.

Nagano and Hiro-
mi (2020) [45] Experimental study

Male C57BL/6N mice designed as:
1) Cellulose nanofiber-untreated se-
dentary groups (n = 8); 2) exercise
group (n = 8); 3) Cellulose nano-
fiber sedentary groups (n = 8); 4)

Cellulose nanofiber-exercise group
(n = 8).

Free running wheel 7 weeks

Exercise decreased
Erysipelotrichaceae and Rikenel-
laceae and increased Ruminoco-

caceae and Eubacteriaceae, which
increased with the amount of ace-

tate.

*BMI: Body Mass Index.

4. INTERACTION OF SYNBIOTICS TOWARDS THE
GUT MICROBIOME

Synbiotics are the synergistic interactions between pro
and  prebiotics,  which  have  been  known  since  1995  when
they were introduced by Gibson [51]. Probiotics per se have
been well-known to supply a gut microbiota population that
enables the ingestion of specific fibers and successfully res-
tore gut microbiome homeostasis [27]. Synbiotic administra-
tion aims to activate the metabolism of the microbiota. Thus,
it can be positively beneficial for the host's health [51, 52].
Numerous studies  have been conducted demonstrating the
beneficial effects of synbiotics in the diabetic condition and
are summarized in Table 2. The effect of Lactobacillus aci-
dophilus DSM20079 was 14.5 times higher when it was in-
duced  by  inulin  or  pectin  compared  with  that  of  glucose
[53].  Therefore,  either  probiotics  or  prebiotics  have  main
roles in maintaining gut microbiota survival.

As shown in  Table  2,  synbiotics  exerted beneficial  ef-
fects, but the lack of data showed that synbiotics had no ef-
fect.  The  nine  randomized  clinical  trials’  duration  was  at
least six weeks, but the minimum doses require further in-
vestigation.  Other  meta-analyses  revealed  that  synbiotics
could modulate the immune system through SCFA produc-
tion  and,  therefore,  improve  glucose  homeostasis  [54-59].
Nevertheless, a high dose of synbiotic consumption, due to
SCFA production and greater fermentation, might cause feel-
ings of  discomfort,  such as bloating and flatulence,  which
vary individually [54, 60].

5.  THE  BRIGHT  PROSPECT  OF  THE  COMBINA-
TION  OF  SYNBIOTICS  AND  EXERCISE  TO  IM-
PROVE  INSULIN  SENSITIVITY

We propose a synergistic interaction between synbiotic
consumption and exercise conduction since both induce SC-
FA production (Fig. 1). SCFA correlates with glucagon-like
peptide-1  (GLP-1)  to  alleviate  pancreatic  dysfunction  in
T2DM by activating G-protein-coupled cell surface recep-
tors [61]. GLP-1 is an incretin hormone produced by L-cells
in the intestinal mucosa, a-cells in the pancreatic islet, and
neurons in the nucleus of the solitary tract [61]. GLP-1 recep-
tors, such as (FFAR) 2, FFAR3, and (GPR) 120, are well de-
scribed for glucose homeostasis [62, 63]. Butyrate requires
FFAR2 and FFAR3 to induce GLP-1 and subsequently stim-
ulates insulin secretion through a downstream pathway. This
leads to phospholipase C (PLC)-mediated hydrolysis of phos-
phatidylinositol  4,5  bisphosphate  (PIP2)  to  diacylglycerol
(DAG) and inositol triphosphate (IP3) activated protein ki-
nase C (PKC), land then to Caþ2 release from the endoplas-
mic  reticulum.  Furthermore,  FFAR2  and  FFAR3  can  also
link to G/i/o subunits and inhibit adenylate cyclase. This de-
creases the concentration of cAMP, inhibiting protein kinase
A  (PKA)  and  exchanging  protein  directly  activated  by
cAMP (EPAC) mediated insulin release [62, 64]. Also, pro-
pionate stimulates glucose uptake by increasing GPR41 in-
duction  (SCFA  receptor)  [64].  A  synbiotic  supplement
might  become a great  prescription,  but  the GI side effects
need to be considered. Furthermore, the dose of synbiotics,
the modalities of exercise, and the duration of the combina-
tion of synbiotic intake and exercise are the new topics that
hold future promise for diabetic individuals.
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Table 2. Summary of the effect of synbiotic on the diabetic condition.

Study Design Subject Intervention Long of
Intervention Impact on gut microbiota/ Result

Asemi et al.
(2014) [73]

Randomized
controlled trial

Diabetic patients were divided in-
to:

1) Synbiotic group (n=62)
2) Control group (n=62)

The synbiotic contained Lacto-
bacillus sporogenes (1 x 107

CFU) and 0.04 g inulin (HPX).
6 weeks

Synbiotic treatment significantly improved
serum insulin levels, fasting plasma glucose,
serum triglycerides, serum hs-CRP, and plas-

ma total GSH compared to the control
group.

Kooshki et
al.(2015)

[74]
Randomized

controlled trial

Diabetic patients (n=44) were di-
vided into:

1) Synbiotic (n=22)
2) Placebo (n=22)

The synbiotic was on the tablet. 8 weeks Synbiotic successfully decreased hs-CRP,
IL-6, and TNF-α

Kooshki et
al. (2017)

[75]
Clinical dou-
ble-blind trial Diabetic subjects (n=43) were

The synbiotic tablet-form and
placebo tablet were provided to

the subjects.
8 weeks

Synbiotic supplementation was successfully
reduced the blood glucose level of the diabet-

ic subjects.

Tajabadi-E-
brahimi et
al. (2017)

[76]

Randomized
controlled clini-

cal trial

Overweight diabetic patients
with coronary heart disease
(n-60) were divided into:

1) Group A (n=30) received the
synbiotic supplement

2) Group B (n=30) received
placebo

Synbiotic supplement contained
3 probiotic bacteria Lactobacil-
lus acidophilus 2 x 109, Lactoba-
cillus casei 2 x 109, Bifidobac-
terium bifidum 2 x 109 CFU/g

plus 800 mg inulin.

12 weeks

Synbiotic treatment significantly reduced
fasting plasma glucose, serum insulin con-

centration, the homeostasis model of assess-
ment-estimated β-cell function, and signifi-

cantly increased quantitative insulin sensitivi-
ty check index compared with the placebo.

Tunapong
et al.

(2018) [77]
Experimental

study

Male obese-insulin resistant rats
(48) were divided into:

1) Normal diet rats treated by ve-
hicle

2) High fat diet-fed rats treated
by vehicle

3) Normal diet rats treated by
prebiotics

4) High-fat diet rats treated by
prebiotics

5) Normal diet rats treated by
probiotics

6) High-fat diet rats treated by
probiotics

7) Normal diet rats treated by
synbiotic

8) High-fat diet rats treated by
synbiotic

Prebiotics: xylooligosaccharides
(XOS)

Probiotics: Lactobacillus para-
casei STII01 HP4

Synbiotic: the combination both
of XOS and Lactobacillus para-

casei STII01 HP4

12 weeks
Prebiotics, probiotics, and synbiotic had simi-
lar efficacy for attenuating insulin resistance

by improving plasma glucose, plasma in-
sulin, and HOMA index.

Horvath et
al. (2019)

[78]
Randomized
clinical trial

Diabetic patients (n=26) which
divided into 2 groups:

1) Allocated to synbiotic group
(n=12)

2) Allocated to the placebo
group (n=14)

Synbiotic, in the powder-form,
contained Ecologic Barrier

brand (6 g) as probiotic and Om-
nilogic Plus brand (10 g) as pre-

biotic.

6 months

There were no significant changes in
HbA1c, fasting plasma glucose, fasting plas-
ma insulin, C-peptide, AUCglucose in minutes
during mixed meal tolerance test (MTT),

AUCinsulin in minutes during MTT, AUCc-peptide

in minutes during MTT detected in the synbi-
otics group compared to the placebo group.

Kassaian et
al. (2019)

[79]
Randomized

controlled trial

Diabetic participants either male
or female (n=120) were assigned

into 3 groups:
1) Probiotic group (n=40)
2) Synbiotic group (n=40)
3) Placebo group (n=40)

Probiotics contained freeze-
dried Lactobacillus acidophilus,
Bifidobacterium bifidum, Bifi-
dobacterium lactis, and Bifi-

dobacter longum (1.5 x 109 for
each).

Synbiotics contained the afore-
mentioned probiotics plus in-

ulin.
The probiotics and synbiotics

were supplemented as much as
6 g/d.

24 weeks Either probiotics or synbiotic successfully
improved hyperglycemia in the 24-weeks.

Soleimani
et al.

(2019) [80]

Randomized,
Double-Blind-
ed, Placebo-
Controlled

Trial

Diabetic patients with hemodialy-
sis (n=60) were divided into:
1) Synbiotic capsule (n=30)
2) Placebo capsule (n=30)

The synbiotic capsule contained
Lactobacillus acidophilus, Lac-
tobacillus casei, and Bifidobac-
terium bifidum (2 × 109 CFU/g
each), plus 0.8 g/day of inulin

12 weeks

Synbiotic treatment reduced fasting plasma
glucose, insulin levels, and insulin resistance
significantly. In contrast, synbiotic increased
the quantitative insulin sensitivity check in-

dex compared with the placebo. The synbiot-
ic provision also successfully reduced high-
-sensitivity C-reactive protein and malon-
dialdehyde levels. Moreover, total antioxi-

dant capacity enhanced significantly.
(Table 2) contd....
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Study Design Subject Intervention Long of
Intervention Impact on gut microbiota/ Result

Ban et al.
(2020) [81]

Experimental
study

Type 2 diabetic rats (n=70) were
divided into 7 groups:

1) Non-diabetic control group
2) The diabetes control group (SI-

DR)
3) Control yogurt group (CY)

4) Low-dose yogurt group (MY-
L)

5) Medium-dose yogurt group
(MY-M)

6) High-dose yogurt group (MY-
H)

7) Metformin group (Dix)

Synbiotic was the freeze-dried
direct-to-vat inoculation stater
culture containing Streptococ-

cus thermophiles and Lactobacil-
lus delbrueckii ssp. Bulgaricus,

with Bifidobacterium BB-12
and Lactobacillus acidophilus

LA-5 as a starter and inulin as a
prebiotic.

6 weeks

Synbiotic successfully improved insulin re-
sistance and glycosylated hemoglobin com-
pared with yogurt sweetened with sucrose

and they showed a remarkable improvement
in short-chain fatty acid levels and gut micro-
biota status. Synbiotic treatment was also res-

tored the islets of Langerhans.

Morshedi et
al. (2020)

[82]
Experimental

study

Diabetic rats (n=48) were divid-
ed into 6 groups:

1) Healthy control
2) Diabetic control

3) Diabetic + probiotic
4) Diabetic + prebiotic
5) Diabetic + synbiotic
6) Diabetic sham group

Treatments in supplement the
form were ascribed as follows:

L. Plantarum was used as a pro-
biotic.

Inulin was used as prebiotic.

Combination of L. Plantarum
and inulin was used as synbiot-

ic.

8 weeks

Synbiotic resulted in the best effect on the
improvement of serum SOD, serum GPx,
serum MDA, serum TAC, hippocampal
SOD, hippocampal GPx, hippocampal

MDA, hippocampal TAC, the pre-frontal cor-
tex (PFC) SOD, PFC GPx, PFC TAC

CFU, colony forming units, XOS, xylooligosaccharides.

Fig. (1). Exercise and synbiotic consumption intercorrelation. Dysbiosis occurred in T2DM and it might be improved by the combination of
exercise and synbiotic treatment. Exercise and synbiotic consumption exert a richness for gut microbiota, increasing Firmicutes phylum, and
therefore inducing SCFA (acetate, propionate, butyrate) production. SCFA subsequently stimulates GLP-1 in L-cells by activating G-protein
coupled cell surface receptors and hydrolyzes PIP2 afterwards to DAG and IP3 in endiplasmic reticulum of β-cell. This activates PKC which
induces Caþ2 release and finally insulin is secreted by β-cell. SCFA: Short Chain Fatty Acid; GLP-1: glucagon-like peptide-1; PIP2: phos-
phatidylinositol 4,5 bisphosphate; IP3: inositol triphosphate; PKC: protein kinase C. (A higher resolution / colour version of this figure is
available in the electronic copy of the article).
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In other aspects,  the human microbiome is essential  to
our health and well-being, as they are the essential sources
of  our  body’s  metabolites  [10,  11].  However,  the  over-
growth  of  any  strain  of  the  microbiota  (dysbiosis)  as  a
source of overnutrition is one of the contributing factors of
morbid obesity and metabolic syndromes like T2DM [27].
So,  restrictive  eating  should  be  performed when a  diverse
spectrum  of  the  microbiome  is  used  to  reverse  T2DM
[65-67]. This is because serum fasting is a strong inducer of
autophagy, which plays a pivotal role in cellular homeosta-
sis, cell repair, cytotoxic protein elimination, and damaged
organelle removal [22-25, 68].

CONCLUSION
The available data present the beneficial effects of exer-

cise  and  synbiotic  consumption  per  se  for  people  with
T2DM. The combination of exercise and synbiotic consump-
tion might have greater positive effects compared with a sin-
gle treatment. Furthermore, the side effects of the combina-
tion treatment need further investigation.
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