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Abstract 

In regions with a high prevalence of low- and middle-income economies, 

tuberculosis (TB) remains a significant global health concern. Diabetes (DM) 

has recently emerged as a potential TB risk factor and is expected to 

substantially increase in the next two decades, further complicating the 

situation. This study aims to thoroughly assess the TB-DM relationship, 

focusing on DM's impact on TB transmission dynamics and disability rates. 

We meticulously examine the mathematical elements of a deterministic TB 

model tailored for community settings. Our research determines equilibrium 

points, including the critical epidemic threshold and basic reproduction 

number. Stability assessments shed light on the model's behavior under 

varying conditions. Notably, we introduce a novel element in our numerical 

analysis by exploring DM's influence on TB transmission while considering 

disability rates associated with diabetes mellitus. Sensitivity studies on key 

factors influencing disease dynamics enhance our understanding by revealing 

their relative importance in disease transmission and prevalence. Our 

mathematical calculations reveal that DM accelerates TB transmission and the 

emergence of active TB cases within communities. Our work underscores the 

importance of targeted intervention measures to alleviate the burden of these 

interconnected diseases. These measures should include chemoprophylaxis for 

latent TB individuals and specialized treatment plans for DM patients with 

active TB. To combat TB and DM's co-occurrence, these interventions may 

involve screening for suspected diabetes, optimizing glucose control, and 

implementing enhanced clinical and pharmacological monitoring. 

 

Keywords: Tuberculosis, Diabetes, Disease Transmission, Mathematical 

Model, Intervention Strategies 
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1  INTRODUCTORY 

Despite excellent treatments, tuberculosis (TB) still threatens global health, infecting 

around one-third of the global population and resulting in 8.8 million new cases and 2 

million fatalities annually [1]. The main goal of current TB control techniques is to stop 

the spread of the disease by quickly detecting and treating persons who have infectious 

TB. Despite the success of this strategy, TB still exists in many areas, demanding a 

larger effort to address the disease's societal and human drivers. 

Projections predict that between 2000 and 2020, one billion people will become newly 

infected, 200 million will have TB, and 35 million will pass away from the illness 

globally [1] if TB control efforts are not substantially strengthened. In 22 "high-burden" 

nations, primarily in sub-Saharan Africa and Southeast Asia, where co-infection with 

HIV exacerbates the issue, 80 percent of these cases and fatalities will occur. Most TB 

infections result in asymptomatic latent infections, with 5–10% developing active TB 

for a lifetime. For those with HIV, this risk considerably increases. 

The World Health Organization's Stop TB Strategy has been widely adopted in high 

TB burden countries, but the decline in case numbers needs to catch up to expectations. 

This may be because diagnosis and treatment have taken longer than expected, and risk 

factors like co-infections, air pollution, alcohol abuse, overcrowding, diabetes, 

malnutrition, tobacco use, and urbanization have increased [2]. 60% of all deaths 

worldwide are attributable to diabetes, a major cause of early sickness and mortality. 

This is due to insufficient insulin synthesis or usage, which causes hyperglycemia and 

damages many physiological systems [3]. There are two main forms of diabetes: Type 

1, which has an unclear origin, and Type 2, which is mostly linked to obesity and 

inactivity. The prevalence of diabetes varies by area globally, and it is predicted to rise 

significantly, especially in low- and middle-income countries. 

TB and diabetes have a very substantial positive correlation, according to recent 

epidemiological studies. Diabetes increases the risk of developing tuberculosis (TB) 

thrice and accounts for 15–25% of TB cases. As DM is frequently identified before TB 

occurs, diabetes may decrease the immunological response, enabling Mycobacterium 

tuberculosis infection or disease development [4]. Impairments in host defenses and 

immune cell functioning may cause an increased incidence of TB in people with 

diabetes [5,6]. 

 

2 DYNAMIC MODEL OF TBC WITH DM 

We present a model for the spread of TB in population according to their TB and DM 

status. The total population at the time 𝑡, 𝑁(𝑡), is sub-divided into nine classes: non 

diabetics susceptible individuals (𝑆1), non-diabetics latently infected individuals (𝐸1), 

non-diabetics infected with active TB (𝐼1), non-diabetics recovered from TB (𝑅1), 

diabetics susceptible individuals (𝑆2), diabetics latently infected individuals (𝐸2), 

diabetics infected with active TB (𝐼2), diabetics recovered from TB (𝑅2), and treated 

individuals (𝑇). Thus, 
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𝑁(𝑡) = 𝑆1(𝑡) + 𝐸1(𝑡) + 𝐼1(𝑡) + 𝑅1(𝑡) + 𝑆2(𝑡) + 𝐸2(𝑡) + 𝐼2(𝑡) + 𝑅2(𝑡) + 𝑇(𝑡) 

We assumed that non-diabetics susceptible individuals are recruited through birth, and 

the recruitment occurs at rate Λ. The TB disease transmission occurs due to contact 

between susceptible individuals and infectious. Susceptible individuals get the TB 

disease from individuals with active TB at rate 𝜆 = 𝛽
𝐼1+𝜀𝐼2

𝑁
. Parameter 𝛽 is the effective 

coefficient of TB transmission and parameter 휀 >  1 accounts for the addition in 

infectiousness among diabetics infected with active TB (in comparison to non-diabetics 

infected with active TB). 

The natural death rate, 𝜇, is assumed to be positive constant. The class 𝐼1 has additional 

TB-induced death rates 𝑑1 and the class 𝐼2 has additional TB-induced death rates 𝑑2. 

The value of 𝑑2 is greater than or equal to 𝑑1 (𝑑2 ≥ 𝑑1) as DM experiences more 

significant disease-induced deaths than their corresponding non-diabetic counterparts 

[4]. 

A proportion 𝑝1, with 0 < 𝑝1 < 1, of non-diabetics susceptible individuals who get 

active TB infection moves to 𝐼1 class, and the proportion (1 − 𝑝1) becomes latently 

infected and enters the 𝐸1 class. Once latently infected, an individual can move to 𝑇 

class and follow a treatment. We denote the treatment rate of non-diabetics latent 

individuals by 𝜓1. Non-diabetics latent individuals who do not receive effective 

treatment develop an active TB at rates 𝜎1. 

Non-diabetics infected with active TB following treatment and move to 𝑇 class at a rate 

𝜔1. It is assumed that non-diabetics infected with active TB have natural recovery and 

can become recovered individuals at rate 𝜂1. After following treatment, non-diabetics 

infectious move to 𝑅1 class with rate 𝑞𝛿1 Parameter 𝑞, with 0 < 𝑞 < 1, represents the 

reduction in risk of infection due to treatment. Ineffective treatment causes non-

diabetics infectious relapse into the active TB state at rate (1 − 𝑞)𝛿1. 

Individuals in the classes without DM (those in the 𝑆1, 𝐸1 and 𝑅1) may move to the 

classes with DM (those in the 𝑆2, 𝐸2, and 𝑅2) at rate 𝛼. Non-diabetics infected with 

active TB acquire DM at rate 𝜏𝛼. Parameter 𝜏 is a enhancement factor which increases 

the progression of non-diabetics infectious to diabetics infectious because of their active 

TB status [7,8]. 

When diabetics susceptible individuals interacting with individuals in 𝐼2, they have 

greater risk of becoming a group infected with active TB at rate 𝜃𝜆 with 𝜃 > 1. This is 

because DM acts as a carrier of TB bacteria [5]. A proportion 𝑝2, with 0 < 𝑝2 < 1, of 

diabetics susceptible individuals who get active TB infection moves to 𝐼2 class, and the 

remainder (1 − 𝑝2) develops a latent TB and moves to the 𝐸2 class. 

Let 𝜓2𝐸2 be the number of people with DM latently infected individuals who have 

received treatment, where 𝜓2 is the rate of treatment. Diabetics latent individuals who 

do not receive effective treatment develop an active TB at rates 𝜃𝜎2. 

Diabetics infected with active TB following treatment and move to 𝑇 class at a rate 𝜔1. 

Thus, diabetics infected individuals with effective treatment progress to recovered at 

rate 𝑞𝛿2. But, some individuals may be undergoing ineffective treatment that returns 
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them to 𝐼2 class with rate (1 − 𝑞)𝛿2. It is assumed that diabetics infected with active 

TB have natural recovery and can become recovered individuals at rate 𝜂2. DM can 

cause disability so that diabetics infected with active TB can become disabled at rate 𝛾. 

The structure of the model is shown in Figure 1. 

 

Figure 1. Diagram of TB transition 

 

The dynamics of the population are then described by the system of nonlinear 

differential equations as follows: 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑑𝑆1
𝑑𝑡

= 𝛬 − (𝜇 + 𝛼 + 𝜆)𝑆1 

𝑑𝐸1
𝑑𝑡

= (1 − 𝑝1)𝜆𝑆1 − (𝜇 + 𝛼 + 𝜎1 + 𝜓1)𝐸1 

𝑑𝐼1
𝑑𝑡

= 𝑝1𝜆𝑆1 + 𝜎1𝐸1 − (𝜇 + 𝜏𝛼 + 𝑑1 + 𝜔1 + 𝜂1)𝐼1 + (1 − 𝑞)𝛿1𝑇 

𝑑𝑅1
𝑑𝑡

= 𝜂1𝐼1 + 𝑞𝛿1𝑇 − (𝜇 + 𝛼)𝑅1 

𝑑𝑆2
𝑑𝑡

= 𝛼𝑆1 − (𝜇 + 𝜃𝜆)𝑆2 

𝑑𝐸2
𝑑𝑡

= 𝜃(1 − 𝑝2)𝜆𝑆2 + 𝛼𝐸1 − (𝜇 + 𝜃𝜎2 + 𝜓2)𝐸2 

𝑑𝐼2
𝑑𝑡

= 𝜏𝛼𝐼1 + 𝜃𝑝2𝜆𝑆2 + 𝜃𝜎2𝐸2 − (𝜇 + 𝑑2 +𝜔2 + 𝜂2 + 𝛾)𝐼2 + (1 − 𝑞)𝛿2𝑇 

𝑑𝑅2
𝑑𝑡

= 𝛼𝑅1 + 𝜂2𝐼2 + 𝑞𝛿2𝑇 − 𝜇 

𝑑𝑇

𝑑𝑡
= 𝜔1𝐼1 +𝜔2𝐼2 +𝜓1𝐸1 + 𝜓2𝐸2 − 𝜇𝑇 − 𝛿1𝑇 − 𝛿2𝑇 

(1) 



Dynamic Model of Tuberculosis with Diabetes Mellitus 141 

 

3 ESSENTIAL FEATURES 

3.1. Solutions that are constructive and limited 

Theorem 3.1. Let 𝑆1(0) > 0, 𝐸1(0) > 0, 𝐼1(0) > 0, 𝑅1(0) > 0, 𝑆2(0) > 0, 𝐸2(0) >
0, 𝐼2(0) > 0, 𝑅2(0) > 0, and 𝑇(0) > 0. Be the initial data, For any 𝑡 > 0, the model 

(1) solutions (𝑆1, 𝐸1, 𝐼1, 𝑅1, 𝑆2, 𝐸2, 𝐼2, 𝑅2, 𝑇) are positive. Furthermore, 

𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝𝑁 (𝑡) ≤
𝛬

𝜇
. 

Proof: From the first equation of the system (1), 

𝑑𝑆1

𝑑𝑡
= 𝛬 − (𝜇 + 𝛼 + 𝜆(𝑡))𝑆1, 

we can write that equation for 𝑡 ≥ 0 become 

𝑑(𝑆1(𝑡))

𝑑𝑡
+ (𝜇 + 𝛼) ∙ 𝑆1(𝑡) + 𝜆(𝑡) ∙ 𝑆1(𝑡) = 𝛬 (3) 

Equation (3) can be written as, 

𝑑(𝑆1(𝑡))

𝑑𝑡
𝑒(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡

0 + (𝜇 + 𝛼 + 𝜆(𝑡))𝑆1(𝑡)𝑒
(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡

0 = 𝛬𝑒(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢
𝑡

0  

𝑑

𝑑𝑡
(𝑆1(𝑡)𝑒

(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢
𝑡
0 ) = 𝛬𝑒(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡
0 Integrating both sides, we would have 

𝑆1(𝑡)𝑒
(𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡
0 − 𝑆1(0) = ∫ 𝛬𝑒(𝜇+𝛼)𝑠+∫ 𝜆(𝑤)𝑑𝑤

𝑠
0

𝑡

0

𝑑𝑠 

Thus, the solution would be 

𝑆1(𝑡) = 𝑒
−((𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡
0

)
{𝑆(0) + ∫ 𝛬𝑒(𝜇+𝛼)𝑠+∫ 𝜆(𝑤)𝑑𝑤

𝑠
0

𝑡

0

𝑑𝑠} > 0, ∀𝑡 ≥ 0 

Similarly, it can be shown that 𝐸1(0) > 0, 𝐼1(0) > 0, 𝑅1(0) > 0, 𝑆2(0) > 0, 𝐸2(0) >
0, 𝐼2(0) > 0, 𝑅2(0) > 0, and 𝑇(0) > 0 for all 𝑡 ≥ 0. 

The sum of the equations in system (1), however, yields 

𝑑𝑁(𝑡)

𝑑𝑡
=
𝑑𝑆1(𝑡)

𝑑𝑡
+
𝑑𝐸1(𝑡)

𝑑𝑡
+
𝑑𝐼1(𝑡)

𝑑𝑡
+
𝑑𝑅1(𝑡)

𝑑𝑡
+
𝑑𝑆2(𝑡)

𝑑𝑡
+
𝑑𝐸2(𝑡)

𝑑𝑡
+
𝑑𝐼2(𝑡)

𝑑𝑡
+
𝑑𝑅2(𝑡)

𝑑𝑡
+
𝑑𝑇(𝑡)

𝑑𝑡
 

𝑑𝑁(𝑡)

𝑑𝑡
= Λ − 𝜇𝑁(𝑡) − 𝑑1𝐼1(𝑡) − (𝑑2 + 𝛾)𝐼2(𝑡) (4) 

From equation (4), we get the following inequality 

𝛬 − (𝜇 + 𝑑1 + 𝑑2 + 𝛾)𝑁(𝑡) ≤
𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝛬 − 𝜇𝑁(𝑡) (5) 

Thus, 

𝛬

𝜇+𝑑1+𝑑2+𝛾
≤ 𝑙𝑖𝑚

𝑡→∞
𝑖𝑛𝑓 𝑁 (𝑡) ≤ 𝑙𝑖𝑚

𝑡→∞
𝑠𝑢𝑝𝑁 (𝑡) ≤

𝛬

𝜇
. 
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So that, 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝𝑁 (𝑡) ≤
𝛬

𝜇
. The proof is complete.      ∎ 

 

3.2. Invariant Region and Existence Solution of the Model 

Theorem 3.2. The feasible set is a positive invariant set over system (1) with initial 

circumstances in  

ℝ+
9 . 𝛺 = {(𝑆1(𝑡), 𝐸1(𝑡), 𝐼1(𝑡), 𝑅1(𝑡), 𝑆2(𝑡), 𝐸2(𝑡), 𝐼2(𝑡), 𝑅2(𝑡), 𝑇(𝑡)) ∈ ℝ+

9 |0 ≤ 𝑁(𝑡) ≤
𝛬

𝜇
}  

has the initial condition. 

Proof: Let any solution with non-negative initial conditions be 

(𝑆1, 𝐸1, 𝐼1, 𝑅1, 𝑆2, 𝐸2, 𝐼2, 𝑅2, 𝑇) ∈ ℝ+
9  Inequality (5) gives us, we have 

𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝛬 − 𝜇𝑁(𝑡) (6) 

Inequality (6) can be written as 

𝑑𝑁(𝑡)

𝑑𝑡
𝑒𝜇𝑡 + 𝜇𝑁(𝑡)𝑒𝜇𝑡 ≤ 𝛬𝑒𝜇𝑡 

⇔
𝑑(𝑁(𝑡)𝑒𝜇𝑡)

𝑑𝑡
≤ 𝛬𝑒𝜇𝑡 

Taking the integral of both sides from 0 to 𝑡, we obtain 

𝑁(𝑡) ≤ [𝑁(0) −
𝛬

𝜇
] 𝑒−𝜇𝑡 +

𝛬

𝜇
 (7) 

where 𝑁(0) represents the initial values of 𝑁(𝑡). 

System (1) explains the population dynamics. This highlights the non-negative nature 

of the model variables and parameters at time t. Therefore, inequality (7) has the 

following lower limit, 

0 ≤ 𝑁(𝑡) < [𝑁(0) −
Λ

𝜇
] 𝑒−𝜇𝑡 +

Λ

𝜇
 

Hence, as 𝑡 → ∞, 0 ≤ 𝑁(𝑡) ≤
𝛬

𝜇
. Therefore, all system (1) practical solutions enter the 

area, 

𝛺 = {(𝑆1(𝑡), 𝐸1(𝑡), 𝐼1(𝑡), 𝑅1(𝑡), 𝑆2(𝑡), 𝐸2(𝑡), 𝐼2(𝑡), 𝑅2(𝑡), 𝑇(𝑡)) ∈ ℝ+
9 |0 ≤ 𝑁(𝑡) ≤

𝛬

𝜇
}. 

It shows that the set 𝛺 is a system-positive invariant set (1). This completes the  

proof.              ∎ 

Theorem 3.3. For every non-negative initial value 

(𝑆1(0), 𝐸1(0), 𝐼1(0), 𝑅1(0), 𝑆2(0), 𝐸2(0), 𝐼2(0), 𝑅2(0), 𝑇(0)) ∈ 𝛺, For system (1), 
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there are always solutions. 

Proof: We apply a Lipschitz condition to examine the existence of the model solution. 

Let 𝑋 =

(

 
 
 
 
 
 
 

𝑆1(𝑡)
𝐸1(𝑡)
𝐼1(𝑡)
𝑅1(𝑡)

𝑆2(𝑡)
𝐸2(𝑡)
𝐼2(𝑡)
𝑅2(𝑡)
𝑇(𝑡) )

 
 
 
 
 
 
 

 and 𝜗(𝑋) =

(

 
 
 
 
 
 
 
 

�̇�1(𝑡)

�̇�1(𝑡)

𝐼1̇(𝑡)

�̇�1(𝑡)

�̇�2(𝑡)

�̇�2(𝑡)

𝐼2̇(𝑡)

�̇�2(𝑡)

�̇�(𝑡) )

 
 
 
 
 
 
 
 

, so the system (1) is rewritten in the following 

form 

𝜗(𝑋) = 𝐴𝑋 + 𝑃 

where 

𝐴 =

[
 
 
 
 
 
 
 
 −(𝜇 + 𝛼 + 𝜆)

(1 − 𝑝1)𝜆
𝑝1𝜆
0
𝛼
0
0
0
0

 

0
−𝐴1
𝜎1
0
0
𝛼
0
0
𝜓1

 

0
0
−𝐴2
𝜂1
0
0
𝜏𝛼
0
𝜔1

 

0
0
0
−𝐴3
0
0
0
𝛼
0

 

0
0
0
0

−(𝜇 + 𝜃𝜆)

𝜃(1 − 𝑝2)𝜆
𝜃𝑝2𝜆
0
0

 

0
0
0
0
0
−𝐴4
𝜃𝜎2
0
𝜓2

 

0
0
0
0
0
0
−𝐴5
𝜂2
𝜔2

 

0
0
0
0
0
0
0
−𝜇
0

 

0
0

(1 − 𝑞)𝛿1
𝑞𝛿1
0
0

(1 − 𝑞)𝛿2
𝑞𝛿2
−𝐴6 ]

 
 
 
 
 
 
 
 

, 𝑃 =

[
 
 
 
 
 
 
 
 
𝛬
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 

Then, 

‖𝜗(𝑋𝑎) − 𝜗(𝑋𝑏)‖ =

‖

‖

‖

[
 
 
 
 
 
 
 
 
 

(𝜇 + 𝛼 + 𝜆)(𝑆1𝑏 − 𝑆1𝑎)

(1 − 𝑝1)𝜆|𝑆1𝑎 − 𝑆1𝑏| + 𝐴1|𝐸1𝑏 − 𝐸1𝑎|

𝑝1𝜆|𝑆1𝑎 − 𝑆1𝑏| + 𝜎1|𝐸1𝑎 − 𝐸𝑎𝑏| + 𝐴2|𝐼1𝑏 − 𝐼1𝑎| + (1 − 𝑞)𝛿1|𝑇𝑎 − 𝑇𝑏|

𝜂1|𝐼1𝑎 − 𝐼1𝑏| + 𝐴3|𝑅1𝑏 − 𝑅1𝑎| + 𝑞𝛿1|𝑇𝑎 − 𝑇𝑏|

𝛼|𝑆1𝑎 − 𝑆1𝑏| + (𝜇 + 𝜃𝜆)|𝑆2𝑏 − 𝑆2𝑎|

𝛼|𝐸1𝑎 − 𝐸1𝑏| + 𝜃(1 − 𝑝2)𝜆|𝑆2𝑎 − 𝑆2𝑏| + 𝐴4|𝐸2𝑏 − 𝐸2𝑎|

𝜏𝛼|𝐼1𝑎 − 𝐼1𝑏| + 𝜃𝑝2𝜆|𝑆2𝑎 − 𝑆2𝑏| + 𝜃𝜎2|𝐸2𝑎 − 𝐸2𝑏| + 𝐴5|𝐼2𝑏 − 𝐼2𝑎| + (1 − 𝑞)𝛿2|𝑇𝑎 − 𝑇𝑏|

𝛼|𝑅1𝑎 − 𝑅1𝑏| + 𝜂2|𝐼2𝑎 − 𝐼2𝑏| + 𝜇|𝑅2𝑏 − 𝑅2𝑎| + 𝑞𝛿2|𝑇𝑎 − 𝑇𝑏|

𝜓1|𝐸1𝑎 − 𝐸1𝑏| + 𝜔1|𝐼1𝑎 − 𝐼1𝑏| + 𝜓2|𝐸2𝑎 − 𝐸2𝑏| + 𝜔2|𝐼2𝑎 − 𝐼2𝑏| + 𝐴6|𝑇𝑏 − 𝑇𝑎| ]
 
 
 
 
 
 
 
 
 

‖

‖

‖

 

≤ 𝜇|𝑆1𝑏 − 𝑆1𝑎| + 𝑀1|𝐸1𝑏 − 𝐸1𝑎| + 𝑀2|𝐼1𝑏 − 𝐼1𝑎| + 𝑀3|𝑅1𝑏 − 𝑅1𝑎| + 𝜇|𝑆2𝑏 − 𝑆2𝑎|
+ 𝑀4|𝐸2𝑏 − 𝐸2𝑎| +  𝑀5|𝐼2𝑏 − 𝐼2𝑎| + 𝜇|𝑅2𝑏 − 𝑅2𝑎| + 𝑀6|𝑇𝑏 − 𝑇𝑎| 

≤ 𝑀(|𝑆1𝑏 − 𝑆1𝑎| + |𝐸1𝑏 − 𝐸1𝑎| + |𝐼1𝑏 − 𝐼1𝑎| + |𝑅1𝑏 − 𝑅1𝑎| + |𝑆2𝑏 − 𝑆2𝑎|
+ |𝐸2𝑏 − 𝐸2𝑎| + |𝐼2𝑏 − 𝐼2𝑎|+|𝑅2𝑏 − 𝑅2𝑎| + |𝑇𝑏 − 𝑇𝑎|) 

≤ 𝑀‖𝜗𝑎 − 𝜗𝑏‖ 

where 

𝐴1 = (𝜇 + 𝛼 + 𝜎1 + 𝜓1) 𝐴2 = (𝜇 + 𝜏𝛼 + 𝑑1 + 𝜔1 + 𝜂1) 𝐴3 = (𝜇 + 𝛼) 
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𝐴4 = (𝜇 + 𝜃𝜎2 + 𝜓2) 𝐴5 = (𝜇 + 𝑑2 + 𝜔2 + 𝜂2 + 𝛾), and 𝐴6 = 𝜇 + 𝛿1 + 𝛿2. 

and 

𝑀1 = 𝐴1 + 𝜎1 + 𝛼 + 𝜓1,𝑀2 = 𝐴2 + 𝜂1 + 𝜏𝛼 + 𝜔1,𝑀3 = 𝐴3 + 𝛼,𝑀4 = 𝐴4 + 𝜃𝜎2 + 𝜓2, 

𝑀5 = 𝐴5 + 𝜂2 +𝜔2, 𝑀6 = 𝐴6 + 𝛿1 + 𝛿2, and 𝑀 = 𝑚𝑎𝑥(𝜇,𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6) 

So, the function 𝜗 satisfies the Lipschitz continuity condition. Thus, based on the 

restrictions on the state variables, namely 𝑆1(𝑡) > 0, 𝐸1(𝑡) > 0, 𝐼1(𝑡) > 0, 𝑅1(𝑡) >
0, 𝑆2(𝑡) > 0, 𝐸2(𝑡) > 0, 𝐼2(𝑡) > 0, 𝑅2(𝑡) > 0, and 𝑇(𝑡) > 0., it can be concluded that 

system (1) has a unique solution.          ∎ 

 

3.3. Basic reproduction number 

By setting the right-hand sides of the model's equations to zero, model system (1) 

achieves a state of disease free equilibrium (DFE), 

𝐷𝐹𝐸 = (𝑆1
0, 0,0,0, 𝑆2

0, 0,0,0,0) 

with 𝑆1
0 =

𝛬

𝜇+𝛼
 and 𝑆2

0 =
𝛼𝛬

𝜇(𝜇+𝛼)
. 

The basic reproduction number, ℜ0, can be established using the next generation matrix 

(NGM). Following Driessche and Watmough [9], we have the matrices 𝐹 and 𝑉 as 

follows 

𝐹 =
1

𝑁0
[
 
 
 
 0
0
0
0

 

𝑎1𝛽𝑆1
0

𝑝1𝛽𝑆1
0

𝑎2𝜃𝛽𝑆2
0

𝑝2𝜃𝛽𝑆2
0

 

0
0
0
0

 

𝑎1휀𝛽𝑆1
0

𝑝1휀𝛽𝑆1
0

𝑎2휀𝜃𝛽𝑆2
0

𝑝2휀𝜃𝛽𝑆2
0]
 
 
 
 

 and 𝑉 = [

𝐴1
−𝜎1
−𝛼
0

 

0
𝐴2
0
−𝜏𝛼

 

0
0
𝐴4
−𝜃𝜎2

 

0
0
0
𝐴5

] 

Then, the number ℜ0 is given by 

ℜ0 = 𝜌(𝐹𝑉−1) 

=
1

𝑁0

𝛽

𝐴1𝐴2𝐴4𝐴5
((𝐴4(𝛼휀𝜏 + 𝐴5)(𝜎1𝑎1 + 𝐴1𝑝1) + 𝐴2𝜃휀𝛼𝜎2𝑎1)𝑆1

0

+ 𝐴1𝐴2𝜃휀(𝜎2𝑎2𝜃 + 𝐴4𝑝2)𝑆2
0) 

where 𝑎1 = (1 − 𝑝1), 𝑎2 = (1 − 𝑝2), 𝑁0 =
𝛬

𝜇
 and 𝜌 represents the spectral radius. 

 

4 MODEL ANALYSIS 

4.1 Stability of DFE 

Lemma 4.1. DFE of system (1) is L.A.S when ℜ0 < 1 and unstable when ℜ0 > 1. 

The system (1) has the following Jacobian matrix at DFE: 
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𝐽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−(𝜇 + 𝛼)
0
0
0
𝛼
0
0
0
0

 

0
−𝐴1
𝜎1
0
0
𝛼
0
0
𝜓1

 

−𝛽𝜇

(𝜇 + 𝛼)
(1 − 𝑝1)𝛽𝜇

(𝜇 + 𝛼)
𝑝1𝛽𝜇

(𝜇 + 𝛼)
− 𝐴2

𝜂1
−𝜃𝛽𝛼

(𝜇 + 𝛼)
𝜃(1 − 𝑝2)𝛽𝛼

(𝜇 + 𝛼)

𝜏𝛼 +
𝜃𝑝2𝛽𝛼

(𝜇 + 𝛼)
0
𝜔1

 

0
0
0
−𝐴3
0
0
0
𝛼
0

 

0
0
0
0
−𝜇
0
0
0
0

 

0
0
0
0
0
−𝐴4
𝜃𝜎2
0
𝜓2

 

−𝛽휀𝜇

(𝜇 + 𝛼)
(1 − 𝑝1)𝛽휀𝜇

(𝜇 + 𝛼)

𝑝1
𝛽휀𝜇

(𝜇 + 𝛼)
0

−𝜃𝛽휀𝛼

(𝜇 + 𝛼)
𝜃(1 − 𝑝2)𝛽휀𝛼

(𝜇 + 𝛼)
𝜃𝑝2𝛽휀𝛼

(𝜇 + 𝛼)
− 𝐴5

𝜂2
𝜔2

 

0
0
0
0
0
0
0
−𝜇
0

 

0
0

(1 − 𝑞)𝛿1
𝑞𝛿1
0
0

(1 − 𝑞)𝛿2
𝑞𝛿2
−𝐴6

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The nine roots of the ninth-order polynomial equation are the Jacobian matrix's nine 

eigenvalues. Explicitly locating the roots is challenging because there are numerous 

parameters involved. Applying the Routh Hurwitz criteria test, which results in all real 

parts of polynomial roots being negative if and only if the criterion test conditions are 

met, is one way to identify the type of polynomial roots. 

The basic reproduction number calculates the typical number of new cases of TB that 

one infection causes in a susceptible population. As a result, when ℜ0 < 1, the DFE of 

the system (1) is locally asymptotically stable (L.A.S). If and ℜ0 > 1, TB stay in the 

community. 

Next, we used the result of Castillo-Chavez et al. [10] on the global stability of DFE. 

We rewrite system (1) as 

�̇�(𝑡) =  𝐹 (𝑥, 𝑦); 

�̇�(𝑡) =  𝐺(𝑥, 𝑦);  𝐺(𝑥, 0) = 0 

where 

𝑥(𝑡) = (𝑆1(𝑡), 𝑆2(𝑡), 𝑅1(𝑡), 𝑅2(𝑡), 𝑇(𝑡))
𝑇 ∈ ℝ+

5  

𝑦(𝑡) = (𝐸1(𝑡), 𝐼1(𝑡), 𝐸2(𝑡), 𝐼2(𝑡))
𝑇
∈ ℝ+

4  

The DFE is now denoted by 𝐸0 = (𝑥0, 0) where 𝑥0  = (𝑆1
0, 𝑆2

0, 𝑅1
0, 𝑅2

0, 𝑇0). 

The conditions (𝐶1) and (𝐶2) below must be met to guarantee 𝐸0 is globally 

asymptotically stable (G.A.S). 

𝐶1: For �̇�(𝑡) =  𝐹 (𝑥, 0), 𝑥0 is G.A.S,  (2) 

𝐶2: 𝐺(𝑥, 𝑦)  =  𝐻𝑦 − �̃�(𝑥, 𝑦), �̃�(𝑥, 𝑦)  ≥  0 for (𝑥, 𝑦)  ∈  Ω,  (3) 
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where 𝐻 is an M-matrix (the off diagonal elements of H are nonnegative) and Ω is the 

region where the model makes biological sense. If system (1) satisfies the conditions in 

Eq. (2) and (3), then the following result holds. 

Theorem 4.1. The point 𝐸0 = (𝑥0, 0) of system (1) is G.A.S if ℜ0 < 1 and the 

conditions in Eq. (2) and (3) are satisfied. 

Proof: From the proof in Lemma 4.1, the DFE is L.A.S when ℜ0 < 1. Using system 

(1), we have 

𝐹(𝑥, 0) =

[
 
 
 
 
𝛬 − (𝜇 + 𝛼)𝑆1
𝛼𝑆1 − 𝜇𝑆2

0
0
0 ]

 
 
 
 

, 𝐶 =

[
 
 
 −𝐴1
𝜎1
𝛼
0

 

(1 − 𝑝1)𝛽
𝑝1𝛽 − 𝐴2
𝜃(1 − 𝑝2)𝛽
𝜏𝛼 + 𝜃𝑝2𝛽

 

0
0
−𝐴4
𝜃𝜎2

 

(1 − 𝑝1)𝛽휀
𝑝1𝛽휀

𝜃(1 − 𝑝2)𝛽휀
𝜃𝑝2𝛽휀 − 𝐴5 ]

 
 
 
, 

and 

�̃�(𝑥, 𝑦) =

[
 
 
 
 
 
 
 
 (1 − 𝑝1)𝛽𝐼1 (1 −

𝑆1
𝑁
) + (1 − 𝑝1)𝛽휀𝐼2 (1 −

𝑆1
𝑁
)

𝑝1𝛽𝐼1 (1 −
𝑆1
𝑁
) + 𝑝1𝛽휀𝐼2 (1 −

𝑆1
𝑁
)

𝜃(1 − 𝑝2)𝛽𝐼1 (1 −
𝑆2
𝑁
) + 𝜃(1 − 𝑝2)𝛽휀𝐼2 (1 −

𝑆2
𝑁
)

𝜃𝑝2𝛽𝐼1 (1 −
𝑆2
𝑁
) + 𝜃𝑝2𝛽휀𝐼2 (1 −

𝑆2
𝑁
) ]

 
 
 
 
 
 
 
 

 

Parameter 𝜃, 𝛽, 휀 is positive constant. The value of 𝑝1 and 𝑝2 are restricted, i.e 0 ≤
𝑝1, 𝑝2 < 1, then (1 − 𝑝1) ≥ 0 and (1 − 𝑝2) ≥ 0. We know that 0 ≤ 𝑆1, 𝑆2 ≤ 𝑁. 

Let 𝐼1
0 = 𝐼1(0) and 𝐼2

0 = 𝐼2(0), note that 𝐼1(𝑡) > 0 if 𝐼1
0 >  0 and 𝐼2(𝑡) > 0 if 𝐼2

0 >  0. 

We can conclude that �̃�(𝑥, 𝑦) ≥ 0. 

Next, using the variation of constant formula, we have 

0 ≤ 𝐼1(𝑡) = 𝑒
𝐻𝑡𝐼1(0) − ∫ 𝑒𝐻(𝑡−𝑠)�̃�(𝑥(𝑠), 𝑦(𝑠))𝑑𝑠

𝑡

0

≤ 𝑒𝐻𝑡𝐼1(0) 

Since 𝐻 is an M-matrix, 𝐻 has a dominant eigenvalue 𝑚(𝐻) with 𝑚(𝐻)  <  0 for ℜ0 <
 1. Thus 

lim
𝑡→∞

‖𝑒𝐻𝑡‖ = 0 ⇒ lim
𝑡→∞

𝐼1(𝑡) = 0 

The same calculation is performed for 𝐼2(𝑡), and we have lim
𝑡→∞

𝐼2(𝑡) = 0. 

For 𝑥1(𝑡) = 𝑆1(𝑡), 

lim
𝑡→∞

𝑥1(𝑡) = lim
𝑡→∞

𝑆1(𝑡) 

= 𝑙𝑖𝑚
𝑡→∞

𝑒
−((𝜇+𝛼)𝑡+∫ 𝜆(𝑢)𝑑𝑢

𝑡
0

)
{𝑆(0) + ∫ 𝛬𝑒(𝜇+𝛼)𝑠+∫ 𝜆(𝑤)𝑑𝑤

𝑠
0

𝑡

0

𝑑𝑠} 
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=
Λ

𝜇 + 𝛼
= 𝑆1

0 

The same calculation is performed for 𝑆2(𝑡), and we have lim
𝑡→∞

𝑆2(𝑡) =
αΛ

𝜇(𝜇+𝛼)
. 

Since lim
𝑡→∞

𝐼1(𝑡) = 0 and lim
𝑡→∞

𝐼2(𝑡) = 0, we have lim
𝑡→∞

𝑅1(𝑡) = lim
𝑡→∞

𝑅2(𝑡) =

lim
𝑡→∞

𝑇(𝑡) = 0. 

It is clear that 𝑥0  = (𝑆1
0, 𝑆2

0, 𝑅1
0, 𝑅2

0, 𝑇0) = (
Λ

𝜇+𝛼
,

αΛ

𝜇(𝜇+𝛼)
, 0,0,0) is GAS of �̇�(𝑡) =

 𝐹 (𝑥, 0). 

Both condition in Eq. (2) and (3) are satisfied, so by the above theorem 𝐸0 is G.A.S. ∎ 

 

4.2 Stability of Endemic Equilibrium (EE) 

System (1) has basically two possible endemic equilibria, that is the EE points for non 

diabetics only and the EE points where both non-diabetics and diabetics exist. Endemic 

occurs within a population when 𝐼 ≠ 0, so we have 

𝑆1
∗ =

𝛬

(𝜇 + 𝛼 + 𝜆)
, 𝐸1

∗ =
(1 − 𝑝1)𝜆𝑆1

∗

𝐴1
, 𝐼1
∗ =

𝑝1𝜆𝑆1
∗ + 𝜎1𝐸1

∗ + (1 − 𝑞)𝛿1𝑇
∗

𝐴2
, 𝑅1

∗ =
𝜂1𝐼1

∗ + 𝑞𝛿1𝑇
∗

𝐴3
 

𝑆2
∗ =

𝛼𝑆1
∗

(𝜇 + 𝜃𝜆)
, 𝐸2

∗ =
𝜃(1 − 𝑝2)𝜆𝑆2

∗ + 𝛼𝐸1
∗

𝐴4
, 𝐼2
∗

=
𝜏𝛼𝐼1

∗ + 𝜃𝑝2𝜆𝑆2
∗ + 𝜃𝜎2𝐸2

∗ + (1 − 𝑞)𝛿2𝑇
∗

𝐴5
 

𝑅2
∗ =

𝛼𝑅1
∗ + 𝜂2𝐼2

∗ + 𝑞𝛿2𝑇
∗

𝜇
, 𝑇∗ =

𝜔1𝐼1
∗ + 𝜔2𝐼2

∗ + 𝜓1𝐸1
∗ + 𝜓2𝐸2

∗

𝐴6
 

 

Lemma 4.2. Based on the value of ℜ0, model (1) could have 

(i) a unique EE whenever ℜ0  >  1. 

(ii) more than one EE whenever ℜ0 > 1. 

(iii) a unique EE m whenever ℜ0 < 1. 

(iv) one or more EE whenever ℜ0 < 1. 

 

5 SENSITIVITY ANALYSIS AND NUMERICAL SIMULATION 

The parameter values used for numerical simulation are given in Table 1. 
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Table 1. Numerical values for the parameters of system (1) 

Symbol Value Source Symbol Value Source 

Λ 667685/yr [11] 𝜓2 0/yr [15] 

𝛽 3 [9] 𝜔1 0.7372/yr [14] 

휀 1.1 Assumed 𝜔2 0.7372/yr Assumed 

𝜏 1.01 Assumed 𝑑1 0.275/yr [15] 

𝜃 2 [12] 𝑑2 1.25*d1/yr [14] 

𝜇 1/53.5/yr [11] 𝛾 0.05 [16] 

𝛼 9/1000/yr Assumed 𝑞 0.94 [17] 

𝜎1 0.75 ∗ p1 [13] 𝜂1 1.07 [17] 

𝜎2 0.7 ∗ p1 Assumed 𝜂2 0.05 [17] 

𝑝1 0.03 [14] 𝛿1 0.14 [17] 

𝑝2 0.06 [14] 𝛿2 0.33 [17] 

𝜓1 0/yr [15]    

 

5.1 Sensitivity Analysis 

Sensitivity analysis is used to evaluate the relative importance of model parameters to 

TB transmission and prevalence. We perform the analysis by calculating the sensitivity 

indices of number ℜ0. We may evaluate the relative change in a state variable when a 

parameter changes. As the number ℜ0 is a differentiable function of the parameters, the 

sensitivity index can similarly be created using partial derivatives. For instance, the 

formula for calculating the sensitivity index of ℜ0 with regard to the parameter values 

in Table 1 is as follows. 

∏=

ℜ0

𝛽

(
𝜕ℜ0
𝜕𝛽

) (
𝛽

ℜ0
) = 1 > 0 

This reveals that ℜ0 is a function that increases and that the parameter significantly 

affects the transmission of TB. The indices of the remaining parameters are listed in 

Table 2. 

Table 2. Sensitivity indices for the ℜ0 

Parameter Index Parameter Index Parameter Index 

Λ 2 𝛼 0.4145 𝛿2 0.0046 

𝜇 -2.6174 𝜎1 0.1357 𝜓1 0 

𝛽 1 𝜎2 0.0521 𝜓2 0 

휀 0.7976 𝑝1 0.0036 𝑑1 -0.1071 

𝜏 0.0008 𝑝2 0.0089 𝑑2 -0.0343 

𝜃 0.8102 𝜔1 -0.0668 𝜂1 -0.0275 

𝑞 -0.5014 𝜔2 -0.4804 𝜂2 -0.2358 

𝛾 -0.0343 𝛿1 -0.0034   

 

According to Table 2, parameters with negative signs on their sensitivity indices cause 
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the value of the basic reproduction number to decrease as their values rise, whereas 

those with positive indications cause the value of ℜ0 to rise. The value of the 

fundamental reproduction number is unaffected by those lacking any indicators. 

According to Table 2, the higher risk of developing diabetes and the increased factor of 

TB susceptibility because of DM lead to an increase in ℜ0. The sensitivity index value 

of 0.4145 indicates that if we raise (lower) the value of by 10%, the value of ℜ0 will 

rise (fall) by 4.145%. Additionally, if we raise (lower) the value of by 10%, the value 

of ℜ0 will rise (fall) by 8.102%. 

We can easily see that when the treatment rate 𝜔2 increasing, the basic reproduction 

number ℜ0 decreases. This means that the treatment of active TB patients in a diabetic 

population would have a positive impact in TB control. The value of sensitivity index 

𝜔2 = −0.4804 represents that if we increase (decrease) the value of 𝜔2 by 10% then 

the value of ℜ0 will decrease (increase) by 4.804%. 

5.2 Numerical Simulation 

For illustrative purposes and to support the analytical results, numerical simulations are 

run using a set of suitable parameter values from Table 1. The following randomly 

selected initial conditions were used in all simulations to run the model: 𝐸1(0) =
557800, 𝐸2(0) = 4500, 𝐼1(0) = 20000, 𝐼2(0) = 1800, 𝑅1(0) = 8000, 𝑅2(0) =
200, and 𝑇(0) = 200. 𝑆1(0) = 8741400, 𝑆2(0) = 200000. The transmission rate has 

been set in all simulations so that there is a case for ℜ0 > 1 and for ℜ0 < 1. We start 

by selecting 𝛽 = 1. Figure 2 demonstrates that the DFE is locally asymptotically stable 

after the numerical simulation yields ℜ0 < 1. Next, we select 𝛽 = 3. Figure 3 

demonstrates that the EE is locally asymptotically stable when a numerical simulation 

yields ℜ0 > 1. 

 

Figure 2. Population graph infecting active TB without DM and with DM when 𝛽 =
1 
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Figure 2 illustrates numerical simulations of model (1) with plots of non-diabetic and 

diabetic active infected populations (𝐼1 and 𝐼2) when 𝛽 = 1 so that ℜ0 = 0.7319 < 1. 

Figure 2 shows that diabetics (𝐼2) are more likely to have the infection than non-

diabetics (𝐼1). This indicates that DM increases the number of people with active TB 

infection. Additionally, Figure 2 demonstrates that as time goes on, both the proportion 

of TB populations without diabetes and those with diabetes decline. The number of 

populations with active TB infections will decrease if efforts are made to lessen the 

interaction rate between those who are vulnerable to TB and those who have the disease. 

Figure 2 demonstrates that people with active TB infection who do not have diabetes 

(𝐼1) get to the disease-free equilibrium point more quickly than people with active TB 

infection who do have diabetes (𝐼2). Compared to those with active TB without DM 

(𝐼1), those with active TB with DM (𝐼2) require more time to achieve the disease-free 

equilibrium point. 

 

Figure 3. Susceptible population graph without DM and with DM when 𝛼 = 0.109 

and 𝛽 = 3 

 

Figure 3 displays numerical simulations of model (1) with plots of non-diabetic and 

susceptible-to-diabetes populations (𝑆1 and 𝑆2) when 𝛼 = 0.109 and 𝛽 = 3 so that 

ℜ0 = 4.1621 > 1. With time, there are more people who are both susceptible to TB 

without DM and susceptible to TB with DM. High blood sugar sufferers may affect 

how the TB disease spreads. The spread of the TB disease is aided by raising the values 

of the parameters and; as can be seen, the resulting ℜ0 value is higher than 1. The spread 

of the TB disease is accelerated by an increase in the number of diabetics. 
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Figure 4. Latently infected population graph without DM and with DM when 𝛼 =
0.109 and 𝛽 = 3 

 

Figure 5. Active TB infected population graph without DM and with DM when 𝛼 =
0.109 and 𝛽 = 3 
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Graphical representations as in Figure 4 and Figure 5 clearly show that an increase of 

the susceptibility to TB due to DM (𝛼) will generally result in an increases in the 

number of TB infected individuals with more effect on diabetics latently infected 

individuals. Thus, DM increases disease transmission. 

 

Figure 6. Recovered population graph without DM and with DM when 𝛽 = 3 

 

Furthermore, in the presence of treatment, TB control is more effective in communities 

with diabetics than in the communities with non-diabetics. DM significantly influences 

the development of TB, so treatment is needed for TB patients with DM. Thus, care for 

TB patients involves more than just giving the anti-TB treatment. One type of treatment 

for TB patients is known as the DOTS (Direct Observed Treatment Short Course) 

strategy. The DOTS (Direct Observed Treatment Short Course) strategy is a 

management to ensure TB patients swallow anti-TB drugs. To support the DOTS 

strategy, it requires discipline and compliance from TB patients in their treatment. If 

treatment compliance is not achieved, then the cure rate as promote by DOTS strategy 

would not be reached. 

Pulmonary TB is one of the most common causes of complications in DM, resulting in 

the increasing prevalence of DM contributing to the increasing TB epidemic. As more 

and more people develop diabetes, intervention strategies such as counselling and 

education campaigns are needed to reduce the spread of TB. Counselling mainly 

emphasizes diet and physical activity, namely a low-carbohydrate diet and exercise. So, 

good integration is needed between TB treatment and particular treatment strategies 

focusing on TB patients with DM. 
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6 CONCLUSION 

A mathematical model for studying the dynamics of TB transmission in a population, 

considering that some people in the population have diabetes, is presented as a system 

of ordinary differential equations. Based on the analysis results, a disease-free 

equilibrium point and an endemic equilibrium point were obtained. The stability of each 

equilibrium point depends on the system parameters. 

Based on the results of the sensitivity test of the ℜ0 value to several model parameters, 

results were obtained which showed that the ℜ0 value would increase if the interaction 

parameter between individuals susceptible to TB and individuals infected with active 

TB with and without DM (𝛽) were more significant so that the disease would spread in 

the population. Meanwhile, the ℜ0 value will decrease if the value of the rate parameter 

for individuals infected with TB without DM undergoing treatment (𝜔1) and the 

parameter for the rate of individuals infected with TB with DM undergoing treatment 

(𝜔2) is more significant, which means the infected population will decrease or be free 

from disease. Based on numerical simulations, it was found that it is necessary to 

integrate TB treatment and special treatment in treating TB disease with DM to reduce 

and prevent the spread of TB disease. 

 

ACKNOWLEDGMENT 

The Faculty of Science and Mathematics at Diponegoro University, under grant number 

22.E/UN7.F8/PP/II/2023, provided funding for this research that was separate from the 

Indonesian State Revenue and Expenditure Budget. 

 

REFERENCES 

 

[1] Global tuberculosis report. Geneva: World Health Organization; Available from: 

http://whqlibdoc.who.int/publications/2010/9789241564069-eng.pdf [accessed 

25 March 2011], 2010. 

[2] K. L¨onnroth, K.G. Castro, J.M. Chakaya, L.S. Chauhan, K. Floyd. Tuberculosis 

control and elimination 2010–50: cure, care, and social development. Lancet 375 

(2010), 1814-1829. 

[3] J. Stephenson. TB progress slowing. JAMA 299 (2008), 1764-1771, doi: 

10.1001/jama.299.15.1764-b. 

[4] I.B. Restrepo, A.J. Camerlin, M.H. Rahbar, W. Wang, M.A. Restrepo, I. Zarate, 

F. Mora-Guzm´an, J. G. Crespo-Solis, J. Briggs, J. B. McCormicka, S. P. Fisher-

Hocha. Cross-sectional assessment reveals high diabetes prevalence among 

newly-diagnosed tuberculosis cases. Bull. World Health. Organ. 89 (2011), 352–

359, doi:10.2471/BLT.10.085738 359. 



154 Jovian Dian Pratama and Anindita Henindya Permatasari 

 

[5] M.M. McMahon, R.B. Bistrian. Host defenses and susceptibility to infection in 

patients with diabetes mellitus. Infect. Dis. Clin. North Am. 9 (1995), 1-10. 

[6] H. Koziel, M.J. Koziel. Pulmonary complications of diabetes mellitus. Infect. Dis. 

Clin. North Am. 9 (1995), 67–72. 

[7] C.T. Yu, C.H. Wang, T.J. Huang. Relation of bronchoalvcolar lavagc T 

lymphocyte subpopulations to rate of regression of active pulmonary tuberculosis. 

Thorux 50 (1995), 86–93. 

[8] A. Guptan, A. Shah. Tuberculosis and diabetes: An appraisa. Ind. J. Tub. 47 

(2000), 3–12. 

[9] Driessche. & Watmough., 2002. Reproduction numbers and sub-threshold 

endemic equilibria for compartmental models of disease transmission. 

Mathematical Biosciences. Vol. 2002, No. 180, pp 29-48. 

[10] C. Castillo-Chavez, Z. Feng, D. Xu, On the computation of R0 and its role on 

global stability. math.la.asu.edu/chavez/2002/JB276.pdf, 2002. 

[11] National Institute of Statistics, Evolution des syst`emes statistiques nationaux, 

exp´erience du Cameroun, in The National Institute of Statistics report, J. Tedou 

(ed). New-York, (2010), 1–18. 

[12] C.R. Stevenson, J.A. Critchley, N.G. Forouhi, G. Roglic, B.G. Williams. Diabetes 

and the risk of tuberculosis: a neglected threat to public health? Chronic Illness 3 

(2007), 228–245, 

[13] N. Baca¨er, R. Ouifki, C. Pretorius, R. Wood, B. Williams. Modeling the joint 

epidemics of TB and HIV in a South African township. J. Math. Biol. 57 (2008), 

557–593, DOI 10.1007/s00285-008-0177-z. 

[14] D.P. Moualeu, S. Bowong, J.J Tewa, Y. Emvudu. Analysis of The Impact of 

Diabetes on The Dynamical Transmission of Tuberculosis. Math. Model. Nat. 

Phenom. Vol 7, No. 3, 2012, pp 117-146. 

[15] National Comittee of Fight Against Tuberculosis, Guide du personnel de la sant´e, 

in The Ministry of Public Health report, Minist´ere de la Sant´e Publique (ed), 

Yaound´e-Cameroon: CEPER Press (2010), 1–110. 

[16] A Boutayeb, EH Twizell, K Achouayb, and A Chetouani. mathematical model 

for the burden of diabetes and its complications. Biomed Eng Online. 2004; 3: 20. 

[17] Mutmainnah, Toaha, and Kasbawati, 2022. Stability Analysis of Tuberculosis 

Spread Model CoInfected Diabetes Mellitus with DOTS Strategy. JMSK. Vol. 

18, No. 3, 336 -347 


