
Custom Deep Learning Face Recognition based on

Tensorflow Model for Attendance Management

System

Yosua Alvin Adi Soetrisno

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

yosua@live.undip.ac.id

M. Arfan

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

arfan@elektro.undip.ac.id

Aghus Sofwan

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

asofwan@elektro.undip.ac.id

Sumardi

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

sumardi@elektro.undip.ac.id

Abstract—Face recognition technology has many

implementation roles in the attendance management system.

Attendance systems need proper solutions to detect a face in real-

time situations using a particular purpose device. Face recognition

systems can differentiate human faces based on face features

trained in the deep learning model. Although significant advances

in face recognition can increase the variety of face conditions in

detection, some challenges still exist in face recognition that makes

the existing model need to be taken apart and reparametrized.

Challenge comes from lighting condition, blurred condition, also

face tilt position. This research design a superficial layer of

convolutional neural network using a built-in Tensorflow

sequential model library. Generally, a transfer learning

mechanism is used in object detection, especially in face

recognition. This research doesn't use transfer learning because

the accuracy of an existing model like the InceptionV1 model gives

good accuracy in cross-validation training but gives a significant

error in testing the trained face. The attendance management

system was built in Flask Web Framework because developed in a

Python language environment. The accuracy of the custom model

has an average of 88.23%, which is tested with 16 different

students, with each student having 48 pictures.

Keywords—face recognition, deep learning, convolutional

neural network, TensorFlow, attendance management

I. INTRODUCTION

Face recognition technology has existed for a long time, but
it was not very accurate to detect the face profile until today.
Face recognition is used in many terms, such as secure
authentication, attendance verification [1], and social media
tagging in the posted picture. The advancement in facial
recognition will use raw filtered layered features trained via a
deep learning model. The human face has many differential
features that could construct the semantic information of the
people, like facial expression, facial structure, and facial
topology. Traditional face recognition, such as the Eigenface,
PCA [2][3], LDA [2], GABOR [2], Local Binary Pattern (LBP)
[4], improved LBP [4][5], had some shortages because of limited
feature extraction mechanisms. There is a lot of advancement
and modification of this algorithm [4] to increase face detection
accuracy. With the proper improvement of the traditional
algorithm to get the more fit feature combined with deep
learning, the face recognition model's accuracy could be

improved. Deep Learning technology has dominated object
detection in terms of performance and availability [6]. The
transfer learning of Convolutional Neural Network (CNN)
architecture has been implemented in many computer vision
problems such as object detection.

In object detection, especially in face recognition, there is a
strengthening of characteristic properties of the input given as a
filter, weight, and activation function that could cut off the
irrelevant properties. The extracted properties in the first
network layer most probably indicate the presence or absence of
the edges in specific directions and positions in the image. The
deeper layer identifies patterns by detecting special edge
arrangements by considering insignificance changes in edge
locations [6]. The next hidden layer learns more complex shapes
based on the edge previously known. This sequential structure
allows deep learning to automatically find the convenient feature
based on the filter and activation function systematically. This
process simplifies the feature extraction process because there is
no need to understand the most relevant part of the facial
characteristic.

This research proposes a custom CNN architecture for the
face recognition model used in attendance management. Custom
CNN was built because the available deep learning model, such
as MobileNetv2 [7] and FaceNet [8], could not detect the face
has been trained very well. There are 18 hidden layers in the
custom CNN architecture. The two characteristics of hidden
layers that were used are stacking and producing [9]. Stacking is
used to extract the feature with the convolutional, max pooling,
and flattening type layer [10]. A fully connected layer type is
used for feature matching production. A fully connected layer
has its density based on the number of face classes in the
"softmax" activation function and 1024 units representing
several neurons used in the "relu" activation based on the input
pixel convoluted in the stacking process. The dataset comes
from student photos taken from any angle.

II. LITERATURE REVIEW

Various deep learning techniques done in the term of face
recognition and verification such as Deep Models [9], DeepFace
[6], DeepID3 [11], FaceNet [8], L2-Softmax [6], AttendXNet3
[11], SIAMESE [2], MobileNetV2 [12], ArcFace [13], MTCNN
[14]. Deep Models research [9] explained joining many face

199

20
21

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
ic

s a
nd

 C
om

pu
ta

tio
na

l S
ci

en
ce

s (
IC

IC
oS

) |
 9

78
-1

-6
65

4-
38

07
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
IC

O
S5

36
27

.2
02

1.
96

51
76

6

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

recognition algorithms and mechanisms before deep learning.
Feature extraction that was used was geometric and appearance-
based [15]. Landmark estimation is state of the art in traditional
face recognition using the DLIB library [16]. This mechanism is
combined with selecting the region of interest followed by
geometric features like LBP and Normalized Central Moment
(NCM). Finally, traditional machine learning with a Support
Vector Machine (SVM) algorithm for the classification task.

Deep learning is the new emerging algorithm used in face
recognition. There is DeepFace [6], which is claimed as a near-
human face recognition skill model, used AlexNet architecture
with a "softmax" activation function trained with Facebook
dataset and obtained an accuracy of 97.35% [11]. DeepID3 used
VGGNet-10 [17] architecture used contrastive loss. Contrastive
loss used contradiction in a distance between positive and
negative examples outputs [11]. CelebFaces+ is a variation of
the dataset used besides Facebook.

FaceNet trains CNN using Stochastic Gradient Descent with
standard backpropagation and AdaGrad as the loss function
optimization. Two convolutional layers are compared and tested
[5]: traditional CNN with 22 hidden layers and Google-LeNet
using the Inception model. The result shows that the validation
rate with classic CNN could get an accuracy of 87.9% compared
with Inception Google-LeNet which is 89.4%. The difference
between the validation rate accuracy at that two models is not
too far. This idea makes this research consider creating a custom
simpler CNN rather than using transfer learning from a complex
model.

L2-softmax used ResNet-101 architecture with level 2
regularization gained an accuracy of 99.78% [6]. L2-softmax's
research shows that many models could be used as transfer
learning for face recognition, but when tested, the accuracy goes
random rather than offering a stable classification result.
AttendXNetV3 used Resnet-34 architecture with fewer hidden
layers to extract face features, but the classification used
efficient similarity search. Faiss similarity and manhattan
distance are used to measure the face feature and make a query
based on an index created in the database pool to match the
closest face feature. Database pool showed a variation of
classification function from using a database to make distance
calculation or another feature that makes the CNN more
complex with another level of the network like in the SIAMESE.

SIAMESE [2] is a network of probability that could solve
multiple sample input and classification. SIAMESE uses
hierarchical training with two CNN. The first level of the
network is used to face positioning, and the second level is used
for facial landmark detection. MobileNetV2 [12] was used for
fruit detection. MobileNetV2 extracted the fruit features and the
activation function using "softmax" as a classifier. There is error
optimization using Adam optimizer. The accuracy of fruit
detection was 85.12%. This research considers choosing a basic
model for classification using "softmax" because SIAMESE and
Faiss need a more complicated feature like face landmark and
database pool that is not very suitable with the available dataset
and the attendance system itself. The attendance system in the
other hand need a fast detection and this research then will be
implemented in AI developer kit board like Atlas Hisense 200
DK, so needed more simple and lightweight model.

CCTV implementation at university was done in ArcFace
[13] research. ArcFace model proposed a new loss function, an
additive angular margin that could highly discriminate features
of the face. ArcFace showed the best result among other loss

functions such as triplet loss, intra-loss, and inter-loss. Arcface
showed that modification of loss function could increase the
accuracy.

MTCNN [14] used a deep cascaded multi-task framework
using different features. This correlated model objects that exist
in the face then measured the correlation strength between the
elements. MTCNN [14] showed that it needed a better judgment
in similarity using cascaded CNN [18].

TensorFlow's flexibility in designing highly modular models
is a strong advantage. Many pieces of the Tensorflow building
block must be known before building the model. That situation
motivated this research to use the Tensorflow and Keras model.
Developing high-level APIs like Keras and Slim, which look
like an abstract in many parts required in creating machine
learning algorithms, so the characteristic of each layer and
neuron could intuitively match with the formula. Many
researchers and developers use Tensorflow in this section. Many
concerns and problems could be readily resolved because they
are typically the same issues many other individuals face.

The contribution of this research is to design a custom model
of CNN using Tensorflow and Keras model that could fit the
entire limited dataset with no landmark. A complex model like
MobileNetV2 and Google-LeNet transfer learning has been tried
and showed not very good enough to detect a face. However, the
cross-validation average accuracy is between 98-99% above.
The convolutional layer is used with kernel and bias
regularization parameters. Kernel regularizer tries to reduce the
weights W, and bias regularizer tries to reduce the bias b. This
parametrization combined with the "relu" activation function
could implicitly solve a problem with solid statistical benefits.

III. RESEARCH METHODOLOGY

Deep learning is one branch of machine learning algorithm
using the architecture of neural network with some advancement
in a hidden layer, backpropagation, and memory arrangement.
Deep learning could learn massive training data based on the
image with a convolution process to get the feature using
windowing. The deep learning convolutional layer has many
filters that select the component from the most detail until the
most available using window variation. This filter could capture
the part that is not considered to be carried in traditional feature
extraction.

A. Convolutional Neural Network

The evolution of CNN solved some weaknesses of neural
networks like computational complexity and translational
invariance. Translational invariance means that the network
interprets input patterns the same way in CNN. The feature was
captured as the feature filter that could be shifted in the
windowing process. The challenge in CNN is that the neural
network learns to memorize rather than understand when many
samples have a similar characteristic, and the variation of the
training object is not very wide. When this situation occurs, the
CNN only understands the piece of the picture rather than the
whole concept. CNN has a local receptive field, sharing weights,
and spatial domain that could manage the invariance of scaling
and distortion of the image [2].

The CNN has a convolutional layer and pooling layer that
could capture the essential feature of the image in a lighter
dimension. The feature captured then matched with the weight
of each neuron in the fully connected layer. The convolutional
layer has a shared weights formula in equation (1) [2].

200Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

𝐶𝑖,𝑗,𝑘
𝑡 = 𝑔(Σ𝑧=1

𝐶𝑠 Σ𝑦=1
𝑤𝑐 Σ𝑥=1

ℎ𝑐 I
𝑖+𝑥−1,𝑗+𝑦−1,𝑐𝑘

𝑡 (𝑧)
𝑡−1 ∗ 𝐹𝑥,𝑦,𝑘

𝑡 + 𝐵𝑘) (1)

Compared with unweights formula, there is a difference in
the weighting mechanism shown in equation (2) [2].

𝐶𝑖,𝑗,𝑘
𝑡 = 𝑔(Σ𝑧=1

𝐶𝑠,𝑘
Σ𝑦=1

𝑤𝑐 Σ𝑥=1
ℎ𝑐 I

𝑖+𝑥−1,𝑗+𝑦−1,𝑐𝑘
𝑡 (𝑧)

𝑡−1 ∗ 𝐹𝑖,𝑗,𝑥,𝑦,𝑘
𝑡 + 𝐵𝑘) (2)

𝑐𝑠 is the connection of the k-th unit in convolutional layer
with the last layer. 𝑤𝑐 is the width of a convolutional layer unit.
ℎ𝑐 is the height of the convolutional layer unit. 𝑡 is the number
of the convolutional layer. 𝐶𝑘

𝑡 is the number of the k-th unit in
convolutional layer with the last layer.

There is a repetition possibility between a combination of
pooling layer after convolutional layer. The pooling layer
worked separately among each feature map to make a new set of
same-size feature maps. The pooling layer selects the critical
feature that works like a filter. The size of the pooling operation
or filter is smaller than the size of the feature map. For example,
a pooling layer 2x2 (4 pixels) applied to a feature map of 6×6
(36 pixels) will result in an output pooled feature map of 3×3 (9
pixels). The pooling operation is stated in each hidden layer.
There are two pooling mechanisms: average pooling calculates
the average value for each windowing stride, and max-pooling
calculates the maximum value for each stride. The pooling layer
creates a downsampled feature map which is summarized from
the input. This mechanism is helpful because small changes in
the feature's location in the feedback detected could be detected
in a pooled feature map with the feature in the exact location.
The pooling layer formula is stated in equation (3) [2].

𝐼𝑖,𝑗,𝑘
𝑡 = 𝑓0<𝑥≤𝑑,0<𝑦≤𝑑(C(𝑖−1)∗𝑠+𝑥,(𝑗−1)∗𝑠+𝑦,𝑘

𝑡) (3)

𝐼 is the input of this layer. 𝐹 is the convolutional core. 𝐵 is
the bias.

B. CNN Architecture

The proposed custom CNN architecture consists of 18
hidden layers. The CNN model was built using the Keras library
in TensorFlow implementation using Python [14]. The Keras
sequential model is appropriate for a plain stack of layers with
one input tensor and one output tensor. The first layer is a
convolutional layer using 32 filters and kernel size 3x3. Fig. 1
shows the example K kernels that would be applied to the image
during the convolutional process. The output of each
convolution is an activation map. The first tuning process for the
first layer is using bias_regularizer with L2 bias with 0.1. L2 is
the sum of the square weights. The most common type of
regularization is L2, also called "weight decay", with values
often on a logarithmic scale between 0 and 0.1 [19].

The second layer was also a convolutional layer with
different kernel sizes. Kernel size is smaller to filter different
sizes of the image. The dimensionality reduction fits with the
smaller image than the usual average image trained to the CNN.
The third layer was a max-pooling layer. The results highlight
the most present feature in the stride.

Fig. 1. Example of K kernels used in the convolutional process

This pooling has been better in practice than average pooling
for computer vision tasks like image classification. The
configuration of max-pooling used 2x2 pool size and 2x2 stride.

The fourth layer is the dropout layer. Dropout is a training
strategy in which a subset of neurons is ignored and dropped out
at random. The contribution of the activation of downstream
neurons on the forward pass is removed temporally. Any weight
updates are not applied to the neuron on the backward pass. As
a result, the network becomes less sensitive to the weights of
individual neurons, and the neural network will be able to
generalize better. It will be less prone to overfit the training data.
The dropout rate is set to 10%, meaning that one out of every ten
inputs will randomly be omitted from each update cycle. The
complete model architecture is shown in Table 1. Table 1 was
the best model of face recognition tested with the student dataset.
Architecture has 18 layers deep with a total of 117 million
parameters. The input size of this architecture uses a default
pixel used on typical CNN, which is 224x224 with three color
channels.

The ninth layer until the twelfth layer is also the repetition
from the previous layer. There is a difference in the number of
filters which is multiplied by two and becomes 128. The design
of the filters is gaining more detail in the deeper layer. Kernel
size is also reduced by 2x2 to become 6x6 which still has a factor
of 3.The padding is set to the "same" in the third section. Padding
"same" tries to pad evenly left and right, but if the amount of
columns to be added is odd, it will add the extra column to the
right. When the kernel size is even, there is an advantage of zero
padding. Zero padding means that there is no cut of the face on
the left and right sides. There is an addition of the kernel
regularizer to apply a penalty on the layer's kernel. The smaller
output pixel with the deeper complex filter needs a reduction of
overfitting in bias and weight because there have been many
transformations before. The dropout rate was increased by 20%
to make a more extensive weighted network that could forget
some detailed features to decrease overfitting. In the last
convolutional layer, filter size increased by about 256, and the
kernel size used was the optimum size of 3x3. Bias and kernel
regularizer is decreased to 0.0000001 because it is near
0.000001, which is all models used as the standard configuration
[20]. The filter is going to have more detail, so the regularizer is
tried to be decreased. The last convolutional layer is combined
with a more extensive dropout layer which is 0.3. The reason is
that there is trivial to make a weighted network forget some
overfitted features to understand more about facial features.
Combining this structured pattern is the best mechanism.

The next hidden layer is flattened. The flatten operator
unrolls the values of the output shape to become one dimension.
After the flattening, there is a fully connected layer known as the
dense layer in the Keras module on Tensorflow. The advantage
of a dense layer is that a thick layer offers learned features from
all combinational elements of the previous layer. The dropout
layer is added to a model between existing layers and applies to
outputs of the last layer fed to the subsequent layer, which is also
dense. This scenario makes a neuron from the previous fully
connected layer set to zero with the probability of 20%
according to the dropout rate. The final layer is dense with 16
units referring to the class of the different students. The
activation function of softmax is applied to classify the nearest
feature between the testing subject and the trained subject.
Softmax activation identified the student as someone between
the 16 classes, although the student is not included in the training
class category.

201Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I. THE ARCHITECTURE OF THE CUSTOM CNN WITH TENSORFLOW ENGINE

Layer

(type)

Output

Shape

Filter

(Activation)

Param Kernel

Size

Pool

Size

Bias

Regularizer

Kernel

Regularizer

Dropout

Rate

conv2d 210x210x32 32 (relu) 21632 15x15

0.1

conv2d 198x198x32 32 (relu) 173088 13x13

0.1

max_poolin

g

99x99x32

0

2x2

dropout 99x99x32

0

0.1

conv2d 92x92x64 64 (relu) 131136 8x8

0.1

conv2d 85x85x64 64 (relu) 262208 8x8

0.1

max_poolin

g

42x42x64

0

2x2

dropout 42x42x64

0

0.1

conv2d 42x42x128 128 (relu) 295040 6x6

0.1 0.1

conv2d 42x42x128 128 (relu) 589952 6x6

0.1 0.1

max_poolin

g

21x21x128

0

2x2

dropout 21x21x128

0

0.2

conv2d 21x21x256 256 (relu) 295168 3x3

0.0000001 0.0000001

dropout 21x21x256

0

0.3

flatten 112896

0

dense 1024

11560652
8

dropout 1024

0

0.2

dense 16

16400

IV. EXPERIMENTS AND RESULTS

Many factors affect face recognition accuracies, such as the
lighting, camera angle, and camera quality that require the
quality of the GPU used in training. In this research paper, we
propose a custom model of CNN because the complex existing
could not resolve the face detection situation in this dataset. This
section explains the experiments arranged and the results.

This research uses 3840 images of the students using 16 class
of the students. One class of the student contains a variation of
240 images. The cross-validation uses the proportion of 70
percent data for training and 30 percent data for testing. The
testing mechanism uses different photos from the cross-
validation methods using the real-time CCTV camera. The
testing mechanism uses 2500 images which are size is almost 70
percent of the total training photos. Fig. 2 shows the first layer
of the convolutional layer and the second layer of the
convolutional layer. In the first part, an example of the filter
captured in the first layer goes deep and detailed in the next
layer. These two figures explain that in the convolutional
network, could exist different features according to some factors
like face fixture and part exists in the facial image.

The max-pooling layer captures the aggregation of the two
convolutional layers shown in Fig. 3. The max-pooling layer
could represent some important features mixed. In the dropout
layer, the feature captured is nearly the same as the max-pooling
layer. In the dropout layer, the effect of the probability of the
neuron weight is set to be zero, still not modifying the emergence
feature captured in the previous layer. This mechanism will
affect the accumulative weighing if the same feature also comes
from another face. Fig. 5 shows the learning model of the
accuracy in each epoch. Accuracy is still in line with the loss

model that also decreased logarithmically. Although the training
learning curve is near the testing learning curve, the results of
testing using images that are not included in the training section
are slightly different. The average accuracy of each class of the
student goes down to 88.23%.

Fig. 2. The Keras Tensoflow Conv2D first and the second layer filtered feature

Fig. 3. The Keras Tensorflow Max Pooling and Dropout layer

202Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

There is three class of the person that accuracy of detection
is lower than the other 12 class. Table 2 shows the accuracy of
detection between 16 students and the average accuracy.

Fig. 6 shows the example of face recognition result from the
image captured from the CCTV. The compilation of one class of
the student is shown in Fig. 7.

Fig. 4. The Keras Tensoflow Conv2D first layer filtered feature

Fig. 5. The accuracy model of the training versus test state

TABLE II. ACCURACY OF EACH CLASS OF THE STUDENT AND THE

AVERAGE ACCURACY

Person Accuracy (%) Person Accuracy (%)

Person 1 92 Person 9 100

Person 2 84.61 Person 10 100

Person 3 65.11 Person 11 97.91

Person 4 57.84 Person 12 97.91

Person 5 37.57 Person 13 100

Person 6 82.94 Person 14 100

Person 7 95.83 Person 15 100

Person 8 100 Person 16 100

Average Accuracy 88.2325

Fig. 6. Real time face recognition result

Correct classification: 46 Wrong classification: 4 Accuracy of this class: 92.0%

Fig. 7. Accuracy of the one class using the custom model

In the collection, there are some images shown with two
labels that show the miss classification. In the MobileNetv2
transfer learning model tested, the accuracy is zero from the 48
photos of the example in Fig. 7 because all misclassified.

V. CONCLUSION

This research proposed a custom model of CNN based on the
trial of making the proper layer based on the characteristic of
each layer. This custom model effectively recognizes the face
dataset of the student with a particular variation. The overall
system's accuracy is better than the transfer learning model like
MobileNetv2, which gives wrong accuracies in some classes.
Although the deep of the layer is not very broad, the feature of
the face could be captured. The custom model still uses the
existing function and mechanism to create the hidden layer
feature. The contribution is arranging the density of the layer and
tuning with trial and error to get the best parametrization. The
average accuracy from this model is 88% which needs to be
improved in the attendance system. The attendance system for
the future is required to make a delta calculation of the face
detected based on the most detected class.

ACKNOWLEDGEMENT

This work is supported and fully funded by Strategic
Research Annual Budget Grand from the Faculty of Engineering
Diponegoro University.

REFERENCES

[1] M.-C. Huang, I.-P. Chen, H.-L. Huang, S.-F. Sung, and A.-G. Wang,
"Project Design and Implementation of Face Recognition, Fever
Detection, and Attendance Record Based on Sensing Technology,"
Sensors and Materials, vol. 33, no. 6, p. 1787, Jun. 2021, doi:
10.18494/SAM.2021.3203.

[2] W. Wang, J. Yang, J. Xiao, S. Li, and D. Zhou, "Face Recognition Based
on Deep Learning," in Human Centered Computing, vol. 8944, Q. Zu, B.
Hu, N. Gu, and S. Seng, Eds. Cham: Springer International Publishing,
2015, pp. 812–820. doi: 10.1007/978-3-319-15554-8_73.

[3] M. A. Shenbagharaman, B. Shunmugapriya, and M. K. Rajkumar, "Face
Recognition Method For E-Attendance System," vol. 25, no. 4, p. 11,
2021.

[4] S. M. Bah and F. Ming, "An improved face recognition algorithm and its
application in attendance management system," Array, vol. 5, p. 100014,
Mar. 2020, doi: 10.1016/j.array.2019.100014.

203Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

[5] M. Gopila and D. Prasad, "Machine learning classifier model for
attendance management system," in 2020 Fourth International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-
SMAC), Palladam, India, Oct. 2020, pp. 1034–1039. doi: 10.1109/I-
SMAC49090.2020.9243363.

[6] F. Z. Unal and M. S. Guzel, "A Comparison ff Deep Learning Based
Architecture wth a Conventional Approach for Face Recognition
Problem," p. 21.

[7] Q. Xiang, X. Wang, R. Li, G. Zhang, J. Lai, and Q. Hu, "Fruit Image
Classification Based on MobileNetV2 with Transfer Learning
Technique," in Proceedings of the 3rd International Conference on
Computer Science and Application Engineering - CSAE 2019, Sanya,
China, 2019, pp. 1–7. doi: 10.1145/3331453.3361658.

[8] F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified
embedding for face recognition and clustering," in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
Jun. 2015, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

[9] A. K. Dubey and V. Jain, "A review of face recognition methods using
deep learning network," Journal of Information and Optimization
Sciences, vol. 40, no. 2, pp. 547–558, Feb. 2019, doi:
10.1080/02522667.2019.1582875.

[10] S. Khan, A. Akram, and N. Usman, "Real Time Automatic Attendance
System for Face Recognition Using Face API and OpenCV," Wireless
Pers Commun, vol. 113, no. 1, pp. 469–480, Jul. 2020, doi:
10.1007/s11277-020-07224-2.

[11] A. S. Bist, "A Novel Approach for Facial Attendance:AttendXNet," att,
vol. 2, no. 2, pp. 104–111, Jun. 2020, doi: 10.34306/att.v2i2.86.

[12] D. S. Trigueros, L. Meng, and M. Hartnett, "Face Recognition: From
Traditional to Deep Learning Methods," arXiv:1811.00116 [cs], Oct.

2018, Accessed: Sep. 19, 2021. [Online]. Available:
http://arxiv.org/abs/1811.00116

[13] N. T. Son et al., "Implementing CCTV-Based Attendance Taking Support
System Using Deep Face Recognition: A Case Study at FPT Polytechnic
College," Symmetry, vol. 12, no. 2, p. 307, Feb. 2020, doi:
10.3390/sym12020307.

[14] V. Koli, T. Vedak, and D. Sharma, "Object Detection based Attendance
System," International Journal of Engineering Research, vol. 10, no. 04,
p. 6.

[15] H. Patil, H. Khan, S. Ansari, and S. Sahu, "Automatic Attendance System
Using Face Recognition," Communication and Technology, vol. 4, no. 1,
p. 9, 2021.

[16] P. Bhavani, C. Saraswathi, K. Soba, and R. Preethika, "Automated
Attendance System and Voice Assistance using Face Recognition," p. 11,
2021.

[17] A. Abraham, M. Bapse, Y. Kalaria, and A. Usmani, "Face Recognition
Based Attendance System," p. 6.

[18] H. Tripathi, A. K. Srivastava, and A. Bisht, "Smart Attendance Portal
using Facial Recognition," vol. 20, no. 3, p. 11, 2021.

[19] H. Pranoto and O. Kusumawardani, "Real-time Triplet Loss Embedding
Face Recognition for Authentication Student Attendance Records System
Framework," JOIV : Int. J. Inform. Visualization, vol. 5, no. 2, May 2021,
doi: 10.30630/joiv.5.2.480.

[20] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton,
"Regularizing Neural Networks by Penalizing Confident Output
Distributions," arXiv:1701.06548 [cs], Jan. 2017, Accessed: Sep. 30,
2021. [Online]. Available: http://arxiv.org/abs/1701.06548

204Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on June 18,2022 at 10:26:22 UTC from IEEE Xplore. Restrictions apply.

		2021-12-28T08:43:53-0500
	Certified PDF 2 Signature

