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Abstract—Face recognition technology has many 

implementation roles in the attendance management system. 

Attendance systems need proper solutions to detect a face in real-

time situations using a particular purpose device. Face recognition 

systems can differentiate human faces based on face features 

trained in the deep learning model. Although significant advances 

in face recognition can increase the variety of face conditions in 

detection, some challenges still exist in face recognition that makes 

the existing model need to be taken apart and reparametrized. 

Challenge comes from lighting condition, blurred condition, also 

face tilt position. This research design a superficial layer of 

convolutional neural network using a built-in Tensorflow 

sequential model library. Generally, a transfer learning 

mechanism is used in object detection, especially in face 

recognition. This research doesn't use transfer learning because 

the accuracy of an existing model like the InceptionV1 model gives 

good accuracy in cross-validation training but gives a significant 

error in testing the trained face. The attendance management 

system was built in Flask Web Framework because developed in a 

Python language environment. The accuracy of the custom model 

has an average of 88.23%, which is tested with 16 different 

students, with each student having 48 pictures. 

Keywords—face recognition, deep learning, convolutional 

neural network, TensorFlow, attendance management 

I.  INTRODUCTION 

Face recognition technology has existed for a long time, but 
it was not very accurate to detect the face profile until today. 
Face recognition is used in many terms, such as secure 
authentication, attendance verification [1], and social media 
tagging in the posted picture. The advancement in facial 
recognition will use raw filtered layered features trained via a 
deep learning model. The human face has many differential 
features that could construct the semantic information of the 
people, like facial expression, facial structure, and facial 
topology. Traditional face recognition, such as the Eigenface, 
PCA [2][3], LDA [2], GABOR [2], Local Binary Pattern (LBP) 
[4], improved LBP [4][5], had some shortages because of limited 
feature extraction mechanisms. There is a lot of advancement 
and modification of this algorithm [4] to increase face detection 
accuracy. With the proper improvement of the traditional 
algorithm to get the more fit feature combined with deep 
learning, the face recognition model's accuracy could be 

improved. Deep Learning technology has dominated object 
detection in terms of performance and availability [6]. The 
transfer learning of Convolutional Neural Network (CNN) 
architecture has been implemented in many computer vision 
problems such as object detection. 

In object detection, especially in face recognition, there is a 
strengthening of characteristic properties of the input given as a 
filter, weight, and activation function that could cut off the 
irrelevant properties. The extracted properties in the first 
network layer most probably indicate the presence or absence of 
the edges in specific directions and positions in the image. The 
deeper layer identifies patterns by detecting special edge 
arrangements by considering insignificance changes in edge 
locations [6]. The next hidden layer learns more complex shapes 
based on the edge previously known. This sequential structure 
allows deep learning to automatically find the convenient feature 
based on the filter and activation function systematically. This 
process simplifies the feature extraction process because there is 
no need to understand the most relevant part of the facial 
characteristic. 

This research proposes a custom CNN architecture for the 
face recognition model used in attendance management. Custom 
CNN was built because the available deep learning model, such 
as MobileNetv2 [7] and FaceNet [8], could not detect the face 
has been trained very well. There are 18 hidden layers in the 
custom CNN architecture. The two characteristics of hidden 
layers that were used are stacking and producing [9]. Stacking is 
used to extract the feature with the convolutional, max pooling, 
and flattening type layer [10]. A fully connected layer type is 
used for feature matching production. A fully connected layer 
has its density based on the number of face classes in the 
"softmax" activation function and 1024 units representing 
several neurons used in the "relu" activation based on the input 
pixel convoluted in the stacking process. The dataset comes 
from student photos taken from any angle. 

II.  LITERATURE REVIEW 

Various deep learning techniques done in the term of face 
recognition and verification such as Deep Models [9], DeepFace 
[6], DeepID3 [11], FaceNet [8], L2-Softmax [6], AttendXNet3 
[11], SIAMESE [2], MobileNetV2 [12], ArcFace [13], MTCNN 
[14]. Deep Models research [9] explained joining many face 
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recognition algorithms and mechanisms before deep learning. 
Feature extraction that was used was geometric and appearance-
based [15]. Landmark estimation is state of the art in traditional 
face recognition using the DLIB library [16]. This mechanism is 
combined with selecting the region of interest followed by 
geometric features like LBP and Normalized Central Moment 
(NCM). Finally, traditional machine learning with a Support 
Vector Machine (SVM) algorithm for the classification task. 

Deep learning is the new emerging algorithm used in face 
recognition. There is DeepFace [6], which is claimed as a near-
human face recognition skill model, used AlexNet architecture 
with a "softmax" activation function trained with Facebook 
dataset and obtained an accuracy of 97.35% [11]. DeepID3 used 
VGGNet-10 [17] architecture used contrastive loss. Contrastive 
loss used contradiction in a distance between positive and 
negative examples outputs [11]. CelebFaces+ is a variation of 
the dataset used besides Facebook. 

FaceNet trains CNN using Stochastic Gradient Descent with 
standard backpropagation and AdaGrad as the loss function 
optimization. Two convolutional layers are compared and tested 
[5]: traditional CNN with 22 hidden layers and Google-LeNet 
using the Inception model. The result shows that the validation 
rate with classic CNN could get an accuracy of 87.9% compared 
with Inception Google-LeNet which is 89.4%. The difference 
between the validation rate accuracy at that two models is not 
too far. This idea makes this research consider creating a custom 
simpler CNN rather than using transfer learning from a complex 
model. 

L2-softmax used ResNet-101 architecture with level 2 
regularization gained an accuracy of 99.78% [6]. L2-softmax's 
research shows that many models could be used as transfer 
learning for face recognition, but when tested, the accuracy goes 
random rather than offering a stable classification result. 
AttendXNetV3 used Resnet-34 architecture with fewer hidden 
layers to extract face features, but the classification used 
efficient similarity search. Faiss similarity and manhattan 
distance are used to measure the face feature and make a query 
based on an index created in the database pool to match the 
closest face feature. Database pool showed a variation of 
classification function from using a database to make distance 
calculation or another feature that makes the CNN more 
complex with another level of the network like in the SIAMESE. 

SIAMESE [2] is a network of probability that could solve 
multiple sample input and classification. SIAMESE uses 
hierarchical training with two CNN. The first level of the 
network is used to face positioning, and the second level is used 
for facial landmark detection. MobileNetV2 [12] was used for 
fruit detection. MobileNetV2 extracted the fruit features and the 
activation function using "softmax" as a classifier. There is error 
optimization using Adam optimizer. The accuracy of fruit 
detection was 85.12%. This research considers choosing a basic 
model for classification using "softmax" because SIAMESE and 
Faiss need a more complicated feature like face landmark and 
database pool that is not very suitable with the available dataset 
and the attendance system itself. The attendance system in the 
other hand need a fast detection and this research then will be 
implemented in AI developer kit board like Atlas Hisense 200 
DK, so needed more simple and lightweight model. 

CCTV implementation at university was done in ArcFace 
[13] research. ArcFace model proposed a new loss function, an 
additive angular margin that could highly discriminate features 
of the face. ArcFace showed the best result among other loss 

functions such as triplet loss, intra-loss, and inter-loss. Arcface 
showed that modification of loss function could increase the 
accuracy. 

MTCNN [14] used a deep cascaded multi-task framework 
using different features. This correlated model objects that exist 
in the face then measured the correlation strength between the 
elements. MTCNN [14] showed that it needed a better judgment 
in similarity using cascaded CNN [18]. 

TensorFlow's flexibility in designing highly modular models 
is a strong advantage. Many pieces of the Tensorflow building 
block must be known before building the model. That situation 
motivated this research to use the Tensorflow and Keras model. 
Developing high-level APIs like Keras and Slim, which look 
like an abstract in many parts required in creating machine 
learning algorithms, so the characteristic of each layer and 
neuron could intuitively match with the formula. Many 
researchers and developers use Tensorflow in this section. Many 
concerns and problems could be readily resolved because they 
are typically the same issues many other individuals face. 

The contribution of this research is to design a custom model 
of CNN using Tensorflow and Keras model that could fit the 
entire limited dataset with no landmark. A complex model like 
MobileNetV2 and Google-LeNet transfer learning has been tried 
and showed not very good enough to detect a face. However, the 
cross-validation average accuracy is between 98-99% above. 
The convolutional layer is used with kernel and bias 
regularization parameters. Kernel regularizer tries to reduce the 
weights W, and bias regularizer tries to reduce the bias b. This 
parametrization combined with the "relu" activation function 
could implicitly solve a problem with solid statistical benefits. 

III. RESEARCH METHODOLOGY 

Deep learning is one branch of machine learning algorithm 
using the architecture of neural network with some advancement 
in a hidden layer, backpropagation, and memory arrangement. 
Deep learning could learn massive training data based on the 
image with a convolution process to get the feature using 
windowing. The deep learning convolutional layer has many 
filters that select the component from the most detail until the 
most available using window variation. This filter could capture 
the part that is not considered to be carried in traditional feature 
extraction. 

A. Convolutional Neural Network 

The evolution of CNN solved some weaknesses of neural 
networks like computational complexity and translational 
invariance. Translational invariance means that the network 
interprets input patterns the same way in CNN. The feature was 
captured as the feature filter that could be shifted in the 
windowing process. The challenge in CNN is that the neural 
network learns to memorize rather than understand when many 
samples have a similar characteristic, and the variation of the 
training object is not very wide. When this situation occurs, the 
CNN only understands the piece of the picture rather than the 
whole concept. CNN has a local receptive field, sharing weights, 
and spatial domain that could manage the invariance of scaling 
and distortion of the image [2]. 

The CNN has a convolutional layer and pooling layer that 
could capture the essential feature of the image in a lighter 
dimension. The feature captured then matched with the weight 
of each neuron in the fully connected layer. The convolutional 
layer has a shared weights formula in equation (1) [2]. 
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𝐶𝑖,𝑗,𝑘
𝑡 = 𝑔(Σ𝑧=1

𝐶𝑠 Σ𝑦=1
𝑤𝑐 Σ𝑥=1

ℎ𝑐 I
𝑖+𝑥−1,𝑗+𝑦−1,𝑐𝑘

𝑡 (𝑧)
𝑡−1 ∗ 𝐹𝑥,𝑦,𝑘

𝑡 + 𝐵𝑘) (1) 

Compared with unweights formula, there is a difference in 
the weighting mechanism shown in equation (2) [2]. 

𝐶𝑖,𝑗,𝑘
𝑡 = 𝑔(Σ𝑧=1

𝐶𝑠,𝑘
Σ𝑦=1

𝑤𝑐 Σ𝑥=1
ℎ𝑐 I

𝑖+𝑥−1,𝑗+𝑦−1,𝑐𝑘
𝑡 (𝑧)

𝑡−1 ∗ 𝐹𝑖,𝑗,𝑥,𝑦,𝑘
𝑡 + 𝐵𝑘) (2) 

𝑐𝑠 is the connection of the k-th unit in convolutional layer 
with the last layer. 𝑤𝑐 is the width of a convolutional layer unit. 
ℎ𝑐 is the height of the convolutional layer unit. 𝑡 is the number 
of the convolutional layer. 𝐶𝑘

𝑡 is the number of the k-th unit in 
convolutional layer with the last layer. 

There is a repetition possibility between a combination of 
pooling layer after convolutional layer. The pooling layer 
worked separately among each feature map to make a new set of 
same-size feature maps. The pooling layer selects the critical 
feature that works like a filter. The size of the pooling operation 
or filter is smaller than the size of the feature map. For example, 
a pooling layer 2x2 (4 pixels) applied to a feature map of 6×6 
(36 pixels) will result in an output pooled feature map of 3×3 (9 
pixels). The pooling operation is stated in each hidden layer. 
There are two pooling mechanisms: average pooling calculates 
the average value for each windowing stride, and max-pooling 
calculates the maximum value for each stride. The pooling layer 
creates a downsampled feature map which is summarized from 
the input. This mechanism is helpful because small changes in 
the feature's location in the feedback detected could be detected 
in a pooled feature map with the feature in the exact location. 
The pooling layer formula is stated in equation (3) [2]. 

𝐼𝑖,𝑗,𝑘
𝑡 = 𝑓0<𝑥≤𝑑,0<𝑦≤𝑑(C(𝑖−1)∗𝑠+𝑥,(𝑗−1)∗𝑠+𝑦,𝑘

𝑡 ) (3) 

𝐼 is the input of this layer. 𝐹 is the convolutional core. 𝐵 is 
the bias. 

B. CNN Architecture 

The proposed custom CNN architecture consists of 18 
hidden layers. The CNN model was built using the Keras library 
in TensorFlow implementation using Python [14]. The Keras 
sequential model is appropriate for a plain stack of layers with 
one input tensor and one output tensor. The first layer is a 
convolutional layer using 32 filters and kernel size 3x3. Fig. 1 
shows the example K kernels that would be applied to the image 
during the convolutional process. The output of each 
convolution is an activation map. The first tuning process for the 
first layer is using bias_regularizer with L2 bias with 0.1. L2 is 
the sum of the square weights. The most common type of 
regularization is L2, also called "weight decay", with values 
often on a logarithmic scale between 0 and 0.1 [19].  

The second layer was also a convolutional layer with 
different kernel sizes. Kernel size is smaller to filter different 
sizes of the image. The dimensionality reduction fits with the 
smaller image than the usual average image trained to the CNN. 
The third layer was a max-pooling layer. The results highlight 
the most present feature in the stride. 

 

Fig. 1. Example of K kernels used in the convolutional process 

This pooling has been better in practice than average pooling 
for computer vision tasks like image classification. The 
configuration of max-pooling used 2x2 pool size and 2x2 stride. 

The fourth layer is the dropout layer. Dropout is a training 
strategy in which a subset of neurons is ignored and dropped out 
at random. The contribution of the activation of downstream 
neurons on the forward pass is removed temporally. Any weight 
updates are not applied to the neuron on the backward pass. As 
a result, the network becomes less sensitive to the weights of 
individual neurons, and the neural network will be able to 
generalize better. It will be less prone to overfit the training data. 
The dropout rate is set to 10%, meaning that one out of every ten 
inputs will randomly be omitted from each update cycle. The 
complete model architecture is shown in Table 1. Table 1 was 
the best model of face recognition tested with the student dataset. 
Architecture has 18 layers deep with a total of 117 million 
parameters. The input size of this architecture uses a default 
pixel used on typical CNN, which is 224x224 with three color 
channels. 

The ninth layer until the twelfth layer is also the repetition 
from the previous layer. There is a difference in the number of 
filters which is multiplied by two and becomes 128. The design 
of the filters is gaining more detail in the deeper layer. Kernel 
size is also reduced by 2x2 to become 6x6 which still has a factor 
of 3.The padding is set to the "same" in the third section. Padding 
"same" tries to pad evenly left and right, but if the amount of 
columns to be added is odd, it will add the extra column to the 
right. When the kernel size is even, there is an advantage of zero 
padding. Zero padding means that there is no cut of the face on 
the left and right sides. There is an addition of the kernel 
regularizer to apply a penalty on the layer's kernel. The smaller 
output pixel with the deeper complex filter needs a reduction of 
overfitting in bias and weight because there have been many 
transformations before.  The dropout rate was increased by 20% 
to make a more extensive weighted network that could forget 
some detailed features to decrease overfitting. In the last 
convolutional layer, filter size increased by about 256, and the 
kernel size used was the optimum size of 3x3. Bias and kernel 
regularizer is decreased to 0.0000001 because it is near 
0.000001, which is all models used as the standard configuration 
[20]. The filter is going to have more detail, so the regularizer is 
tried to be decreased. The last convolutional layer is combined 
with a more extensive dropout layer which is 0.3. The reason is 
that there is trivial to make a weighted network forget some 
overfitted features to understand more about facial features. 
Combining this structured pattern is the best mechanism.  

The next hidden layer is flattened. The flatten operator 
unrolls the values of the output shape to become one dimension. 
After the flattening, there is a fully connected layer known as the 
dense layer in the Keras module on Tensorflow. The advantage 
of a dense layer is that a thick layer offers learned features from 
all combinational elements of the previous layer. The dropout 
layer is added to a model between existing layers and applies to 
outputs of the last layer fed to the subsequent layer, which is also 
dense. This scenario makes a neuron from the previous fully 
connected layer set to zero with the probability of 20% 
according to the dropout rate. The final layer is dense with 16 
units referring to the class of the different students. The 
activation function of softmax is applied to classify the nearest 
feature between the testing subject and the trained subject. 
Softmax activation identified the student as someone between 
the 16 classes, although the student is not included in the training 
class category. 
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TABLE I.  THE ARCHITECTURE OF THE CUSTOM CNN WITH TENSORFLOW ENGINE 

Layer 

(type) 

Output 

Shape 

Filter 

(Activation) 

# Param Kernel 

Size 

Pool 

Size 

Bias 

Regularizer 

Kernel 

Regularizer 

Dropout 

Rate 

conv2d 210x210x32 32 (relu) 21632 15x15 
 

0.1 
  

conv2d 198x198x32 32 (relu) 173088 13x13 
 

0.1 
  

max_poolin

g 

99x99x32 
 

0 
 

2x2 
   

dropout 99x99x32 
 

0 
    

0.1 

conv2d 92x92x64 64 (relu) 131136 8x8 
 

0.1 
  

conv2d 85x85x64 64 (relu) 262208 8x8 
 

0.1 
  

max_poolin

g 

42x42x64 
 

0 
 

2x2 
   

dropout 42x42x64 
 

0 
    

0.1 

conv2d 42x42x128 128 (relu) 295040 6x6 
 

0.1 0.1 
 

conv2d 42x42x128 128 (relu) 589952 6x6 
 

0.1 0.1 
 

max_poolin

g 

21x21x128 
 

0 
 

2x2 
   

dropout 21x21x128 
 

0 
    

0.2 

conv2d 21x21x256 256 (relu) 295168 3x3 
 

0.0000001 0.0000001 
 

dropout 21x21x256 
 

0 
    

0.3 

flatten 112896 
 

0 
     

dense 1024 
 

11560652
8 

     

dropout 1024 
 

0 
    

0.2 

dense 16 
 

16400 
     

IV. EXPERIMENTS AND RESULTS 

Many factors affect face recognition accuracies, such as the 
lighting, camera angle, and camera quality that require the 
quality of the GPU used in training. In this research paper, we 
propose a custom model of CNN because the complex existing 
could not resolve the face detection situation in this dataset. This 
section explains the experiments arranged and the results. 

This research uses 3840 images of the students using 16 class 
of the students. One class of the student contains a variation of 
240 images. The cross-validation uses the proportion of 70 
percent data for training and 30 percent data for testing. The 
testing mechanism uses different photos from the cross-
validation methods using the real-time CCTV camera. The 
testing mechanism uses 2500 images which are size is almost 70 
percent of the total training photos. Fig. 2 shows the first layer 
of the convolutional layer and the second layer of the 
convolutional layer. In the first part, an example of the filter 
captured in the first layer goes deep and detailed in the next 
layer. These two figures explain that in the convolutional 
network, could exist different features according to some factors 
like face fixture and part exists in the facial image. 

The max-pooling layer captures the aggregation of the two 
convolutional layers shown in Fig. 3. The max-pooling layer 
could represent some important features mixed. In the dropout 
layer, the feature captured is nearly the same as the max-pooling 
layer. In the dropout layer, the effect of the probability of the 
neuron weight is set to be zero, still not modifying the emergence 
feature captured in the previous layer. This mechanism will 
affect the accumulative weighing if the same feature also comes 
from another face. Fig. 5 shows the learning model of the 
accuracy in each epoch.  Accuracy is still in line with the loss 

model that also decreased logarithmically. Although the training 
learning curve is near the testing learning curve, the results of 
testing using images that are not included in the training section 
are slightly different. The average accuracy of each class of the 
student goes down to 88.23%. 

 

Fig. 2. The Keras Tensoflow Conv2D first and the second layer filtered feature 

 

Fig. 3. The Keras Tensorflow Max Pooling and Dropout layer 
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There is three class of the person that accuracy of detection 
is lower than the other 12 class. Table 2 shows the accuracy of 
detection between 16 students and the average accuracy.  

Fig. 6 shows the example of face recognition result from the 
image captured from the CCTV. The compilation of one class of 
the student is shown in Fig. 7. 

 

Fig. 4. The Keras Tensoflow Conv2D first layer filtered feature 

 

Fig. 5. The accuracy model of the training versus test state 

TABLE II.  ACCURACY OF EACH CLASS OF THE STUDENT AND THE 

AVERAGE ACCURACY 

Person Accuracy (%) Person Accuracy (%) 

Person 1 92 Person 9 100 

Person 2 84.61 Person 10 100 

Person 3 65.11 Person 11 97.91 

Person 4 57.84 Person 12 97.91 

Person 5 37.57 Person 13 100 

Person 6 82.94 Person 14 100 

Person 7 95.83 Person 15 100 

Person 8 100 Person 16 100 

Average Accuracy 88.2325 

 

Fig. 6. Real time face recognition result 

 

Correct classification: 46 Wrong classification: 4 Accuracy of this class: 92.0% 

Fig. 7. Accuracy of the one class using the custom model 

In the collection, there are some images shown with two 
labels that show the miss classification. In the MobileNetv2 
transfer learning model tested, the accuracy is zero from the 48 
photos of the example in Fig. 7 because all misclassified. 

V. CONCLUSION 

This research proposed a custom model of CNN based on the 
trial of making the proper layer based on the characteristic of 
each layer. This custom model effectively recognizes the face 
dataset of the student with a particular variation. The overall 
system's accuracy is better than the transfer learning model like 
MobileNetv2, which gives wrong accuracies in some classes. 
Although the deep of the layer is not very broad, the feature of 
the face could be captured. The custom model still uses the 
existing function and mechanism to create the hidden layer 
feature. The contribution is arranging the density of the layer and 
tuning with trial and error to get the best parametrization. The 
average accuracy from this model is 88% which needs to be 
improved in the attendance system. The attendance system for 
the future is required to make a delta calculation of the face 
detected based on the most detected class. 
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