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Abstract—Deep learning is one of the models used in many 

classifications because it can obtain many characteristics of 

objects. Health protocols are highly emphasized in this 

pandemic era. One of the issues that can arise at an event is the 

public's failure to wear masks. This study developed a system to 

detect people who are not wearing masks. Transfer learning 

from several existing deep learning models is used to build the 

model. The contribution of this research is trying to make a 

proper and straightforward model that could be implemented 

in "Atlas Hilens" to get portability. The MobilNetV2 or 

InceptionV3 model cannot be implemented in "Atlas Hilens" 

because a kind of FusionBatchNormalizationv3 layer is not 

supported. The CNN model built on "Atlas Hilens" will be 

compared to the MobileNetV2 or InceptionV3 model built with 

Tensorflow on a PC. "Atlas Hilens" can adopt the Tensorflow 

model to implement, although it needs adjustments from the 

existing detection model. The efficiency and accuracy of these 

two models will be compared. This model was trained with a 

dataset from many data sources on Github with a real-time 

scenario and several students. The success of this model is that 

it can detect people who are wearing or not wearing masks with 

sure accuracy. The accuracy obtained for real-time detection on 

"Atlas Hilens" is 77.27%, and the accuracy obtained for image 

detection on PC is 87.35%, with an average accuracy of 82.31%. 

Keywords—artificial intelligence, mask detection, CNN, 

mobilenetv2, deep learning, tensorflow, GPU 

I. INTRODUCTION 

Every resident is urged by the World Health Organization 
(WHO) to wear a mask as part of current pandemic protocols, 
one of which is the ability to maintain health protocols. The 
use of community masks will become less common as new 
normal conditions emerge. COVID-19 can be transmitted 
through people unfamiliar with wearing masks in certain 
situations. Closed-off areas that are frequently infected by 
COVID-19 are densely populated. Wearing a face mask is one 
of the best ways to protect yourself from disease, aside from 
getting vaccinated. Artificial Intelligence (AI) technology can 
be used to detect the use of masks in public areas [1]. 
Developer kits and in-chip AI systems are both options for 
implementing this technology. With the help of artificial 
intelligence (AI) kits, security cameras can monitor whether 
people are wearing masks correctly [2]. 

These technologies are being used in various industries, 
including image processing. In addition, AI and deep learning 
can be used to solve problems during a pandemic. COVID-19 

transmission is still possible, even though the pandemic has 
been declared almost endemic. AI can predict the spread and 
growth of COVID-19 based on specific parameters. Imaging 
techniques like roentgenography and magnetic resonance 
imaging (MRI) datasets are frequently used in image 
processing to look for abnormalities and diseases (MRI). AI 
and deep learning can monitor health protocols based on this 
simple idea. Wearing a face mask is the most visible way to 
monitor health protocols. Face detection is the primary 
method of mask detection. If a part of the face is covered, it's 
safe to assume someone is wearing a mask [3]. 

The primary goal of this research is to develop a deep 
learning model for detecting the usage of the mask. "Atlas 
Hilens" is the name from Huawei of the AI developer kit that 
includes this model. The model for "Atlas Hilens" can be 
programmed using Huawei's cloud platform. Skills or 
interfaces are needed to implement the model. In Huawei's 
cloud platform, "ModelArt", there is a YoloV3 model that was 
a ready-made deep learning model for "Atlas Hilens" object 
detection. YoloV3 is widely applied in detecting various 
things and is one of the most commonly used models. 

It was decided to use CNN instead of YoloV3 because this 
model is only available for "Atlas Hilens" devices in China. 
It's worth noting that, in addition to YoloV3, MobileNetV2 
has also been used in previous studies. Because of 
FusionBatchNormalizationV3 in the convolution layer, the 
MobileNetV2 model cannot be used in "Atlas Hilens." A PC 
or laptop platform will be used to test the MobileNetV2 model 
compared to CNN's (Convolutional Neural Network). 

Face detection is required before detecting the mask to 
confirm that the face is wearing the mask. A Caffe with Resnet 
architecture model is used to face detection. The Caffe model 
is employed on a PC in this research, while the model in "Atlas 
Hilens" employs a simpler Haarcascade to recognize faces. A 
CNN-trained mask detection model is used after the face 
detection model has successfully detected a face. External and 
mask datasets obtained from students were used to validate 
this model. The mask detection model is saved as a 
Tensorflow Frozen Graph and then converted to an offline 
model (.om) for use in "Atlas Hilens." An interface program 
is also being developed to read this model and apply it to the 
detection process. This model will be linked to a camera on 
the "Atlas Hilens" and will be able to be utilized in public 
spaces. 
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II. RELATED WORK 

Various deep learning models are used in multiple 
investigations. This investigation demonstrates that numerous 
approaches and architectural models are used in the detection 
process. Deep learning models are employed for object 
detection and other image processing. The distinction is 
whether the deep learning architecture may be used without 
modification or if it needs to be adjusted [4]. 

There are occasions where transfer learning is required by 
introducing knowledge of past objects, and others require 
training with specific things from the start in the deep learning 
models that are already present. There are many 
methodologies in mask detection, such as using transfer 
learning, modifying the architecture after transfer learning, 
and using gradual techniques with multi-deep learning. 
Several practical application studies have chosen a suitable 
model for embedded devices [5]. 

The InceptionV3 model was chosen from various 
comparisons, including Xception, MobileNet, MobileNetV2, 
VGG15, and Resnet50. Five layers have been added to 
InceptionV3's network to replace the last 48 convolution 
layers. Other layers include average pooling, flattening, 
densifying, dropping-out, and inference with the activation 
function layer. Deep learning model architecture and layers 
are shown in Figure 1. In this case, the model architecture is 
altered even when using transfer learning. 

 

Fig. 1. Display of additional layers inserted in InceptionV3 

"Face Mask Detection using Transfer Learning of 
InceptionV3" by G. Jignesh Chowdary [6] was conducted 
using the InceptionV3 model and had near 100% accuracy. 
Still, there was an issue in the crowd for unexplained 
detection. Even though MobileNetV2 and InceptionV3 have 
an accuracy close to 100%, it is still necessary to test these 
models to see if they can correctly detect masks in this 
research. 

Amit Chavda's research [7], titled "Multi-Stage CNN 
Architecture for Face Mask Detection," performed a 
classification utilizing layered CNNs, demonstrating that one-
layer CNN is insufficient and that detection stability issues 
exist. It gives the idea of this research to use one deep learning 
model for face detection and another for mask detection. 

Another deep learning model, MobileNetV2, with 92% 
accuracy, is used in Preeti Nagrath's research [8] entitled 
"SSDMNV2: A real-time DNN-based face mask detection 
system using single-shot multi-box detector and 
MobileNetV2." The situation is different from this research 
and needs to be confirmed. Implementing a model to AI 
developer kit like "Atlas Hilens" is proof of concept and 
accuracy in the other study. It will also be tested with a dataset 
close to real-world conditions and one that includes student 
masks, using the model plant in the AI developer kit. 

A ResNet 50-based deep learning model is used in 
Mohammed Loey's research [9], but the final layer of ResNet 
is replaced with traditional machine learning. These include 
SVM, a decision tree, and an ensemble learning algorithm. 
There are ways to tweak the final layer of deep learning to 
improve the detection of these masks, as demonstrated by this 
example. Figure 2 depicts the hybrid deep learning model's 
architecture. 

 

Fig. 2. Hybrid Deep Learning Model 

III. METHODOLOGY 

Mask detection is being developed in two stages: first, a 
CNN-based detection model is being developed and tested, 
and then an application for mask detection is being developed 
using the CNN model transferred from Tensorflow to "Atlas 
Hilens." Using models trained on Tensorflow that are saved 
in.h5 format in "Atlas Hilens" is impossible. 

The .h5 model must be converted to a .pb model, a frozen 
graph that can be used to create an offline model. "Atlas 
Hilens" relies on a cloud-based development platform, so it 
cannot be programmed remotely. For experiments on a PC 
with a webcam and for "Atlas Hilens" connected to a webcam 
that is integrated with "Atlas Hilens," this mask detection 
system is used. The High Definition Multimedia Interface 
(HDMI) will directly show the detection results on a screen 
(HDMI). Figure 3 provides an overview of the system's 
overall design. 

 

Fig. 3. Mask recognition system architecture with PC and "Atlas Hilens" 

Tensorflow model saved using the h5 format. The Keras 
library was used to construct this Tensorflow model, hence 
the.h5 file extension. Deep learning convolutional layers can 
be built quickly and easily with Keras's sequential libraries. 
Keras simplify Tensorflow's library, so it only needs to be 
applied to layers that exhibit intuitive, deep learning 
properties. Because it is based on Keras, the.h5 model must be 
transformed into a Tensorflow frozen graph before it can be 
used as an offline model [10]. 
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Nearly 60 million parameters are required to classify 
images using deep learning models. In addition, backward 
weighting during training requires calculating some of the 
same gradients. Each of these variables will have a value in 
the Tensorflow model. As a result, the.h5 model is frozen to 
.pb model so that it can be used repeatedly by identifying and 
storing all the necessary data (graphs, weights, configurations, 
and some parameters) in one file. 

A mechanism for accessing deep learning libraries by 
OpenCV is required to use the offline deep learning model 
when creating interfaces to detect masks. Hilens's library will 
be called by the interface, which is slightly different. The 
Hilens libraries use other function calls. The "Atlas Hilens" 
device requires a color system and image format adjustments 
in addition to using the Hilens library. For example, the image 
captured on the camera can be changed from height, weight, 
channel to channel, height, and weight to adjust the image 
format. The face detection model used in Haarcascade uses a 
gray color scheme, so the YUV format from Hilens camera 
needed to be converted to a gray color scheme. 

The use of Keras and computational graphs will be 
affected by the version of Tensorflow used. "Atlas Hilens" 
currently could only use version 1.xx or below version 2.xx 
for Tensorflow. Tensorflow 1.15 is used in this research 
because Keras sequential layers were used for training. Using 
FusedBatchNormalization, which is present in some built-in 
transfer models like MobileNetV2, is currently not possible in 
Tensorflow 1.15. 

In training the model, hardware with high performance is 
needed because the training process requires quite heavy 
computing. An increasing number can see this computation of 
hidden layer architectures that detect important features and 
match existing features to decide whether to wear a mask or 
not. The more data and the complexity of the model created, 
the longer the training process will be. The hardware used in 
modeling the mask recognition system can be seen in Table 1. 

TABLE I.  HARDWARE REQUIREMENT 

PC or Laptop Specification 

Specification Description 

Processor Intel(R) Core(TM) i5 11400H 

RAM 24 GBytes DDR 4 
GPU NVIDIA GeForce RTX 3050 

Storage 475 GB NVMe WDC SSD 

AI Developer Kit "Atlas Hilens" Specification 

Specification Description 

Processor HiSilicon Hi3559A processor Dual-

core ARM Cortex A73 @1.6 GHz, 

32 KB I-Cache, 64 KB D-
Cache/512 KB L2 cache 

RAM Processor: DDR4 4 GB, 64-bit, 

2400 Mbit/s 
AI Accelerator: LPDDR4X, 128-

bit, 8 GB, 3200 Mbit/s 

GPU Dual Da Vinci AI cores: 8 
TFLOPS/FP16, 16 TOPS/INT8 

Storage Onboard 32 GB eMMC 

 

Several steps are required to develop a mask recognition 
system model, beginning with collecting data in the form of 
photos of people wearing masks segregated from persons who 
do not wear masks and then proceeding with the modeling 
procedures as illustrated in Figure 4. 

 

Fig. 4. Flowchart of the mask detection system  

After the images have been collected, they will be divided 
into three categories: training data, test data, and validation 
data, as shown in Figure 4. Preprocessing is required after the 
image has been divided into sections to ensure that the image's 
resolution, color space, and color channel, as well as their 
length and width, are all compatible with the input from deep 
learning. A deep learning architecture can be built if the image 
entered follows the input format. Table 2 shows the CNN 
architecture that was used. 

Three different convolution layer combinations may be 
observed in Table 3.3. This combination is done to gain 
properties ranging from the broadest to the most specific. The 
filter parameter indicates the number of kernels that must be 
twisted to obtain the activation map. The more filters you use, 
the more precise the traits you want to convolute become. The 
number of filters is commonly multiplied by 2n, so CNN 
utilizes 32, 64, and 128. The more filter variants needed, the 
more complicated the dataset you want to convolute. 

There is a kernel size parameter in addition to the filter 
parameter. The kernel size specifies the length and breadth of 
the window used to execute the convolution. Starting with 
1x1, 3x3, 5x5, and so on, the kernel size is frequently odd. The 
smaller the kernel size used, the smaller the area that system 
wants to understand as part of the image features 

Because some features can only be observed when the 
capture area is more comprehensive, the larger the kernel size 
is employed to capture an immense amount. Because the size 
of the entered image will be converted to a dimension of 
150x150, which does not require a kernel size larger than 3x3, 
the kernel size utilized in the model is 3x3 without change. 

The value "same" is substituted for "valid" in the padding 
parameter. The padding parameter makes the spatial volume 
dimensions reasonable so that the output volume matches the 
input volume. 

The "ReLu" function is used for activation, as mentioned 
in the preceding chapter. Using "ReLu" helps keep the 
computations required to run neural networks from becoming 
exponentially. Because the classification is whether or not to 
utilize a mask, sigmoid activation is used in the final layer. 
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TABLE II.  CNN ARCHITECTURE AND PARAMETERS USED 

Layer Type Parameter Output 

dimensi

on 

Num of 

Param

# 

conv2d (Conv2D) filters=32, 

kernel_size=(3,3), 

padding=same, 
input_shape(150,150,3)), 

activation=relu 

(None, 

150, 150, 

32) 

896 

 
conv2d_1 

(Conv2D) 

 
filters=32, 

kernel_size=(3,3), 

padding=same, 
input_shape(150,150,3)), 

activation=relu 

 
(None, 

150, 150, 

32) 

 
9248 

 
max_pooling2d 

(MaxPooling2D) 

 
pool_size=(2,2) 

 
(None, 

75, 75, 

32) 

 
0 

 

dropout (Dropout) 

 

0.5 

 

(None, 

75, 75, 
32) 

 

0 

 

conv2d_2 
(Conv2D) 

 

filters=64, 
kernel_size=(3,3), 

padding=same, 
activation=relu 

 

(None, 
75, 75, 

64) 

 

18496 

 

conv2d_3 
(Conv2D) 

 

filters=64, 
kernel_size=(3,3), 

padding=same, 

activation=relu 

 

(None, 
75, 75, 

64) 

 

36928 

 

max_pooling2d_1 

(MaxPooling2D) 

 

pool_size=(2,2) 

 

(None, 

37, 37, 
64) 

 

0 

dropout_1 

(Dropout) 

0.5 (None, 

37, 37, 

64) 

0 

 

conv2d_4 

(Conv2D) 

 

filters=128, 

kernel_size=(3,3), 
padding=same, 

activation=relu 

 

(None, 

37, 37, 
128) 

 

73856 

 
max_pooling2d_2 

(MaxPooling2D) 

 
pool_size=(2,2) 

 
(None, 

18, 18, 

128) 

 
0 

 

dropout_2 

(Dropout) 

 

0.5 

 

(None, 

18, 18, 
128) 

 

0 

 
flatten (Flatten) 

  
(None, 

41472) 

 
0 

 
dense (Dense) 

 
256,activation=relu 

 
(None, 

256) 

 
256 

 
dropout_3 

(Dropout) 

 
0.5 

 
(None, 

256) 

 
0 

 
dense_1 (Dense) 

 
50, activation=relu 

 
(None, 

50) 

 
12850 

 
dropout_4 

(Dropout) 

 
0.5 

 
(None, 

50) 

 
0 

 
dense_2 (Dense) 

 
1, activation=sigmoid 

 
(None, 

1) 

 
51 

 

Additional to convolution, a max-pooling layer is also 
present. It's a pooling operation that calculates the maximum 
value for a small chunk of the feature map and uses it to create 

a downsampled (pooling) feature map. It's like sifting through 
many images to find the most relevant characteristics. The 
input from 150x150 becomes 75x75 in the CNN shown in 
Table 3.3 due to the maximum pooling of 2x2. A dropout 
parameter of 0.5 is employed in this research, which means 
that the probability of the neuron not being used in specific 
backward propagation phases is 0.5. 

The final layer consists of mechanisms that are flat and 
dense. The following is an example of density. Each of the 
five steps will be applied to a network with three inputs and 
16 outputs, which is what we're looking for in this example: a 
Dense network with three inputs and 16 outputs. The output 
from the existing layer will be a sequence of vectors 
[D(x[0,:]), D(x[1,:]),..., D(x[4,:])] of the form [D(x[0,:]), 
D(x[1:]) (5, 16). To get a 15-dimensional vector, flatten it first 
and then perform a dense layer. 

IV. EXPERIMENTS AND RESULTS 

Figure 5 is an example of the detection results. In addition 
to using image detection, real-time detection is also carried 
out. Real-time detection produces 77% accuracy due to the 
camera's resolution factor and the quality of the image 
obtained by the camera. Figure 6 is an example of the 
detection results from the image. 

 

Fig. 5. Mask detection results in real-time 

 

Fig. 6. Mask detection results from the image 

 Testing is the most critical step in developing a perfect 
model. As part of the testing process, analysis is also required 
to ensure that the model is ready to be used in the real world. 
The following are test results based on the PC model and the 
model used in "Atlas Hilens," which is applied in real-time. 
Accuracy, precision, sensitivity, specificity, and F1 score are 
metrics used to evaluate performance. As a metric, accuracy 
is the percentage (positive and negative) of correct 
predictions. 
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 Accuracy is the performance indicator showing the 
percentage of correctly predicted and not correctly predicted 
overall data. Precision is the ratio of correct predictions to the 
overall positive expected outcome. Precision answers the 
question, "What percentage of people are correctly predicted 
to wear a mask of the total number of people who are predicted 
to wear a mask." Sensitivity answers the question, "What 
percentage of people are predicted to wear masks compared to 
all people who wear masks." The specificity answers the 
question, "What percentage of people are correctly predicted 
not to wear a mask compared to the total number of people 
who do not wear a mask" [11]. 

 To calculate the F1 score, we weigh average precision and 
recall (specificity). If you're trying to detect whether or not 
someone is wearing a mask, you'll want to look at sensitivity 
as your guide. An additional comparison will be made by 
comparing the F1 score due to the asymmetry in the number 
of false positives and negatives. Table 3 will show the 
performance metrics of the various models tested. 

TABLE III.  COMPARISON OF THE PERFORMANCE OF EACH MODEL 

IMPLEMENTED IN "ATLAS HILENS" AND ON PC  

Parameter 
CNN on 
"Atlas 
Hilens" 

CNN 
on PC 

MobileNetV2 on PC 

TP 11 1660 1912 

FP 4 340 270 

TN 6 1834 1405 

FN 1 166 635 

Accuracy = (TP + TN 
) / (TP+FP+FN+TN) 

0,77 0,87 0,78 

Precission = (TP) / 
(TP+FP) 

0,73 0,83 0,87 

Recall = (TP) / (TP + 
FN) 

0,91 0,90 0,75 

Specificity = (TN)/ 
(TN + FP) 

0,6 0,84 0,83 

F1 Score = 2 * (Recall 
* Precission) / (Recall 
+ Precission) 

0,81 0,86 0,8 

  

As shown in Table 3, there were three separate 
experiments. The first experiment was with Hilens devices 
and real-time video. This experiment's model is based on a 
CNN. Only 22 of the image's data points are used in this 
experiment to make a detection. Figure 4.15 shows an 
example of a correctly detected image. The accuracy results, 
which is 77%, are still adequate, but the sensitivity results are 
excellent. Although the F1 score is lower than the CNN model 
that runs directly on a PC, the MobileNetV2 model is still 
better than the MobileNetV2 model. 

The CNN model was used in the second experiment, but 
this time on a PC. Experiments on a PC with the camera in 
real-time indicated that the model performed better than when 
it ran on "Atlas Hilens." Table 3 does not show this, although 
the detection results are either mask-based or not much better. 
Misconduct is due to a discrepancy in camera sensors between 
the PC and "Atlas Hilens." 

Even though the resolution of the PC camera and "Atlas 
Hilens" is the same as 720p or 1.3 MP, the quality is not 
always the same. The Frame Per Second (FPS) discrepancy in 

"Atlas Hilens" is due to the GPU speed difference between the 
NVIDIA GeForce RTX 3050 on the PC and the Da Vinci Core 
in "Atlas Hilens." Figure 7 shows an example of a video 
captured by the application from a PC camera. 

Table 4 compares the current study's accuracy to that of 
various earlier research. The comparison uses accuracy 
because, in earlier research, there was no F1 score. Although 
the percentage accuracy of the implementation is below 
earlier, it could show that accuracy could be changed if the 
dataset is different. 

TABLE IV.  COMPARISON OF THE PERFORMANCE OF EACH MODEL 

IMPLEMENTED IN "ATLAS HILENS" AND ON PC 

Model Parameter Percentage Testing description 

G. Jignesh 

Chowdary using 

InceptionV3 [6] 

Accuracy 100% Not good. There are 

some testing data 

misclassified 
 

Amit Chavda 

[7] using Multi-
Stage CNN 

entitled 

NasNetMobile 

 

Accuracy 

 

99.45% 

 

There are no models 

to try in the Hilens 
library 

Preeti Nagrath 

[8] uses the 

SSDMNV2 
model that, like 

MobileNetV2 

Accuracy 93% It cannot be applied 

in Hilens because 

there is a 
FusionBatchNormali

zationV3 layer 

 
Atlas Hilens + 

CNN (Proposed 

Model) 

 
Accuracy 

 
77% (real 

time) and 

87% (on PC) 

 
Using regular CNN, 

but accuracy is 

different from PC 
due to camera sensor 

problems and also 

GPU quality 

  

"Atlas Hilens" can only use the basic architecture, such as 
convolution functions, max pooling, dropout, flattening, 
dense, and several supported functions. FusedBatchNormV3 
is an operator on MobileNetv2 released in 2009, primarily for 
NVIDIA's CUDA optimization. This operator is not supported 
on AI Ascend processors in mixed compute mode. 

 

Fig. 7. Mask detection on PC using MobileNetV2 

 Table 3 shows an exciting conclusion, namely that the 
sensitivity of MobileNetV2 is relatively low compared to 
CNN. This demonstrates that MobileNetV2 can recognize the 
use of masks but not of detecting those who do not. Although 
MobileNetV2's architecture is more complicated than CNN's, 
this does not always imply that it performs better. The results 
of real-time detection on a PC using a CNN model are shown 
in Figure 8. In addition to the models depicted in Table 3, the 
InceptionV3 model was tested, but it did not perform well 
enough to be compared. 
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Fig. 8. Mask detection on PC using CNN 

V. CONCLUSION 

The CNN model on a PC has an accuracy of 87.35 percent, 
while the CNN model used in "Atlas Hilens" has an accuracy 
of 77.27 percent with an average of 82.31 percent. The 
arrangement of the convolution layer and classification layer 
in the deep learning architecture will affect the model's 
quality. Before mask detection, CNN is utilized for successful 
face detection. When applied to "Atlas Hilens" with real-time 
detection, accuracy can vary depending on image datasets. It 
indicates flaws in detecting black masks and a background 
nearly the same color as the skin or mask tested with student 
datasets. 

Because this deep learning model can be used on mobile 
devices, it can be used more widely and is not limited to PCs. 
The forms of the CNN layer that can be applied and the 
properties of the layer are understandable. It can be an 
example of a project where simple AI applications are used 
using a direct case study on mask identification. 
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