

Custom Convolutional Neural Network Model

Implementation for Mask Detection on Atlas Hilens

Device

Yosua Alvin Adi Soetrisno

Professional Engineering Education

Diponegoro University

Semarang, Indonesia
yosua@live.undip.ac.id

Jaka Windarta

Professional Engineering Education

Diponegoro University

Semarang, Indonesia

jakawindarta@lecturer.undip.ac.id

Sumardi

Professional Engineering Education

Diponegoro University

Semarang, Indonesia
sumardi@elektro.undip.ac.id

Agung Nugroho

Professional Engineering Education

Diponegoro University

Semarang, Indonesia
agung2nugroho@gmail.com

Abstract—Deep learning is one of the models used in many

classifications because it can obtain many characteristics of

objects. Health protocols are highly emphasized in this

pandemic era. One of the issues that can arise at an event is the

public's failure to wear masks. This study developed a system to

detect people who are not wearing masks. Transfer learning

from several existing deep learning models is used to build the

model. The contribution of this research is trying to make a

proper and straightforward model that could be implemented

in "Atlas Hilens" to get portability. The MobilNetV2 or

InceptionV3 model cannot be implemented in "Atlas Hilens"

because a kind of FusionBatchNormalizationv3 layer is not

supported. The CNN model built on "Atlas Hilens" will be

compared to the MobileNetV2 or InceptionV3 model built with

Tensorflow on a PC. "Atlas Hilens" can adopt the Tensorflow

model to implement, although it needs adjustments from the

existing detection model. The efficiency and accuracy of these

two models will be compared. This model was trained with a

dataset from many data sources on Github with a real-time

scenario and several students. The success of this model is that

it can detect people who are wearing or not wearing masks with

sure accuracy. The accuracy obtained for real-time detection on

"Atlas Hilens" is 77.27%, and the accuracy obtained for image

detection on PC is 87.35%, with an average accuracy of 82.31%.

Keywords—artificial intelligence, mask detection, CNN,

mobilenetv2, deep learning, tensorflow, GPU

I. INTRODUCTION

Every resident is urged by the World Health Organization
(WHO) to wear a mask as part of current pandemic protocols,
one of which is the ability to maintain health protocols. The
use of community masks will become less common as new
normal conditions emerge. COVID-19 can be transmitted
through people unfamiliar with wearing masks in certain
situations. Closed-off areas that are frequently infected by
COVID-19 are densely populated. Wearing a face mask is one
of the best ways to protect yourself from disease, aside from
getting vaccinated. Artificial Intelligence (AI) technology can
be used to detect the use of masks in public areas [1].
Developer kits and in-chip AI systems are both options for
implementing this technology. With the help of artificial
intelligence (AI) kits, security cameras can monitor whether
people are wearing masks correctly [2].

These technologies are being used in various industries,
including image processing. In addition, AI and deep learning
can be used to solve problems during a pandemic. COVID-19

transmission is still possible, even though the pandemic has
been declared almost endemic. AI can predict the spread and
growth of COVID-19 based on specific parameters. Imaging
techniques like roentgenography and magnetic resonance
imaging (MRI) datasets are frequently used in image
processing to look for abnormalities and diseases (MRI). AI
and deep learning can monitor health protocols based on this
simple idea. Wearing a face mask is the most visible way to
monitor health protocols. Face detection is the primary
method of mask detection. If a part of the face is covered, it's
safe to assume someone is wearing a mask [3].

The primary goal of this research is to develop a deep
learning model for detecting the usage of the mask. "Atlas
Hilens" is the name from Huawei of the AI developer kit that
includes this model. The model for "Atlas Hilens" can be
programmed using Huawei's cloud platform. Skills or
interfaces are needed to implement the model. In Huawei's
cloud platform, "ModelArt", there is a YoloV3 model that was
a ready-made deep learning model for "Atlas Hilens" object
detection. YoloV3 is widely applied in detecting various
things and is one of the most commonly used models.

It was decided to use CNN instead of YoloV3 because this
model is only available for "Atlas Hilens" devices in China.
It's worth noting that, in addition to YoloV3, MobileNetV2
has also been used in previous studies. Because of
FusionBatchNormalizationV3 in the convolution layer, the
MobileNetV2 model cannot be used in "Atlas Hilens." A PC
or laptop platform will be used to test the MobileNetV2 model
compared to CNN's (Convolutional Neural Network).

Face detection is required before detecting the mask to
confirm that the face is wearing the mask. A Caffe with Resnet
architecture model is used to face detection. The Caffe model
is employed on a PC in this research, while the model in "Atlas
Hilens" employs a simpler Haarcascade to recognize faces. A
CNN-trained mask detection model is used after the face
detection model has successfully detected a face. External and
mask datasets obtained from students were used to validate
this model. The mask detection model is saved as a
Tensorflow Frozen Graph and then converted to an offline
model (.om) for use in "Atlas Hilens." An interface program
is also being developed to read this model and apply it to the
detection process. This model will be linked to a camera on
the "Atlas Hilens" and will be able to be utilized in public
spaces.

978-1-6654-7150-3/22/$31.00 ©2022 IEEE

9th ICITACEE 2022 - Semarang, Indonesia, August 25-26, 2022

38

II. RELATED WORK

Various deep learning models are used in multiple
investigations. This investigation demonstrates that numerous
approaches and architectural models are used in the detection
process. Deep learning models are employed for object
detection and other image processing. The distinction is
whether the deep learning architecture may be used without
modification or if it needs to be adjusted [4].

There are occasions where transfer learning is required by
introducing knowledge of past objects, and others require
training with specific things from the start in the deep learning
models that are already present. There are many
methodologies in mask detection, such as using transfer
learning, modifying the architecture after transfer learning,
and using gradual techniques with multi-deep learning.
Several practical application studies have chosen a suitable
model for embedded devices [5].

The InceptionV3 model was chosen from various
comparisons, including Xception, MobileNet, MobileNetV2,
VGG15, and Resnet50. Five layers have been added to
InceptionV3's network to replace the last 48 convolution
layers. Other layers include average pooling, flattening,
densifying, dropping-out, and inference with the activation
function layer. Deep learning model architecture and layers
are shown in Figure 1. In this case, the model architecture is
altered even when using transfer learning.

Fig. 1. Display of additional layers inserted in InceptionV3

"Face Mask Detection using Transfer Learning of
InceptionV3" by G. Jignesh Chowdary [6] was conducted
using the InceptionV3 model and had near 100% accuracy.
Still, there was an issue in the crowd for unexplained
detection. Even though MobileNetV2 and InceptionV3 have
an accuracy close to 100%, it is still necessary to test these
models to see if they can correctly detect masks in this
research.

Amit Chavda's research [7], titled "Multi-Stage CNN
Architecture for Face Mask Detection," performed a
classification utilizing layered CNNs, demonstrating that one-
layer CNN is insufficient and that detection stability issues
exist. It gives the idea of this research to use one deep learning
model for face detection and another for mask detection.

Another deep learning model, MobileNetV2, with 92%
accuracy, is used in Preeti Nagrath's research [8] entitled
"SSDMNV2: A real-time DNN-based face mask detection
system using single-shot multi-box detector and
MobileNetV2." The situation is different from this research
and needs to be confirmed. Implementing a model to AI
developer kit like "Atlas Hilens" is proof of concept and
accuracy in the other study. It will also be tested with a dataset
close to real-world conditions and one that includes student
masks, using the model plant in the AI developer kit.

A ResNet 50-based deep learning model is used in
Mohammed Loey's research [9], but the final layer of ResNet
is replaced with traditional machine learning. These include
SVM, a decision tree, and an ensemble learning algorithm.
There are ways to tweak the final layer of deep learning to
improve the detection of these masks, as demonstrated by this
example. Figure 2 depicts the hybrid deep learning model's
architecture.

Fig. 2. Hybrid Deep Learning Model

III. METHODOLOGY

Mask detection is being developed in two stages: first, a
CNN-based detection model is being developed and tested,
and then an application for mask detection is being developed
using the CNN model transferred from Tensorflow to "Atlas
Hilens." Using models trained on Tensorflow that are saved
in.h5 format in "Atlas Hilens" is impossible.

The .h5 model must be converted to a .pb model, a frozen
graph that can be used to create an offline model. "Atlas
Hilens" relies on a cloud-based development platform, so it
cannot be programmed remotely. For experiments on a PC
with a webcam and for "Atlas Hilens" connected to a webcam
that is integrated with "Atlas Hilens," this mask detection
system is used. The High Definition Multimedia Interface
(HDMI) will directly show the detection results on a screen
(HDMI). Figure 3 provides an overview of the system's
overall design.

Fig. 3. Mask recognition system architecture with PC and "Atlas Hilens"

Tensorflow model saved using the h5 format. The Keras
library was used to construct this Tensorflow model, hence
the.h5 file extension. Deep learning convolutional layers can
be built quickly and easily with Keras's sequential libraries.
Keras simplify Tensorflow's library, so it only needs to be
applied to layers that exhibit intuitive, deep learning
properties. Because it is based on Keras, the.h5 model must be
transformed into a Tensorflow frozen graph before it can be
used as an offline model [10].

39

Nearly 60 million parameters are required to classify
images using deep learning models. In addition, backward
weighting during training requires calculating some of the
same gradients. Each of these variables will have a value in
the Tensorflow model. As a result, the.h5 model is frozen to
.pb model so that it can be used repeatedly by identifying and
storing all the necessary data (graphs, weights, configurations,
and some parameters) in one file.

A mechanism for accessing deep learning libraries by
OpenCV is required to use the offline deep learning model
when creating interfaces to detect masks. Hilens's library will
be called by the interface, which is slightly different. The
Hilens libraries use other function calls. The "Atlas Hilens"
device requires a color system and image format adjustments
in addition to using the Hilens library. For example, the image
captured on the camera can be changed from height, weight,
channel to channel, height, and weight to adjust the image
format. The face detection model used in Haarcascade uses a
gray color scheme, so the YUV format from Hilens camera
needed to be converted to a gray color scheme.

The use of Keras and computational graphs will be
affected by the version of Tensorflow used. "Atlas Hilens"
currently could only use version 1.xx or below version 2.xx
for Tensorflow. Tensorflow 1.15 is used in this research
because Keras sequential layers were used for training. Using
FusedBatchNormalization, which is present in some built-in
transfer models like MobileNetV2, is currently not possible in
Tensorflow 1.15.

In training the model, hardware with high performance is
needed because the training process requires quite heavy
computing. An increasing number can see this computation of
hidden layer architectures that detect important features and
match existing features to decide whether to wear a mask or
not. The more data and the complexity of the model created,
the longer the training process will be. The hardware used in
modeling the mask recognition system can be seen in Table 1.

TABLE I. HARDWARE REQUIREMENT

PC or Laptop Specification

Specification Description

Processor Intel(R) Core(TM) i5 11400H

RAM 24 GBytes DDR 4
GPU NVIDIA GeForce RTX 3050

Storage 475 GB NVMe WDC SSD

AI Developer Kit "Atlas Hilens" Specification

Specification Description

Processor HiSilicon Hi3559A processor Dual-

core ARM Cortex A73 @1.6 GHz,

32 KB I-Cache, 64 KB D-
Cache/512 KB L2 cache

RAM Processor: DDR4 4 GB, 64-bit,

2400 Mbit/s
AI Accelerator: LPDDR4X, 128-

bit, 8 GB, 3200 Mbit/s

GPU Dual Da Vinci AI cores: 8
TFLOPS/FP16, 16 TOPS/INT8

Storage Onboard 32 GB eMMC

Several steps are required to develop a mask recognition
system model, beginning with collecting data in the form of
photos of people wearing masks segregated from persons who
do not wear masks and then proceeding with the modeling
procedures as illustrated in Figure 4.

Fig. 4. Flowchart of the mask detection system

After the images have been collected, they will be divided
into three categories: training data, test data, and validation
data, as shown in Figure 4. Preprocessing is required after the
image has been divided into sections to ensure that the image's
resolution, color space, and color channel, as well as their
length and width, are all compatible with the input from deep
learning. A deep learning architecture can be built if the image
entered follows the input format. Table 2 shows the CNN
architecture that was used.

Three different convolution layer combinations may be
observed in Table 3.3. This combination is done to gain
properties ranging from the broadest to the most specific. The
filter parameter indicates the number of kernels that must be
twisted to obtain the activation map. The more filters you use,
the more precise the traits you want to convolute become. The
number of filters is commonly multiplied by 2n, so CNN
utilizes 32, 64, and 128. The more filter variants needed, the
more complicated the dataset you want to convolute.

There is a kernel size parameter in addition to the filter
parameter. The kernel size specifies the length and breadth of
the window used to execute the convolution. Starting with
1x1, 3x3, 5x5, and so on, the kernel size is frequently odd. The
smaller the kernel size used, the smaller the area that system
wants to understand as part of the image features

Because some features can only be observed when the
capture area is more comprehensive, the larger the kernel size
is employed to capture an immense amount. Because the size
of the entered image will be converted to a dimension of
150x150, which does not require a kernel size larger than 3x3,
the kernel size utilized in the model is 3x3 without change.

The value "same" is substituted for "valid" in the padding
parameter. The padding parameter makes the spatial volume
dimensions reasonable so that the output volume matches the
input volume.

The "ReLu" function is used for activation, as mentioned
in the preceding chapter. Using "ReLu" helps keep the
computations required to run neural networks from becoming
exponentially. Because the classification is whether or not to
utilize a mask, sigmoid activation is used in the final layer.

40

TABLE II. CNN ARCHITECTURE AND PARAMETERS USED

Layer Type Parameter Output

dimensi

on

Num of

Param

conv2d (Conv2D) filters=32,

kernel_size=(3,3),

padding=same,
input_shape(150,150,3)),

activation=relu

(None,

150, 150,

32)

896

conv2d_1

(Conv2D)

filters=32,

kernel_size=(3,3),

padding=same,
input_shape(150,150,3)),

activation=relu

(None,

150, 150,

32)

9248

max_pooling2d

(MaxPooling2D)

pool_size=(2,2)

(None,

75, 75,

32)

0

dropout (Dropout)

0.5

(None,

75, 75,
32)

0

conv2d_2
(Conv2D)

filters=64,
kernel_size=(3,3),

padding=same,
activation=relu

(None,
75, 75,

64)

18496

conv2d_3
(Conv2D)

filters=64,
kernel_size=(3,3),

padding=same,

activation=relu

(None,
75, 75,

64)

36928

max_pooling2d_1

(MaxPooling2D)

pool_size=(2,2)

(None,

37, 37,
64)

0

dropout_1

(Dropout)

0.5 (None,

37, 37,

64)

0

conv2d_4

(Conv2D)

filters=128,

kernel_size=(3,3),
padding=same,

activation=relu

(None,

37, 37,
128)

73856

max_pooling2d_2

(MaxPooling2D)

pool_size=(2,2)

(None,

18, 18,

128)

0

dropout_2

(Dropout)

0.5

(None,

18, 18,
128)

0

flatten (Flatten)

(None,

41472)

0

dense (Dense)

256,activation=relu

(None,

256)

256

dropout_3

(Dropout)

0.5

(None,

256)

0

dense_1 (Dense)

50, activation=relu

(None,

50)

12850

dropout_4

(Dropout)

0.5

(None,

50)

0

dense_2 (Dense)

1, activation=sigmoid

(None,

1)

51

Additional to convolution, a max-pooling layer is also
present. It's a pooling operation that calculates the maximum
value for a small chunk of the feature map and uses it to create

a downsampled (pooling) feature map. It's like sifting through
many images to find the most relevant characteristics. The
input from 150x150 becomes 75x75 in the CNN shown in
Table 3.3 due to the maximum pooling of 2x2. A dropout
parameter of 0.5 is employed in this research, which means
that the probability of the neuron not being used in specific
backward propagation phases is 0.5.

The final layer consists of mechanisms that are flat and
dense. The following is an example of density. Each of the
five steps will be applied to a network with three inputs and
16 outputs, which is what we're looking for in this example: a
Dense network with three inputs and 16 outputs. The output
from the existing layer will be a sequence of vectors
[D(x[0,:]), D(x[1,:]),..., D(x[4,:])] of the form [D(x[0,:]),
D(x[1:]) (5, 16). To get a 15-dimensional vector, flatten it first
and then perform a dense layer.

IV. EXPERIMENTS AND RESULTS

Figure 5 is an example of the detection results. In addition
to using image detection, real-time detection is also carried
out. Real-time detection produces 77% accuracy due to the
camera's resolution factor and the quality of the image
obtained by the camera. Figure 6 is an example of the
detection results from the image.

Fig. 5. Mask detection results in real-time

Fig. 6. Mask detection results from the image

 Testing is the most critical step in developing a perfect
model. As part of the testing process, analysis is also required
to ensure that the model is ready to be used in the real world.
The following are test results based on the PC model and the
model used in "Atlas Hilens," which is applied in real-time.
Accuracy, precision, sensitivity, specificity, and F1 score are
metrics used to evaluate performance. As a metric, accuracy
is the percentage (positive and negative) of correct
predictions.

41

 Accuracy is the performance indicator showing the
percentage of correctly predicted and not correctly predicted
overall data. Precision is the ratio of correct predictions to the
overall positive expected outcome. Precision answers the
question, "What percentage of people are correctly predicted
to wear a mask of the total number of people who are predicted
to wear a mask." Sensitivity answers the question, "What
percentage of people are predicted to wear masks compared to
all people who wear masks." The specificity answers the
question, "What percentage of people are correctly predicted
not to wear a mask compared to the total number of people
who do not wear a mask" [11].

 To calculate the F1 score, we weigh average precision and
recall (specificity). If you're trying to detect whether or not
someone is wearing a mask, you'll want to look at sensitivity
as your guide. An additional comparison will be made by
comparing the F1 score due to the asymmetry in the number
of false positives and negatives. Table 3 will show the
performance metrics of the various models tested.

TABLE III. COMPARISON OF THE PERFORMANCE OF EACH MODEL

IMPLEMENTED IN "ATLAS HILENS" AND ON PC

Parameter
CNN on
"Atlas
Hilens"

CNN
on PC

MobileNetV2 on PC

TP 11 1660 1912

FP 4 340 270

TN 6 1834 1405

FN 1 166 635

Accuracy = (TP + TN
) / (TP+FP+FN+TN)

0,77 0,87 0,78

Precission = (TP) /
(TP+FP)

0,73 0,83 0,87

Recall = (TP) / (TP +
FN)

0,91 0,90 0,75

Specificity = (TN)/
(TN + FP)

0,6 0,84 0,83

F1 Score = 2 * (Recall
* Precission) / (Recall
+ Precission)

0,81 0,86 0,8

As shown in Table 3, there were three separate
experiments. The first experiment was with Hilens devices
and real-time video. This experiment's model is based on a
CNN. Only 22 of the image's data points are used in this
experiment to make a detection. Figure 4.15 shows an
example of a correctly detected image. The accuracy results,
which is 77%, are still adequate, but the sensitivity results are
excellent. Although the F1 score is lower than the CNN model
that runs directly on a PC, the MobileNetV2 model is still
better than the MobileNetV2 model.

The CNN model was used in the second experiment, but
this time on a PC. Experiments on a PC with the camera in
real-time indicated that the model performed better than when
it ran on "Atlas Hilens." Table 3 does not show this, although
the detection results are either mask-based or not much better.
Misconduct is due to a discrepancy in camera sensors between
the PC and "Atlas Hilens."

Even though the resolution of the PC camera and "Atlas
Hilens" is the same as 720p or 1.3 MP, the quality is not
always the same. The Frame Per Second (FPS) discrepancy in

"Atlas Hilens" is due to the GPU speed difference between the
NVIDIA GeForce RTX 3050 on the PC and the Da Vinci Core
in "Atlas Hilens." Figure 7 shows an example of a video
captured by the application from a PC camera.

Table 4 compares the current study's accuracy to that of
various earlier research. The comparison uses accuracy
because, in earlier research, there was no F1 score. Although
the percentage accuracy of the implementation is below
earlier, it could show that accuracy could be changed if the
dataset is different.

TABLE IV. COMPARISON OF THE PERFORMANCE OF EACH MODEL

IMPLEMENTED IN "ATLAS HILENS" AND ON PC

Model Parameter Percentage Testing description

G. Jignesh

Chowdary using

InceptionV3 [6]

Accuracy 100% Not good. There are

some testing data

misclassified

Amit Chavda

[7] using Multi-
Stage CNN

entitled

NasNetMobile

Accuracy

99.45%

There are no models

to try in the Hilens
library

Preeti Nagrath

[8] uses the

SSDMNV2
model that, like

MobileNetV2

Accuracy 93% It cannot be applied

in Hilens because

there is a
FusionBatchNormali

zationV3 layer

Atlas Hilens +

CNN (Proposed

Model)

Accuracy

77% (real

time) and

87% (on PC)

Using regular CNN,

but accuracy is

different from PC
due to camera sensor

problems and also

GPU quality

"Atlas Hilens" can only use the basic architecture, such as
convolution functions, max pooling, dropout, flattening,
dense, and several supported functions. FusedBatchNormV3
is an operator on MobileNetv2 released in 2009, primarily for
NVIDIA's CUDA optimization. This operator is not supported
on AI Ascend processors in mixed compute mode.

Fig. 7. Mask detection on PC using MobileNetV2

 Table 3 shows an exciting conclusion, namely that the
sensitivity of MobileNetV2 is relatively low compared to
CNN. This demonstrates that MobileNetV2 can recognize the
use of masks but not of detecting those who do not. Although
MobileNetV2's architecture is more complicated than CNN's,
this does not always imply that it performs better. The results
of real-time detection on a PC using a CNN model are shown
in Figure 8. In addition to the models depicted in Table 3, the
InceptionV3 model was tested, but it did not perform well
enough to be compared.

42

Fig. 8. Mask detection on PC using CNN

V. CONCLUSION

The CNN model on a PC has an accuracy of 87.35 percent,
while the CNN model used in "Atlas Hilens" has an accuracy
of 77.27 percent with an average of 82.31 percent. The
arrangement of the convolution layer and classification layer
in the deep learning architecture will affect the model's
quality. Before mask detection, CNN is utilized for successful
face detection. When applied to "Atlas Hilens" with real-time
detection, accuracy can vary depending on image datasets. It
indicates flaws in detecting black masks and a background
nearly the same color as the skin or mask tested with student
datasets.

Because this deep learning model can be used on mobile
devices, it can be used more widely and is not limited to PCs.
The forms of the CNN layer that can be applied and the
properties of the layer are understandable. It can be an
example of a project where simple AI applications are used
using a direct case study on mask identification.

ACKNOWLEDGMENT

This work is supported and fully funded by Strategic
Research Annual Budget Grand from the Professional
Engineering Education, part of the Faculty of Engineering
Diponegoro University.

REFERENCES

[1] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, "Machine learning:
a review of classification and combining techniques," Artif. Intell.
Rev., vol. 26, no. 3, pp. 159–190, Nov. 2006, doi: 10.1007/s10462-007-
9052-3.

[2] F. De Felice and A. Polimeni, "Coronavirus Disease (COVID-19): A
Machine Learning Bibliometric Analysis," In Vivo, vol. 34, no. 3
suppl, pp. 1613–1617, 2020, doi: 10.21873/invivo.11951.

[3] H. B. Syeda et al., "Role of Machine Learning Techniques to Tackle
the COVID-19 Crisis: Systematic Review," JMIR Med. Inform., vol.
9, no. 1, p. e23811, Jan. 2021, doi: 10.2196/23811.

[4] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, "Deep
learning for visual understanding: A review," Neurocomputing, vol.
187, pp. 27–48, Apr. 2016, doi: 10.1016/j.neucom.2015.09.116.

[5] A. Santoso and G. Ariyanto, “IMPLEMENTASI DEEP LEARNING
BERBASIS KERAS UNTUK PENGENALAN WAJAH,” Emit. J.
Tek. Elektro, vol. 18, no. 01, pp. 15–21, Jun. 2018, doi:
10.23917/emitor.v18i01.6235.

[6] G. J. Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, "Face
Mask Detection using Transfer Learning of InceptionV3,"
ArXiv200908369 Cs Eess, vol. 12581, pp. 81–90, 2020, doi:
10.1007/978-3-030-66665-1_6.

[7] A. Chavda, J. Dsouza, S. Badgujar, and A. Damani, "Multi-Stage CNN
Architecture for Face Mask Detection," in 2021 6th International
Conference for Convergence in Technology (I2CT), Maharashtra,
India, Apr. 2021, pp. 1–8. doi: 10.1109/I2CT51068.2021.9418207.

[8] P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth,
"SSDMNV2: A real time DNN-based face mask detection system
using single shot multibox detector and MobileNetV2," Sustain. Cities
Soc., vol. 66, p. 102692, Mar. 2021, doi: 10.1016/j.scs.2020.102692.

[9] M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, "A
hybrid deep transfer learning model with machine learning methods for
face mask detection in the era of the COVID-19 pandemic,"
Measurement, vol. 167, p. 108288, Jan. 2021, doi:
10.1016/j.measurement.2020.108288.

[10] B. Pang, E. Nijkamp, and Y. N. Wu, "Deep Learning With TensorFlow:
A Review," J. Educ. Behav. Stat., vol. 45, no. 2, pp. 227–248, Apr.
2020, doi: 10.3102/1076998619872761.

[11] R. Arthana, "Mengenal Accuracy, Precision, Recall dan Specificity
serta yang diprioritaskan dalam Machine Learning." [Online].
Available: https://rey1024.medium.com/mengenal-accuracy-
precission-recall-dan-specificity-serta-yang-diprioritaskan-
b79ff4d77de8.

43

