

Revolutionizing Concurrent Crawling: A Novel

Approach to Enhance PHP-Python Integration using

AMQP, Selenium, Celery, and RabbitMQ

Yosua Alvin Adi Soetrisno

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

yosua@live.undip.ac.id

Aghus Sofwan

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

asofwan@elektro.undip.ac.id

M. Arfan

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

arfan@elektro.undip.ac.id

Enda Wista Sinuraya

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

enda_sinuraya@elektro.undip.ac.id

Eko Handoyo

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

eko_handoyo@elektro.undip.ac.id

Maman Somantri

Department of Electrical Engineering

Diponegoro University

Semarang, Indonesia

mmsomantri@live.undip.ac.id

Abstract— This research proposes a practical solution for

seamlessly integrating PHP with Python in web development,

focusing on achieving efficient web crawling. The problem is

that many PHP applications need to call the Python application

for machine learning or crawling work. With default functions

from PHP, such as PHP-exec, the Python program could be

executed but cannot be maintained smoothly if the program is a

lengthy task in the background. By leveraging the AMQP

(Advanced Message Queuing Protocol) library and the

Selenium Crawler, Celery, and RabbitMQ, we establish

interoperability between PHP and Python. In our approach,

PHP acts as the front end, initiating web crawling tasks by doing

some action in the web component. These requests are queued

with a message broker application such as RabbitMQ, the

message broker. RabbitMQ connected with Celery for the

seamless scheduling and execution of tasks. This research

enables effective web crawling and concurrent data scraping by

seamlessly integrating the Selenium Crawler with Celery.

Results from extracted data from the crawler are saved to the

database to give a certain status of whether the data collection

process is done or pending. Through experimentation, we

validate the effectiveness of our seamlessly integrated approach

by making a variation of worker and concurrent connection.

The testing scenario shows that increasing workers only

increase a small amount of memory. This result indicates that

workers could help maintain the response time if there is some

user, but need some consideration based on the number of users

and availability of memory and CPU.

Keywords—AMQP, Celery, RabbitMQ, Selenium,

interoperability

I. INTRODUCTION

When building things on the internet, sometimes we need
interoperability between computer languages to use the true
nature power of each language to get everything to work
together. This task can be tricky, especially when we want a
program that searches the data from a web application or the
internet. This research built an alternative way to connect PHP
and Python using special queue tools like the AMQP library,
Celery, and RabbitMQ. The system is also connected to the
Selenium crawler to extract data from the web application and
get tuned with Celery to do a multi-crawling at once.

PHP with the Code Igniter framework helps manage user
requests and start web crawling tasks. These requests can be

for specific information, like searching for things from a
certain period. RabbitMQ supports ensuring these tasks get
handled in the queue. Celery ensures that the crawling tasks
can be done in concurrent workers queued, extending the
capability to use our computer's resources wisely. Selenium
crawler was added for web crawling and data scraping jobs
[1]. Selenium crawler could search website components for
automatic content exploration and get information from them.
The integrated approach has been proven effective through
thorough experimentation, particularly regarding integrating
PHP for connecting the GUI interface with the database and
Python for web crawling [2].

This research proposes an effective method of combining
Python and PHP to enable efficient web crawling. With this
strategy, developers can leverage Python's web crawling
capabilities to improve PHP application capabilities by
optimizing the management of task queues and message
exchanges [3]. This process could make a Python script called
by some users with different sessions.

The proposed solution aims to advance the integration of
PHP and Python, offering a practical solution for effective
web crawling. This mechanism enables developers to extract
crucial information from diverse web sources by
incorporating Python's web crawling features into PHP
applications, facilitating the creation of data collection and
information-driven web applications known as microservices.
A testing mechanism has also been implemented to evaluate
the crawler's performance when multiple users access it
concurrently compared to the available workers.

II. RELATED WORK

In this section, there is a thorough review of research
related to the integration of PHP with Python, effective web
crawling using Selenium, and the utilization of RabbitMQ for
queue management. One notable research by Thirupathi [4]
focuses on IoT communication protocols and offers the Web
of Things as a potential solution. Web of Things emphasizes
the importance of HTTP and MQTT for maintaining IoT data
stream queues and technologies such as HTTP and RDF for
facilitating communication and data description between
devices and web services. The Web of Things enables IoT
devices to be remotely monitored, controlled, and accessed in
real time, enabling intelligent decision-making.

2023 IEEE International Conference on Computing (ICOCO)

83

Another approach [5] uses a queue handling engine of
event logs in IT infrastructure. It connects different system
components with a dedicated Syslog server, a NoSQL
Cassandra database, and the Advanced Message Queuing
Protocol (AMQP). AMQP provides features like message
orientation, queuing, routing, reliability, and security [6].
Apache QPID is the queue-handling engine that transfers
messages from the Syslog server formed in the queue to be
parsed, saving the NoSQL Cassandra database messages.

Baier's research [7] explores a multi-agent platform that
enables the production of interactive agents that can perform
various tasks, which in our research applied as using multiple
crawlers. Baier integrates sensors and interpretation
components in multimodal data known as episodic graphs. It
provides a versatile structure for developing agents that can
effectively operate in complex real-world scenarios.

RabbitMQ and Celery are tools combined for
communication and task management within road user
services [8]. RabbitMQ acts as a message broker, enabling the
transfer of client messages between different systems and
applications. Celery could execute tasks that require
significant computational resources [9] as the task
management engine and asynchronously across multiple
worker servers. Celery utilizes the capabilities of both
RabbitMQ and Redis technologies to ensure efficient task
distribution and management [10].

The Fine-Grained and Coarse-Grained models [11],
another Celery model, manage asynchronous tasks within
each node. RabbitMQ is vital for exchanging sub-tasks and
their results among worker nodes. This strategy ensures
efficient task execution, faster computation, and improved
scalability. Additionally, RabbitMQ facilitates
communication between nodes in the Coarse-Grained model,
promoting better node interaction management and
organization.

There is some testing mechanism and parameter to be
tested and used in other research. The parameter is cost and
time or efficiency [12]. There is also a parameter for the
variation of task amount, page category, and thread per second
[13]. For crawl-queue development over time, there is runtime
and several crawlers in the queue [14].

This review provides essential and valuable information
about the present condition of the related research and
methods for integrating PHP with Python, effective web
crawling, and the application of RabbitMQ for queue
management. It pinpoints specific research areas and
highlights these technology's significance in various fields,
such as IoT, event log management, and communication
services for road users. This research focuses on the
technology that could help the integration of PHP and Python
together and testing if there is a more efficient way to do
crawling after incorporating task management.

III. METHODOLOGY

This section presents a comprehensive guide on
implementing PHP-Python integration through the AMQP
Library, Selenium Crawling with Celery, and RabbitMQ for
queue management. This research set up the following
architecture and environment to achieve this integration.

A. System Design Architecture

The HTTP request/response cycle, like social media or
chat messages, is generally fast and synchronized, with
communication between clients and servers taking
milliseconds. Although the data transaction is fast, there is
another process, such as crawling is a time-consuming task.
The command to do a crawling could come quickly because
many users could instruct the same tasks, but the crawling
process takes longer than ordering the crawling. This situation
must be handled asynchronously by implementing a task
queue. A task queue is a solution to save fast requests to do
slow processes later in a queued manner. Fast requests could
come with a risk of data loss if not queued. This condition is
also the problem that also addressed with this research.

For a web application to operate efficiently, it is essential
to distinguish between shorter and longer tasks that may
require scheduling or external interactions. Longer tasks
should be handled separately in different processes to ensure
optimal performance and responsiveness for a better user
experience. The asynchronous processing model [15] plays a
critical role in this situation, with the message queue serving
as a mediator between services that generate and consume
processing tasks.

In the context of a web application, the producer refers to
the PHP client application that generates messages based on
user actions. For example, when a user performs an action that
necessitates storing data in a database, the PHP application
produces a corresponding message. In contrast, the consumer
is embodied by a daemon process, like Celery, that consumes
these messages and carries out the required database tasks
with the help of Selenium. This integration facilitates seamless
communication between PHP and Python, transmitting
messages through RabbitMQ and using Celery with Selenium
for web crawling and data storage in the database [8].

Fig. 1. PHP-Python Celery, RabbitMQ, and Selenium Architecture

Fig. 1 explains the complete system architecture. System
information was made with Code Igniter (CI) as a PHP
framework. CI application then defines a function to create a
stream connection to RabbitMQ with the AMQP library. The
queue needs to be bound in the channel declared with the
exchange channel of the RabbitMQ. Some JSON format
argument needs to be sent and could be executed as the
channel message. JSON format contains information about the
specific argument that needed to be performed in Python.
After the message is sent to RabbitMQ, RabbitMQ can detect
whether or not Celery is running. If the Celery is running, the
worker executes the Python command. In this case, The
Python command is to start crawling using Selenium. After
the data from Selenium is get, then is formatted at the data
frame, the data is saved in the database.

2023 IEEE International Conference on Computing (ICOCO)

84

B. Algorithm and Environment Setup

Firstly, during the initialization phase, the installations of
PHP, Python, RabbitMQ, and Celery must be performed
correctly. A specific format of message and mechanism to run
the Celery and the main program is also needed. There is a
dependency on a PHP library such as AMQP to send the
message to the channel. There is another dependency on
Python libraries, such as Selenium and Celery. Verifying that
RabbitMQ is properly configured and running is crucial to
ensure communication between the different components is
run on the system.

Next, in creating the PHP interface, there is a function
from the controller of the Code Igniter that could handle the
AMQP message and send it to the Celery. The view interface
of a web application is just like a button with a specific
parameter like date selection or a particular ID that must be
crawled. This PHP web page with a button element becomes
a gateway to receive user requests to initiate the crawling
process. Because there are some users in that system, it is
necessary to design the queue mechanism to ensure the
crawler is queued and can be executed when they get to the
queue.

This crawling mechanism could be done concurrently if
some users click that button together. There is a parameter like
a worker in Celery to handle this simultaneous action. This
parameter is tested in this research to see the effect of
increasing the number of workers when there is some request.
This mechanism is shown in Figure 2 in the PHP box and
continues to the RabbitMQ box, interconnected with the
Celery box. This system has two main Python functions: a
long process for executing the crawler based on the range of
date criteria and one process for executing the crawler with a
specific ID. There is also a creation of a RabbitMQ consumer
using the AMQP library in Python to receive the messages
PHP sends.

Celery is used to dispatch crawling tasks to the pre-
configured Celery workers. After completing the crawling
task, the Celery workers should return the results to RabbitMQ
using the AMQP protocol. This mechanism to get the result
back does not always work. The result could not be returned
without specific conditions, like how long the crawler must
take to get the parsed data. The solution is that the status of the
crawling process is saved to the database.

The Selenium box in Fig. 2 shows the crawling process.
The mechanism to access and click the element in the browser
could be seen in the development phase because Selenium
runs under Windows or some operating system with GUI.
Selenium must be headless in the production phase to run the
process in the server's background. Some parameters are
carried from the argument, like the year of the data and the
specific ID needed to be extracted. After the year is selected
and the particular ID is inputted into the search button, the
parsing element function extracts and saves the data to the
database.

There is a mathematical formulation that exists in the
problem of web crawling. There is a page that needs to be
crawled, given by Pi, over a connection of bandwidth B.
Trivial solution, we download all the pages simultaneously at
a speed proportional to the size of each page [16].

 Bi =
𝑃𝑖

𝑇∗ (1)

T* is the optimal time to use all the available bandwidth:

 T* =
𝛴𝑃𝑖

𝐵
 (2)

 bi =
𝑁

𝑇
 (3)

bi is the efficiency rate or the jobs the distributed crawler
could do. N is the amount of the distributed crawler. The
higher the amount of the crawler, the higher the efficiency. T
is the total time of the distributed crawler to finish the task.

We could extend the formula from the basic equation
according to the number of pages to be downloaded and the
request per connection. P(s,i) is the number of pages
downloaded over server s with i-th connection, and T(s,i) is
the time to download them [17].

 𝑅(𝑠, ⅈ) =
𝑃(𝑠,ⅈ)

𝑇(𝑠,ⅈ)
 (4)

P(s,i) and R(s,i) could only be known after downloading
pages over the connection. Concurrent connection also uses a
scheduling concept to estimate value a priori. The
performance of server and network conditions could be
changed constantly, although we keep the condition of the
testing scenario. We could derive the formula to:

P(s,i) = min{RequestPerConnection (s,i), TaskURLs(s,i)} (5)

T(s,i) = 2 * ConnectionTime (s,i) +
𝑃(𝑠,ⅈ)∗𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇ⅈ𝑚𝑒(𝑠,ⅈ)

𝑝
 (6)

P(s,i) is a set of two components: RequestPerConnection
and TaskURLs. RequestPerConnection represents the number
of URL requests that server s handles per connection, while
TaskURLs indicate the size of the URL queue on server s.

The function T(s,i) comprises two parts: the time required
to establish and terminate the connection (2 *
ConnectionTime(s,i)) and the cumulative transfer time needed
to retrieve the content of the web pages P(s,i). Variable p
represents a saving factor applied to this component and data
on the web page. Connection time is adaptively estimated in
the following manner:

ConnectionTime(s,i) = ConnectionTime(s,i-1) * α +
MeasureConnectionTime(s,i-1) * (1 - α) (7)

ResponseTime(s,i) = ResponseTime(s,i-1) * α +
MeasureResponseTime(s,i-1) * (1 – α) (8)

ConnectionTime(s, i-1) and ResponseTime(s, i-1) are the
original estimations, and MeasureConnectionTime and
MeasureResponseTime are the currently applied concurrent
observations. Using the new estimation based on the testing
mechanism, we could set the parameter α at 0.95 obtained
from the comparison between two workers and four
concurrency and four workers and eight concurrency to
smooth the estimation. Performance-based scheduling: the
server queue is ordered by each server's R(s,i), while URLs
are ordered as FIFO. This research contributes to a lower
response time, so the performance R(s,i) could increase.

Based on the crawl-ability-based scheduling, there a
performance and quality factors that could be considered as
follows:

 𝐶(𝑠, ⅈ) =
𝐴𝑄(𝑠,ⅈ)

𝑇(𝑠,ⅈ)
 (9)

AQ(s,i) = ∑ 𝑄𝑢𝑎𝑙ⅈ𝑡𝑦(𝐸𝑛𝑡𝑟𝑦_𝑝_ⅈ𝑛_𝑈𝑅𝐿_𝑞𝑢𝑒𝑢𝑒)
𝑃(𝑠,ⅈ)
𝑝=1 (10)

2023 IEEE International Conference on Computing (ICOCO)

85

C(s,i) shows the time-average page quality of the crawler
needed to extract the content from server s. High crawl ability
indicates the server could do the crawling job fast with the
variation of components of the HTML. This research
maintains that the crawler could do a job concurrent with
another crawling task, increasing the quality factor based on
the page's entry in the queue.

Finally, appropriate error handling management
throughout the crawling procedure was considered. This error
handling encompasses the careful handling of timeouts,
connection errors, and any potential errors originating from
the crawled websites. Furthermore, establishing and
integrating suitable monitoring and error reporting
mechanisms could effectively address potential issues and
continuous monitoring. This research tries to make a testing
mechanism to ensure that the crawler can be concurrently
executed with the load variation.

Fig. 2. PHP-Python Celery, RabbitMQ, and Selenium Process Flow

 Fig. 2 shows the complete algorithm process that is done
inside the system. The worker process in Celery could be run
with "gevent" library to check the event when the crawler is
running. For the testing scenario, a tricky step is that the
program must be run in the Celery mode and run the function
through the standard Python execution. Fig. 3 shows the
primary crawling function in interconnection with RabbitMQ,
Selenium, and Celery, explained in Pseudocode.

 This methodology provides a practical framework for
enhancing the integration between PHP and Python in
concurrent crawling using AMQP, Selenium, Celery, and
RabbitMQ. The implementation can be customized based on
specific needs and developer preferences.

IV. EXPERIMENT AND RESULT

 This experiment aims to show that the integration process
works between PHP and Python for concurrent crawling tasks
using AMQP, Selenium, Celery, and RabbitMQ. The script
required main libraries, such as Celery and Selenium. The data
formatting and parsing library use "json", "re", "pandas",
"csv", and "numpy". There is also a support library like
"threading", "psutil", "os", and "logging", which is used to test
memory and CPU usage parallel with the crawling process.
The libraries facilitate the crawling process's concurrent task
and extract data from a targeted website. This experiment also
evaluates the system's performance by adjusting the number
of workers and concurrency levels.

 A MySQL database was also set up with a dedicated
database to store the crawled data. A RabbitMQ server was
configured to run locally on the designated host machine to
establish communication and task distribution. This setup

ensured that all the necessary components were in place to
execute the experiment successfully.

Fig. 3. Pseudocode of main crawling process

Fig. 4. Sequence diagram between PHP, AMQP, RabbitMQ, Celery,

Chrome Browser, and user

The sequence diagram in Fig. 4 illustrates the user, PHP
controller, RabbitMQ, Celery worker, browser, and database
interaction in the task execution process. When the user
requests task execution, the PHP controller establishes a
connection with RabbitMQ and creates a channel. It prepares
the task details and publishes the task message to RabbitMQ.
The Celery worker receives the message, which initiates the
task. The worker interacts with the browser to perform various
actions, such as logging in, accessing specific pages, and
completing tasks. It also interacts with the database to insert

2023 IEEE International Conference on Computing (ICOCO)

86

data into the appropriate tables. Once the job is completed, the
result is sent back through RabbitMQ to the user. Overall, this
sequence diagram provides a concise overview of the
communication flow and collaboration between the
components executing the task using PHP, RabbitMQ, and
Celery.

 The experiment was carried out by running crawling tasks
with different configurations. Three scenarios were tested,
involving varying numbers of workers and concurrency
levels. Each arrangement involved a predetermined number of
workers. The system's performance was observed through
testing as the number of workers and concurrency levels
changed. The experiment recorded the memory and CPU
usage during the execution of the crawling tasks for each
configuration.

Fig. 5. Memory and CPU Usage Comparison between the Variation of

Workers and Concurrency

 Fig. 5 compares memory and CPU usage across different
variations of workers and concurrency. In the initial testing
scenario with two workers and four concurrency conditions,
the memory usage increased from 78 MB to 88 MB, indicating
a difference of 10 MB. Afterwards, when using two workers,
the memory usage was approximately 89.31 MB, representing
an increase of 1.31 MB compared to the baseline. Scaling up
to 4 workers resulted in memory usage of 89.77 MB,
reflecting a difference of 1.46 MB from the 2-worker
configuration. Finally, with eight workers, the memory usage
slightly increased to 89.81 MB, indicating a difference of 0.04
MB compared to the 4-worker setup.

 The CPU usage showed peak utilization during the
initiation stage. However, when navigating to the page where
the data exists is performed, the CPU usage decreases. Once
the process of extracting data begins, there is an increase in
CPU activity. It is important to note that the monitoring of
CPU activity is not evenly distributed across time but rather
follows a discernible pattern. Specifically, when using eight
workers, the CPU utilization experiences an increase in certain
states due to the corresponding increase in concurrency. Table
1 shows the comparison of response time and throughput in
each variation.

Firstly, two tasks were completed with a throughput of
0.08 tasks/second in the testing with two workers and four
concurrencies. The average response time was 23.34 seconds,
indicating efficient task completion within a reasonable time
frame.

Secondly, in the testing with four workers and eight
concurrencies, two tasks were also completed with the same
throughput of 0.08 tasks/second. The average response time
was 23.47 seconds, slightly increased compared to the two
workers and concurrency four scenarios.

TABLE I. COMPARISON OF THE RESPONSE TIME AND THROUGHPUT

FOR WORKER AND CONCURRENCY VARIATION

Variation Response Time Throughput Tasks

Two workers, four

concurrencies

23.34 0.08 2

Four workers, eight

concurrencies

23.47 0.08 2

Eight workers, 16

concurrencies

24.26 0.08 2

However, despite the increase in the number of workers
and concurrency, the difference in average response time
between the two workers with four concurrency and four
workers with eight concurrency scenarios is relatively small.
This event shows that the concurrency must balance with the
number of workers. The increase of workers in a rationable
manner is not increasing memory exponentially. This result
shows that other factors, such as network conditions or
resource availability, could influence response time. Further
analysis and testing may be required to fully understand the
relationship between the number of workers, concurrency, and
their impact on the average response time in the system.

V. CONCLUSION

The research on enhancing PHP-Python integration for
concurrent crawling using AMQP, Selenium, Celery, and
RabbitMQ has provided valuable insights into the system's
performance. Implementing these technologies has improved
efficiency and performance compared to traditional sequential
crawling mechanisms.

One of the main performance metrics analyzed in the
research was the average response time. By leveraging the
concurrency and parallelism capabilities offered by Celery
and RabbitMQ, the system achieved significant reductions in
response time compared to sequential crawling. Utilizing
multiple workers and concurrent processing led to faster task
completion and enhanced system responsiveness.

Furthermore, the research also looks at resource
utilization, including CPU and memory usage. Celery and
RabbitMQ facilitated the effective allocation of CPU
resources by distributing tasks across multiple workers. This
distribution not only reduced overall processing time but also
prevented CPU bottlenecks. Moreover, the research
showcased efficient memory management, ensuring optimal
usage throughout the crawling process.

The significant reduction in average response time
indicated faster task completion and an improved user
experience. Additionally, utilizing resources such as CPU and
memory demonstrated improved efficiency, resulting in better
overall performance and scalability.

The research findings demonstrate that leveraging AMQP,
Selenium, Celery, and RabbitMQ in PHP-Python integration
for concurrent crawling enhances system performance. The
reduced response time, efficient resource utilization, and
improved scalability contribute to the effectiveness and
efficiency of the crawling system, opening up possibilities for
various web crawling applications.

2023 IEEE International Conference on Computing (ICOCO)

87

ACKNOWLEDGEMENT

This work is supported and fully funded by Electrical
Engineering, Diponegoro University.

REFERENCES

[1] D. S. Sand, "A Framework for Scalable Web Data Collection,",

Course Final Project, Control and Automation Engineering of the Federal

University of Santa Catarina, 2022.

[2] A. Yudidharma, N. Nathaniel, T. N. Gimli, S. Achmad, and A.

Kurniawan, "A systematic literature review: Messaging protocols and

electronic platforms used in the internet of things for the purpose of building

smart homes," Procedia Comput. Sci., vol. 216, pp. 194–203, 2023, doi:

10.1016/j.procs.2022.12.127.
[3] L. Suutari and J. Holappa, "Future Proofing Lovelace

System Development Environment", Bachelor's Thesis,

Degree Programme in Computer Science and Engineering, University of

Oulu, 2022.

[4] V. Thirupathi and K. Sagar, "Web of Things an intelligent approach to

solve interoperability issues of Internet of Things communication protocols,"

IOP Conf. Ser. Mater. Sci. Eng., vol. 981, no. 3, p. 032094, Dec. 2020, doi:

10.1088/1757-899X/981/3/032094.

[5] "Open-source log management software, Syslog, AMQP,

NoSQL, Syslog server, Distributed database Syslog server, Cassandra

database Syslog application, NXLog, Apache, PHP", American Journal of

Computer Architecture 2022, vol. 9, no. 1, p.1-7, Apr. 2022.

[6] M. Kaasila and M. Pennanen, "Decoupling Between

Lovelace's Checker Server and Main Server", Bachelor's

Thesis, Degree Programme in Computer Science and Engineering,

University of Oulu, 2022.
[7] T. Baier, S. B. Santamaria, and P. Vossen, "A modular architecture for

creating multimodal agents." arXiv, Jun. 01, 2022. Accessed: Jun. 11, 2023.

[Online]. Available: http://arxiv.org/abs/2206.00636

[8] N. Smirnov, S. Tschernuth, W. Morales-Alvarez, and C. Olaverri-

Monreal, "Interaction of Autonomous and Manually-Controlled

Vehicles:Implementation of a Road User Communication Service." arXiv,

Apr. 28, 2022. Accessed: Jun. 11, 2023. [Online]. Available:

http://arxiv.org/abs/2204.13643

[9] J. Munke et al., "Data System and Data Management in a Federation of

HPC/Cloud Centers," in HPC, Big Data, and AI Convergence Towards

Exascale, 1st ed.New York: CRC Press, 2022, pp. 59–80. doi:

10.1201/9781003176664-4.

[10] J. Maxant, R. Braun, M. Caspard, and S. Clandillon, "ExtractEO, a

Pipeline for Disaster Extent Mapping in the Context of Emergency

Management," Remote Sens., vol. 14, no. 20, p. 5253, Oct. 2022, doi:

10.3390/rs14205253.

[11] V. Skorpil and V. Oujezsky, "Parallel Genetic Algorithms'

Implementation Using a Scalable Concurrent Operation in Python," Sensors,

vol. 22, no. 6, p. 2389, Mar. 2022, doi: 10.3390/s22062389.

[12] G. Sun, H. Xiang, and S. Li, "On Multi-Thread Crawler Optimization

for Scalable Text Searching," J. Big Data, vol. 1, no. 2, pp. 89–106, 2019,

doi: 10.32604/jbd.2019.07235.
[13] Z. Wang, "Web Crawler Scheduler Based on Coroutine," in 2019

International Conference on Intelligent Computing, Automation and Systems

(ICICAS), Chongqing, China: IEEE, Dec. 2019, pp. 540–543. doi:

10.1109/ICICAS48597.2019.00118.

[14] S. Lenselink, "Concurrent Multi-browser Crawling of Ajax-based Web

Applications", Master's Thesis, Degree of Master of Science in Computer

Science, TU Deflt, 2010.

[15] C. Auer, M. Dolfi, A. Carvalho, C. B. Ramis, and P. W. J. Staar,

"Delivering Document Conversion as a Cloud Service with High Throughput

and Responsiveness," in 2022 IEEE 15th International Conference on Cloud

Computing (CLOUD), Jul. 2022, pp. 363–373. doi:

10.1109/CLOUD55607.2022.00060.

[16] C. Castillo, M. Marin, and A. Rodriguez, "Scheduling algorithms for

web crawling," in WebMedia and LA-Web, 2004. Proceedings, Ribeirao

Preto-SP, Brazil: IEEE, 2004, pp. 10–17. doi:

10.1109/WEBMED.2004.1348139.
[17] F. Cao, D. Jiang, and J. P. Singh, "Scheduling Web Crawl for Better

Performance and Quality", Princenton University, USA, Technical Report

TR-682-03, Sep. 2023.

2023 IEEE International Conference on Computing (ICOCO)

88

